

IEEE 802.11 WLANS - WiFi Evolutions -

Kyunghan Lee Networked Computing Lab (NXC Lab) Department of Electrical and Computer Engineering Seoul National University https://nxc.snu.ac.kr kyunghanlee@snu.ac.kr

Wi-Fi Evolution – Long-Range Extension

- □ IEEE 802.11af-2013
- □ IEEE 802.11ah

IEEE 802.11af: TV White Space (TVWS)

Motivation

- TV channels (e.g., 54–698 MHz in Korea) are not utilized for 24 hours a day
- Superior propagation characteristic of low frequency band
- □ Super WiFi (or 802.11af) defines TVWS spectrum sharing
 - Among unlicensed 802.11af devices and licensed services (TV broadcast)

□ PHY

- Based on 802.11ac PHY
- Utilizes (non-adjacent) 6-8 MHz TV channels
- □ MAC
 - Geo-location Database (GDB)-based channel access

IEEE 802.11ah: Sub 1 GHz

- Motivation
 - Superior propagation characteristic of low frequency band
 - Unlicensed spectrum available at ~900 MHz
- Operation at sub 1 GHz excluding TVWS
- □ Large-scale low-rate applications (e.g., smart grid)
 - Support of more stations (~8,191 stations)
 - Deep power saving
- □ Scarcity of available bandwidth
 - 10 times down-clocking 802.11ac's PHY (2~16 MHz & extra 1 MHz channel support)

IEEE 802.11ah: Sub 1 GHz

 \Box Transmission range w/ tx power = 200 mW

- Only consider path loss effect
- Based on minimum input level sensitivities to determine successful decoding

Weiping Sun, Munhwan Choi, and Sunghyun Choi, "IEEE 802.11ah: A Long Range 802.11 WLAN at Sub 1GHz," Journal of ICT Standardization, vol 1, issue 1, May 2013.

Capacity vs. Coverage

□ Various rates and coverage due to different spectrum

- Low frequency spectrum \rightarrow long range
- High frequency spectrum → high rate

Wi-Fi Evolution – Greater Ease of Use

- □ IEEE 802.11ai
- □ IEEE 802.11aq
- □ Wi-Fi Direct & Wi-Fi Display
- □ Passpoint

IEEE 802.11ai: Fast Initial Link Setup

- Motivation
 - Initial link setup is slow and burdensome to users
- Aims at Fast Initial Link Setup (FILS) (< 100 ms)</p>
- □ Approach
 - Optimizations in AP/network discovery, concurrent cross-layer configuration
 - Passive scanning
 - FILS Discovery frame delivers partial information of beacon more frequently
 - Active scanning
 - Adaptively omit or delay probe frames

IEEE 802.11aq: Pre-Association Discovery

- Motivation
 - Diversified service categories of Wi-Fi
 - Internet access, 3D printer, video streaming, free or not
 - Find "right" AP become more complex
- □ 802.11aq enables **pre-association service discovery**
 - By delivering more considerate information to users before association
- Consider how to utilize existing service discovery/description schemes
 - UPnP, Bonjour, ANQP

Wi-Fi Alliance Certification Programs

- □ Connectivity
 - Interoperable connectivity (Wi-Fi CERTIFIED a/b/g/n/ac)
 - Wi-Fi Direct
- □ Security
 - WPA2 (government-grade security mechanism)
 - EAP (for enterprise)
- \Box Access
 - Passpoint, Wi-Fi Protected Setup, Wi-Fi Aware
- Applications and Services
 - Miracast, Voice-Enterprise & Voice-Personal
- Optimization
 - TDLS, WMM

Wi-Fi Direct & Miracast

- Direct Wi-Fi (based on Wi-Fi P2P spec) communication without infrastructure (AP)
- □ Mimic former 802.11 WLAN BSS architecture
 - P2P Group Owner (GO): AP-like device
 - P2P Client: station-like device
- \square GO power saving
 - Opportunistic power saving
 - Notice of Absence (NoA)
- Wi-Fi Direct Services
 - Platform interface to encourage more Wi-Fi Direct applications
- Miracast (based on Wi-Fi Display spec) on top of Wi-Fi Direct

Wi-Fi Direct Services (WFDS)

- Define architecture, protocol and functionality for interoperability of Wi-Fi Direct Services
- Address solution requirement areas
 - Send, play, print, display, enable, application service platform

Passpoint

- Motivation
 - Network access in hotspot area is complicated
 - Search and choose a network
 - Request connection
 - (Re)enter authentication credentials
- □ Passpoint automates entire network access process
 - By enabling a seamless connection between hotspot networks and mobile devices
 - Implemented based on IEEE 802.11u and Hotspot 2.0 specs

