"Fabricating INVAR-COPPER composite by SPS"

Current status of structural materials

2018.06.20

류종훈, 이준상, 윤국노

Introduction

Needs of high-performance packaging for electronic devices

Application - Heat radiation materials

" 고성능 방열 소재의 개발이 요구됨 "

방열소재 및 방열접착 기술시장동향 및 사업화 이슈분석, 2015

서로 비례관계에 있는 열전도도 와 열팽창계수 간의 관계 "고열전도도/저열팽창계수 재료의 개발의 어려움"

1) Optimum condition

2) Economic problem

Substitution of Mo-Cu composite is need to be designed

- which is cheap as well as having low CTE and high TC prosperities

The Origin of the 'Invar' Effect

By R. J. WEISS[†]

Department of Mathematics, Imperial College, London

MS. received 1st May 1963

Abstract. The idea that there are two electronic configurations of iron atoms in a face-centred cubic lattice is extended to the iron-nickel alloy system. With a reasonable variation of the energy difference of these two configurations with nickel concentration it is shown that the 'invar' effect originates from the thermal excitation of the configuration with lower atomic volume in opposition to the normal anharmonic origin of expansion. The anomalous pressure dependence of the Curie temperature and the variation of Curie temperature with concentration for alloys containing 30–60% Ni are also shown to follow.

т	a	b	1	e	1
			_	-	

The Approxim or Néel Temp	ate Value erature o obtained	es of Latti of the Tw d by Extra	ce Parameter, S o Electronic St polation from A	Spin per Ato ructures of Illoy Data	om, and Curie Gamma Iron
	(1)	(2)	(3)	(4)	(5)
γ_1 (lower level)	f.c.c.	3.54	Antiferro-	~0.5	~80
γ2 (upper level)	f.c.e.	3.64	Ferromagnetic	~2.8	~1800

 Crystal structure; (2) lattice parameter (Å); (3) magnetic structure; (4) spin per atom (μ_B); (5) Curie or Néel temperature ([°]K).
γ₁, Fe-Mn and Fe-Ni; γ₂, Fe-Ni, Fe-Pt and Fe-Pd.

▶ CTE is changed dramatically according to magnetic property

 $\checkmark \gamma_1$ state is stable at low temperature, which can be easily changed due to small ΔE

✓ Invar effect is disappearing when the Ni-steel passes by the Curie Temperature

The INVAR effect, the combined effect of magnetostriction and magnetic phase transformation, cancels the volume change of lattice vibration out

How influence are the each factor ?

Precedent studies

Fabricating INVAR-Copper composite by Arc-Melting (Casting)

Alloy design – thermodynamic calculation

Copper-Invar composite can be fabricated through casting process

- Using phase separation behavior of Copper and other elements

• Thermal expansion coefficient

- 1) Only 25% Cu meets required CTE value
- 2) CTE value increases linearly with increasing copper contents
- 3) It shows big difference with reference data 40 at% Cu : \sim 8 / 47 at% Cu : \sim 9
 - \rightarrow This may be because of the difference on way of fabricating invar-copper composite

• Thermal conductivity

1) Any composition does NOT meet required TC value which were too low 2) And it shows also big difference with reference – 40 at% Cu : ~ 110

Alloy design - phase separation

Copper-Invar composite can be fabricated through casting process

- Using phase separation behavior of Copper and other elements

Problem : High solubility limit of Ni to Cu

Approach

Fabricating INVAR-Copper composite by SPS (Powder metallurgy)

Preparation of Cu/Invar composites by powder metallurgy

D. Wu¹, S.-P. Wu¹, L. Yang², C.-D. Shi², Y.-C. Wu³ and W.-M. Tang^{*1,3}

An orthogonal experiment scheme was employed to study the influences of forming pressure, sintering temperature and holding time and Cu content on microstructure, hardness and electrical resistivity of the Cu/Invar composites prepared by the powder metallurgy (PM) technique. The interdiffusion of the Eq. Ni and Cu atoms of the composites during sintering was also investigated.

