

Advanced Redox Technology (ART) Lab 고도산화환원 환경공학 연구실

AOPs Based on Electrochemical Reactions and Electrical Discharge

Changha Lee

School of Chemical and Biological Engineering Seoul National University

Electrochemical Processes

Characteristics of Electrochemical Water Treatment

Environmental compatibility

- Clean reagent (electron)
- No need for chemicals

Versatility

- Broad applications
- Production of useful products

Electrolysis

• Bulk electrolysis

Electrochemical alteration of the composition of bulk solution, an analyte is quantitatively converted from its original oxidation state to a new oxidation state (i.e., either reduced or oxidized)

Modes of bulk electrolysis

Controlled-potential

- The most desirable for bulk electrolysis
- Requires a **potentiostat** with large output current and voltage capabilities and **reference electrode**
- The auxiliary electrode is placed in a separate compartment isolated from the working electrode compartment.

Controlled-current

- Applicable to large-scale and flow electrosynthesis, to galvanic cells.

Three Electrode System

General scheme of the three-electrode cell configuration

Electrodes

1) Working electrode

The electrode at which the reaction of interest occurs.

 Counter electrode (auxiliary electrode)
 The electrode which facilitates to pass the current of working electrode.

3) Reference electrode

The electrode which standardizes the potential of working electrode.

Separator

The unit which separates the compartment with a working electrode to the other with a counter electrode.

Voltammetry

Voltammetry

The study of the current through an electrode as a function of the applied potential difference

Linear-sweep voltammetry

Voltammetry

Cyclic voltammetry

Voltammetry

–

Resulting cyclic voltammogram (Fe(CN)₆³⁻ + e⁻ \rightarrow Fe(CN)₆⁴⁻)

Concentration profiles

• Direct electrolysis

 Oxidation or reduction occur by direct electron transfer reactions between target contaminants and the electrode surface without involving other mediators.

Indirect electrolysis

Oxidation or reduction of target contaminants occur by reactions with electrochemically generated redox species (serving as chemical reagents or catalysts).

Direct Electrolysis

Cathodic reduction e^{-} Anodic oxidation e^{-} Pollutant Products Electrode

Direct electron transfer reaction

Anodic oxidation of phenol species

Linear sweep voltammograms for the oxidation of several chlorophenols ($C_0 = 1 \text{ mM}, \text{ pH 6}$)

Direct Electrolysis

Li and Hoffman, 1999 (J. Phys. Chem. B)

phenol	$\mathrm{p}K_{\mathrm{a}}{}^{a}$	σ^{+c}	$E_{\rm red}^{\rm o}({\rm pH~12})^{f}$
PhOH	9.98	0.00	0.86
2-ClPhOH	8.52	0.086	0.93
3-ClPhOH	8.97	0.40	0.88
4-ClPhOH	9.37	0.11	0.85
2,3-Cl ₂ PhOH	7.71	0.49	0.92
2,4-Cl ₂ PhOH	7.90	0.21	0.88
2,5-Cl ₂ PhOH	7.51	0.49	0.94
2,6-Cl ₂ PhOH	6.80	0.17	0.90
3,4-Cl ₂ PhOH	8.62	0.51	0.89
3,5-Cl ₂ PhOH	8.25	0.80	0.88
2,3,4-Cl ₃ PhOH	6.97	0.61	0.89
2,3,5-Cl ₃ PhOH	6.43	0.89	0.94
2,3,6-Cl ₃ PhOH	5.80	0.57	0.93
2,4,5-Cl ₃ PhOH	6.72	0.61	0.90
2,4,6-Cl ₃ PhOH	5.99	0.30	0.90
2,3,4,6-Cl ₄ PhOH	5.22	0.70	0.97
2,3,5,6-Cl ₄ PhOH	5.03	0.97	0.99

TABLE 1: Parameters for Phenols in Aqueous Solution

Direct Electrolysis

Side reactions

Anodic oxidation

 $R \rightarrow O + ne^{-}$

 $\mathbf{2H}_2\mathbf{0} \rightarrow \mathbf{0}_2 + \mathbf{4H}^+ + \mathbf{4e}^-$

Cathodic reduction

 $O + ne^{-} \rightarrow R$

 $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

Instantaneous Current Efficiency: ICE

In anodic oxidation, a major side reaction is the oxygen evolution.