WIRELESS NETWORKING, 430.752B, 2020 SPRING SEOUL NATIONAL UNIVERSITY

Wi-Fi Aware

- Motivation
 - Growing proximity-based applications
 - Need for energy-efficient always-on discovery mechanism
- Neighbor awareness networking (NAN) "cluster"
 - Operation in a predefined channel (e.g., ch. 6 for 2.4 GHz band)
 - Discovery window (DW)
 - Time period where NAN devices converge
 - Service Discovery frame and Synchronization Beacon transmissions
 - Discovery Beacon broadcast outside DW for NAN cluster discovery

Wi-Fi Evolution in the Future

- □ Wi-Fi for IoT
- Needs for more spectrum
- □ Future of Wi-Fi
- □ Wi-Fi vs. LTE?

Wi-Fi: An Ideal Technology for IoT

- □ Standards-based, interoperable technology
- Legacy compatibility
- Proven security
- □ Ease of deployment and use
- Pervasive connectivity
- Precise location awareness

Wi-Fi Alliance White Paper, "Connect your life: Wi-Fi and the Internet of Everything," Jan. 2014.

Wi-Fi Innovation Continues

More methods for device pairing

- The Wi-Fi Protected Setup is expanding in 2014 to include NFC token authentication
- □ Pre-association service discovery
 - Wi-Fi Alliance is developing a "neighbor-aware" networking mechanisms
 - Enabler for proximity and location services in dense environments
- □ Improvements in spectral efficiency (802.11ax HEW)
 - As the number of devices continues to grow, spectral efficiency will be a critical area

Low-Power Wi-Fi Platform

□ For instance, Qualcomm Atheros QCA4002/4004

- A new chip family launched on Sep. 2013
- Low-power Wi-Fi solutions designed for Internet of Everything
- Target Applications
 - Major home appliances, Consumer electronics, Sensors
 - Smart plugs for home lighting, security and automation systems
- Include Green TX technology
 - A dynamic power adjustment
 - Reduce TX power by up to 1/2 in close proximity of another device or AP
 - Sleep mode consuming less than 1 mW
 - onboard wake-up manager that enables self-wake and sleep management
 - Wake from suspend: four times faster than other products
 - Reduces total power profile and system latency

Qualcomm, "Qualcomm Unveils Low-Power Wi-Fi Platform for Major Home Applications and Consumer Electronics," Sept. 2013.

Power Consumption Measurement Study

- □ One for smartphones and the other for PCs
 - Fair comparison is not guaranteed due to different measurement methods
- □ Broadcom BCM4330 combo chip
 - IEEE 802.11n, 1x1 SISO
 - 2.4 GHz, 5 GHz band, 20 MHz channel
 - Used in Galaxy Nexus, Galaxy S2, Galaxy S3, ...
- Qualcomm Atheros QCA9880
 - IEEE 802.11ac, up to 3x3 MIMO
 - 5 GHz band, up to 80 MHz channel bonding
 - Used in many laptop PCs

Monsoon power monitor

Power Consumption Measurement Results

□ Idle & RX states

• Wider bandwidth \rightarrow More power consumption (RX power is more sensitive to BW)

□ TX state

- Wider BW \rightarrow similar power
- Major consumption at power amp
- DAC power << ADC power
- Observation
 - Room to reduce power for IoT (RX?)

Wi-Fi Forward

- Motivation
 - Ever-increasing demand for data and overloaded spectrum
- Wi-Fi Forward
 - A group of companies, organizations and public sector institutions
 - For protecting existing unlicensed spectrum designations
 - For freeing up new unlicensed spectrum, including low, medium, and high frequency bands
 - For establishing (investment) friendly, transparent and predictable rules that encourage growth and deployment

Envisioning Future of Wi-Fi

□ Will all Wi-Fi ecosystem be possible in the future?!?

Wi-Fi vs. LTE-LAA (Licensed Assisted Access)

- □ Competitive or complementary?
- □ Competition with LTE-LAA
 - Carrier aggregation of LTE-A aggregating licensed spectrum and unlicensed spectrum @5 GHz
- □ Interworking between Wi-Fi and LTE to use Wi-Fi and LTE-A simultaneously
 - KT GiGA LTE
 - Samsung's download booster
 - AirPlug's ABC

WIRELESS NETWORKING, 430.752B, 2020 SPRING SEOUL NATIONAL UNIVERSITY

Conclusion

- □ Wi-Fi is a major connectivity solution in IoT era
- □ Three main directions of evolution
 - Throughput enhancements
 - Long-range extensions
 - Greater ease of use
- □ Future vision and issues
 - More diversified services with spectrum heterogeneity and greater ease of use
 - Performance enhancement in dense environment will be a key challenge
 - Close interworking with cellular and coexistence/interworking with other unlicensed band-based connectivity technologies