 Patterns (XRD) of Cu/Invar composites a after mixed and sintered (sample A₁B₁C₁D₁); b magnified region of a close to reflection angle 2θ=42-46°

Conclusion

1. Optimal PM Processing

Electrical resistivity : 1150C, 90min 50wt% Cu content Thermal expansion : 1000C, 60min 50wt% Cu content

2. Invar alloy diffuse in Cu

Form Cu(Fe,Ni) solid solution Invar alloy transforms $\Gamma \rightarrow A$

Grinding with **steel ball**

Cu -> ball coating (ductile) Fe-Ni -> not grinding (hard)

Use commercial powder Cu, Fe, Ni, Co

KGC	Steel Balls, Needle Roller & Pins					
Nomina' Dia	Quantity pcs 2KG	No 20141028				
Ф10.0mm	Material Date SUJ-2 2014-10-28					
Gauge ^µ	제당 49					

1000℃ sintering

	구분	조건 1	조건 2	조건 3	조건 4	조건 5	
국내	Fe	32.57	32.57	32.57	32.57	32.57	mold.
소성 (at %)	Ni	17.43	17.43	17.43	17.43	17.43	
(80.70)	Cu	50	50	50	50	50	
시험 조건	압력조건	30	40	50	30	30	
(MPa, ℃)	온도조건	900	900	900	850	950	

	조성	분석	조건 1	P=40	P=50	T=850	T=950
78		크기(µm)	~ 52.04	~ 44.69	~48.05	~42.05	~ 50.68
イモ	Dark	분율(%)	~ 35.12	~ 30.09	~ 34.28	~ 33.64	~ 38.50

There was no big difference in size and fraction of segregated phase

EDS analysis

Dark	조성 분석	조건 1	P=40	P=50	T=850	T=950
국내	Fe	98.84	97.36	99.09	89.50	98.60
조성 (at %)	Ni	0.62	1.52	0.58	8.43	1.05
(80.70)	Cu	0.54	1.12	0.33	2.07	0.35

EDS analysis

► Very small amount of INVAR was formed in Fe-rich region

Increasing process temperature causes increase of CTE and decrease of TC

- 1. The alloy fabricated at 850C has 15% lower CTE than casted one
- 2. All of the samples have higher TC than casted one
- 3. For both properties, lower SPS temperature is favorable.

	ТС	СТЕ
fe	71.9	12
ni	62.4	13
cu	401	17.7

Instrumented Indentation Test

IIT (10 kgf load control) was conducted :

- Since samples were too small to analyze, Reliable 1. data could not be obtained by IIT
- 2. We only can attain the hardness of each sample

Vickers Hardness Results

Samples fabricated at much harsh conditions have large STD than the others

Optical Microscope Observation

850°c/30MPa

900°c/30MPa

950°c/30MPa

Since these samples have weak interphase due to voids and large segregation regions

Summary and Conclusion

Fatigue strength prediction for inhomogeneous face-centered cubic metal based on Vickers hardness

Hao Wu^a, Shigeru Hamada^{b,c,d,*}, Hiroshi Noguchi^{b,c}

^a Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-Ku, Fukuoka 819-0395, Japan ^b Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-Ku, Fukuoka 819-0395, Japan

^c Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS), National Institute of Advanced Industrial Science and Technology (AIST), 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

^d International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

ABSTRACT

To find the Vickers hardness (*HV*) value for predicting the fatigue strength of inhomogeneous face-centered cubic (FCC) metals, *HV* tests were performed on SUH660 stainless steel. The results indicate that the intrinsic hardness distribution can be obtained from the *HV* distribution in test zones according to the Vickers hardness definition. The soft zone greatly affects the fatigue strength of an inhomogeneous FCC metal. Therefore, for another inhomogeneous FCC metal in which fatigue cracks initiate and propagate easily in the softest zone, the fatigue limit can be predicted using the mean *HV* value of the softest zone.

© 2012 Elsevier Ltd. All rights reserved.

- 1. We fabricated INVAR-copper composite by spark plasma sintering(SPS) process to control the solubility of nickel into copper under several conditions
- 2. Phase separation was aroused not into INVAR & Cu, but into Fe & Cu-Ni solid solution
- 3. We only can obtain INVAR at the lowest SPS temperature : $850\,^\circ\mathrm{C}$
- 4. If we move on to harsh conditions such as high P or T, more micro-size void was formed
- 5. In that sense, samples formed in harsh conditions shows large deviation of their hardness

Thank you for your kind attention