By measuring the O_2 flow rate during the electrolysis in the presence ($V_{O2, org}$) and absence (V_{O2}) of the organic contaminant, the instantaneous current efficiency (ICE) at time t can be obtained as,

$$ICE = \frac{V_{O_2} - V_{O_2,org}}{V_{O_2}} = \frac{[(COD)_t - (COD)_{t+\Delta t}]}{32000 \times I\Delta t} \, 4FV_s$$

V_{O2,org}: Oxygen flow rate during electrolysis in the presence of organic species

V_{O2}: Oxygen flow rate during electrolysis in the absence of organic species

(COD)_t: Chemical oxygen demand at time t (mg/L)

- V_s: Volume of electrolyte (L)
- I: Current (A)
- F: Faraday constant

Electrochemical Oxidability Index: EOI

$$EOI = \frac{\int_{0}^{\tau} ICEdt}{\tau}$$

Average current efficiency

Electrochemical Oxidability Index: EOI

Electron-withdrawing groups (e.g., $-SO_3H$, -COOH) \longrightarrow EOI \checkmark

Electron-donating groups (e.g., -NH₂)

Electrochemical Oxygen Demand: EOD

• Electrochemical Oxygen Demand (EOD)

The fraction of current used in oxidation of organic compounds can be expressed as the mount of evolved O_2 .

In the absence of an organic contaminant

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$

mol $O_{2(\text{theor})} = \left(\frac{1 \text{ mol } O_2}{4 \text{ mol } e^-}\right) \left(\frac{1 \text{ mol } e^-}{F}\right) It = \frac{It}{4F}$

In the presence of an organic contaminant

Org → Oxidation products + ne⁻
EOD = mol O₂ consumed for the contaminant oxidation
= mol O_{2(theor)} •EOI =
$$\frac{It}{4F}$$
 • EOI

Indirect Electrolysis

Indirect electron transfer reactions

Indirect Electrolysis

• Electron mediator for reversible process

Mediator Couple	Standard Reduction Potential
	V versus NHE
Ag(I/II)	1.98
Co(II/III)	1.82
Ce(IV/III)	1.44
Fe(II/III)	0.77

Reversible Process

Ag(I)/Ag(II) couple

- $Ag^+ \rightarrow Ag^{2+} + e^-$
- $Ag^{2+} + R \rightarrow O + Ag^+$

(Example)

 $Ag^+ \rightarrow Ag^{2+} + e^-$

 $Ag^{2+} + NO_3^- \rightarrow AgNO_3^+$

a AgNO₃⁺ + Organics + b H₂O \rightarrow a Ag⁺ + n CO₂ + a HNO₃

Reversible Process

Fe(II)/Fe(III) couple

 $Fe^{3+} + e^- \rightarrow Fe^{2+}$ $E^0 = 0.77 V vs NHE$

Irreversible Process

• Various oxidants generated by water electrolysis

Reagent	ts Standard Redox Potential (V vs NHE)		
•OH	/ H ₂ O	2.80	
0	/ H ₂ O	2.42	
O ₃	/ O ₂	2.08	
H_2O_2	/ H ₂ O	1.78	
HO₂●	/ H ₂ O ₂	1.70	
Cl ₂	/ CI-	1.39	

Irreversible Process

•OH production

- $H_2O \rightarrow \bullet OH_{(ads)} + H^+ + e^-$
- •OH_(ads) \rightarrow 1/2O₂ + H⁺ + e⁻

(Overall reaction)

 $H_2O \rightarrow 1/2O_2 + 2H^+ + 2e^-$

Chlorine evolution

- $2Cl^{-} \rightarrow Cl_2 + 2e^{-}$
- $Cl_2 + H_2O \rightarrow HCI + HOCI$
 - (K = 4×10⁻⁴ at 25 °C)

HOCI \Leftrightarrow H⁺ + OCI⁻ (pK_a = 7.54 at 25 °C)

Irreversible Process

Ozone evolution

$$H_{2}O \rightarrow \bullet OH_{(ads)} + H^{+} + e^{-}$$

$$\bullet OH_{(ads)} \rightarrow \bullet O_{(ads)} + H^{+} + e^{-}$$

$$2\bullet O_{(ads)} \rightarrow (O_{2})_{(ads)} \rightarrow O_{2}$$

$$\bullet O_{(ads)} + (O_{2})_{(ads)} \rightarrow O_{3}$$

(Overall reaction)

 $3H_2O \iff O_3 + 6H^+ + 6e^-$

(Requirement for O₃ generation)

1) Anodes with <u>high O₂ overpotential</u> (poor oxygen evolution kinetics)

2) No significant competitive redoxreactions of electrolytes (anions and cations)

3) Anodes present in their highestoxidation state or kinetically resistantto further oxidation.

• Consideration points for choosing the electrode material

- Composition and nature of the electrolytes in solution
- Stability of the electrode material
- Effects of cathodic reactions on the overall efficiency
- Available range of potential and pH
- Cost
- Selectivity
- Environmental compatibility

Noble metal

- Platinum (Pt), Gold (Au)
- Fast electron transfer kinetics
- Wide positive potential window
- High background current
- Very expensive

Metal

- Stainless steel, nickel
- Available in only a limited range of potential and pH

I: H₂ gas evolution

 $II_1, II_2: H^+ + e^- \rightarrow H_{ad}$

III: Charged current in double layer

IV: Oxide reduction

V: Oxide formation

$$II_1', II_2' : H_{ad} \rightarrow H^+ + e^-$$

Cyclic voltammogram of Pt in 1N H₂SO₄

Metal oxide

- Pt, Ir, Ru, Pb oxide
- High resistance to severe conditions
- High O₂ evolution overpotential
- Very suitable for degrading organic contaminants by anodic oxidation

Carbon based electrode

- Graphite, Carbon felt, Glassy carbon,
 Reticulated vitreous carbon (RVC)
- High surface area
- High chemical inertness
- Commercial availability at a reasonable cost

Reticulated Vitreous Carbon (RVC)

Boron-doped diamond electrode

- High overpotential for both $\rm H_2$ and $\rm O_2$ evolution
 - (a wide potential window)
- Low background current
- High stability under strong oxidizing conditions

Cyclic voltagram for BDD and Pt (0.2 M KH₂PO₄, v = 50 mV/sec)

Band gap of boron-doped diamond electrode

Electrochemical Water Treatment Processes

Anodic oxidation process

Cathodic reduction process

Electrocoagulation process

Electrochemical generation of Fenton's reagents

Anodic Oxidation Process

Electrochemical oxidation of contaminants by direct and indirect reactions occurring at the anodic part

Dual reaction pathways in anodic oxidation process

Anodic Oxidation Process

Examples of direct anodic oxidation of water contaminants

Linear sweep voltammograms for the oxidation of several chlorophenols ($C_0 = 1 \text{ mM}$, pH 6)

Cyclic voltammograms for whole cells of *S.* cerevisiae ($C_0 = 1.28 \times 10^8$ CFU/ml, 0.1 M phosphate buffer (pH 7)

Dual Pathways for Anodic Oxidation of Phenol

Dual Pathways for Anodic Oxidation of Phenol

Direct oxidation pathway

Chronoamperometric response to step-by-step injections of phenol

injection concentrations of phenol

At 2.0 V vs. SCE

Phenol \rightarrow phenoxy radical + e⁻ \rightarrow \rightarrow Polymerization (O) Current decay H₂O \rightarrow \bullet OH + H⁺ + e⁻ (X)

Dual Pathways for Anodic Oxidation of Phenol

Direct and indirect oxidation pathways

At above 2.6 V vs. SCE

Phenol \rightarrow hydroquinone catechol + 2e⁻ (O) Steady state current H₂O \rightarrow •OH + H⁺ + e⁻ (O) Removal of electrode fouling

Anodic Oxidation for Disinfection

1st stage

E. coli $\rightarrow \rightarrow \rightarrow$ inactivation CoA (coenzyme A) \rightarrow dimeric CoA + e⁻

2nd stage

 $H_2O \rightarrow \bullet OH + H^+ + e^-$

E. $coli + \bullet OH \rightarrow \rightarrow \rightarrow$ inactivation

MeOH + •OH \rightarrow scavenging
Anodic Oxidation for Disinfection

Two stages inactivation of *E. coli* in anodic oxidation process

Chlorinated organics

Effective dechlorination of compounds that have a low reactivity to •OH

 $R-CI + 2H^+ + 2e^- \rightarrow R-H + HCI$ (E = -1 ~ -3 V vs. SCE)

 $C_{12}H_{10-n}CI_n (PCBs) + 2ne^- + nH^+ \rightarrow C_{12}H_{10} + nCI^-$

Oxynitrogen ions

 $2NO_3^- + 2H_2O + 4e^- \rightarrow 2NO_2^- + 4OH^-$

 $2NO_2^- + 4H_2O + 6e^- \rightarrow N_2 + 8OH^-$

Metal removal

Conventional process for metal removal

- Precipitation as hydroxides, sulfides, or oxalates
- Filtration
- Chemical or electrochemical ion exchange
- Reverse osmosis
- Chemical or physical adsorption
- Stabilization or solidification
- Chemical reduction
- Biological remediation
- Electrochemical deposition

Advantages of the electrochemical method for metal removal

- The metal is produced in its most valuable form
- No extra reagents are added. (treated water can be recycled)
- Control of pH can be electrochemically achieved.
- Sludge production is minimized
- Selective deposition of one metal in mixture may be possible.
- The operating cost is low
- The corresponding anodic reaction can be additionally used.
 - (e.g. other organics degradation (ligands), high-purity O_2 production)
- Simple and compact

Pathways for the electrochemical metal reduction

Electrocoagulation Process

Mechanisms

- Case I
 - Anode: 4 Fe(s) \rightarrow 4 Fe²⁺(aq) + 8 e⁻
 - Chemical: 4 Fe²⁺(aq) + 10 H₂O(I) + O₂(g) \rightarrow 4 Fe(OH)₃(s) + 8 H⁺(aq)
 - Cathode: 8 H⁺(aq) + 8 e⁻ \rightarrow 4 H₂(g)
 - Overall: 4 Fe(s) + 10 H₂O(l) + O₂(g) \rightarrow 4 Fe(OH)₃(s) + 4 H₂(g)

• Case II

Anode: Fe(s) \rightarrow Fe²⁺(aq) + 2 e⁻

Chemical: $Fe^{2+}(aq) + 2 OH^{-}(aq) \rightarrow Fe(OH)_{2}(s)$

Cathode: $2 H_2O(I) + 2 e^- \rightarrow H_2(g) + 2 OH^-(aq)$

Overall: $Fe(s) + 2 H_2O(I) \rightarrow Fe(OH)_2(s) + H_2(g)$

Electrocoagulation Process

Schematic diagram of the electrocoagulation process

Electro-Fenton®

- In-situ electrogeneration of Fenton's reagent (Fe²⁺, H₂O₂)
- Cathodic part

 O_2 + 2H⁺ + 2e⁻ → H_2O_2 (E⁰ = 0.68 V) Fe³⁺ + e⁻ → Fe²⁺ (E⁰ = 0.77 V)

- Anodic part

 $2H_2O \iff O_2 + 4H^+ + 4e^- (E^0 = 1.23 \text{ V})$

$$\frac{1}{2}O_2 + H_2O + e^- \rightarrow 2OH \bullet$$

Schematic diagram for electro-fenton

Anodic Fenton

- Cathodic part

 $2H_2O + 2e^- \iff H_2 + 2OH^- (E^0 = -0.8277 \text{ V})$

- Anodic part

Fe (sacrificial anode) \rightarrow Fe²⁺ + 2e⁻ (E⁰ = 0.447 V)

- Overall

 $Fe + 2H_2O \rightarrow Fe(OH)_2 + H_2$

Electrochemical cell for the anodic Fenton system

Full-scale Electro-Fenton process in Taiwan

Outer view of Electro-Fenton process

An electrolytic tank with 100 anodes and cathodes

Full-scale Electro-Fenton process in Taiwan

Type of wastewater	Influent COD, mg/l	Effluent COD, mg/l	COD removal efficiency (%)
Oil/ink waste liquor in a chemical plant	74,600	2,390	97
Hexamine wastewater in a chemical plant	29,600	40	>99
Electroless nickel wastewater in a electro-plating plant	27,900	1,940	93
Black liquor in a pulp/paper plant	30,900	350	99
Acrylonitrile wastewater in a latex plant	5,800	560	90
Resin processing wastewater in a chemical plant	2,500	350	86
Catalyst regenerate wastewater in a manmade fiber plant	24,900	620	97
Waste liquor of laboratory in a college	23,900	4,780	80

High-Voltage Electric Discharge Processes

Types of Electrical (Corona) Discharge

from Chang et al., 1991

Type of corona discharge depend on

Polarity of the field Electrode configuration Applied voltage

Streamer Corona Discharge

Streamer corona \Rightarrow

Large active volume

Low temperature (100K) plasma

↑ Schematic of the streamer corona charge distributions from Chang et al., 1991

Electrical Discharge Modes in Water

Corona discharge

Spark discharge

> Arc discharge

Higher pulse energy Higher peak current Larger conductance Narrow sparkgap Higher coductivity in sol'n

Electrical Discharge Modes in Water

Pulse energy

~

~ 1 J	Corona discharge (peak current : < 10 A)
10 J	Spark discharge (peak current : 10 ~ 100 A)
100 J	Arc discharge (peak current : 100 A ~ 1 kA)
- 10 kJ	Electrohydraulic(EHD) discharge (peak current : 1 ~ 100 kA) (intensive UV, shockwave, temperature increase, local supercritical state)

Electrical Discharge Modes in Water

Formation of Plasma Channel

Chang et al., 1991

Plasma :

High energy state in which molecules are ionized, and exist as radicals, electrons, and cations

- Plasma channel temperature :
- ~ 10000 K
- Plasma channel volume :

1 nl ~ 5 ml vary with specifications of the system

What Happens in the Plasma Channel?

> Water dissociation :

 $H_2O \rightarrow H \cdot + \cdot OH$ $H_2O \rightarrow 1/2H_2O_2 + 1/2H_2$ $2H_2O \rightarrow H_3O^+ + e^-_{aq} + \cdot OH$

- Pyrolysis in the plasma channel
- Intensive shockwave : 5 ~ 20 kbar
- Electrohydraulic cavitation
- Supercritical water oxidation

Intensive UV/visible light emission :

(including VUV emissions) $h_V + H_2O \rightarrow H \cdot + \cdot OH$

Application to Water Treatment

Electrical Discharge Process

Experimental Apparatus

↑ Schematic diagram of pulsed discharge reactor

Experimental Apparatus

1 Schematic diagram of streamer corona reactor.

Voltage Waveform of Pulsed Discharge

Applied voltage (6~30 kV)
Frequency (60 discharges/s)
Time constant (1~1000 µs)

(a) Rise time of applied voltage pulse
(b) Exponential decay of voltage pulse

 $e^{-t/\tau}$, τ : time constant

Light Emission Spectrum

Sun et al., 1997 (J. Electrostatics)

Degradation of Contaminants by SCD System

Lee et al., 2006 (Chemosphere)

Oxidative degradation of dimethylsulfoxide (DMSO) by the streamer corona discharge process

Degradation of Contaminants by EHD System

Enhancement by hv/O_3

 $O_3 + hv \rightarrow O(^1D) + O_2$ $O(^1D) + H_2O \rightarrow 2^{\bullet}OH$

Lang et al., 1998 (Environ. Sci. Technol.)

Degradation of Contaminants by EHD System

Two reactive regions in the EHD system

- Plasma channel (~ 3 ml) : Oxidation in a extreme plasma Multiple factors causing the contaminant degradation such as pyrolysis, oxidation by radicals, super critical water oxidation...
 First-order decay of the contaminant (k₁)
- 2. Bulk solution : Degradation mainly by the UV photolysis Zero-order decay of the contaminant (k_0)

Degradation kinetics :
$$\frac{\mathrm{d}C}{\mathrm{d}N} = -k_1C_1 - k_0 = -k_A$$

Degradation of Contaminants by EHD System

$$\frac{\mathrm{d}C}{\mathrm{d}N} = -k_1 C_{\mathrm{i}} - k_0 = -k_{\mathrm{A}}$$

4-chlorophenol : $(9.4 \times 10^{-4})C_i + 0.73$

3,4-dichloroaniline $(8.2 \times 10^{-4})C_i + 0.17$

2,4,6-trinitrotoluene (TNT) $(5.6 \times 10^{-4})C_i + 0.096$

Willberg et al., 1996

Electrohydrodynamic Spraying of O_3 or O_2

- Electrical discharge

O₃ micro bubble formation (Enhancement of mass transfer)

Gas bubbles may be broken up as an electric field passes from a fluid with large dielectric constant (water, ε =80) to a fluid with small dielectric constant (air, ε =1) In effect the water "squeezes" the gas bubbles, electrically generated force exert on the fluid with the smaller dielectric constant

Qualitative Comparison to Energy Efficiency of Plasma Technologies

• Three categories of plasma technologies : remote, indirect, and direct (Emelko et al., 2003)

- (1) Remote plasma technologies e.g. ozone process
- (2) Indirect plasma technologies e.g. UV, electron beam
- (3) Direct plasma technologies (electrical discharge process)

Potentially more efficient ?

Disinfection of Escherichia coli by electrohydraulic discharge

(Ching et al., 2001, Environ. Sci. Technol.)

Disinfection of MS2 coliphage by streamer corona discharge

(Lee et al., 2011, Chemosphere)

Germicidal factors by electrical discharge

- Reactive chemical species
 - •OH, O₂-•, O, O₃ etc.
- Pressure shockwave

Pressure gradient with a short rise time

- UV radiation

Pulsed UV of high intensity

The major mechanism for the microbial inactivation depends on the electrical discharge mode?

Soluble sunscreens fully protect *E. Coli* from disinfection by electrohydraulic discharge

(Ching et al., 2003, Environ. Sci. Technol.)

Disinfection Using Electrical Discharge

Viruses are inactivated by different disinfection mechanism

 \Rightarrow Pressure shock wave?

Lee et al., 2011 (Chemosphere)

Water Treatment Using Electrical Discharge

Advantages

- No production of harmful disinfection byproducts
- No limitations to the water (or wastewater) conditions
- Convenient due to the direct usage of the electrical power
- Inactivation of microorganisms concurrent with the degradation of organic pollutants

Issues

- Energy efficiency
- Cost of facilities