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16.1 Introduction

Ideal gas (intermolecular interactions)

Compressed gases and Liquids

Solid state

Random motion

Pseudocrystalline structure

Crystalline structure
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16.2 Einstein’s Theory of the heat capacity of a solid

• Einstein’s Solid

Einstein assumed the solid as the crystal lattice structure of 

particles connected by oscillators of nature frequency 𝜈𝐸. 

Therefore, there are 3N oscillators for a solid with N particles.

Oscillation (Simple harmonic motion)
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16.2 Einstein’s Theory of the heat capacity of a solid

• For each molecule,

Since the molecules of a solid are free to oscillate in three dimensions,

a mean energy 3kT is assigned to each molecule.

• At moderate T,

𝑥 − 𝑑𝑖𝑟.

1

2
𝑘𝑇 𝑓𝑜𝑟 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦

1

2
𝑘𝑇 𝑓𝑜𝑟 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

→ 𝑘𝑇 𝑚𝑒𝑎𝑛 𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

U = 3N𝑘𝑇 = 3𝑛𝑅𝑇

𝑢 =
𝑈

𝑛
= 3𝑅𝑇 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑚𝑜𝑙𝑒

𝐶𝑣 =
𝜕𝑢

𝜕𝑇 𝑣
= 3𝑅 Dulong-Petit Relation

Oscillation
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16.2 Einstein’s Theory of the heat capacity of a solid

At high temperatures, 𝐶𝑣 is very nearly equal to the classical value 3𝑅, 

but it decreases to zero at 0 K. 

At low temperatures, Einstein suggested that quantum theory should be 

applied to this problem.

Fig. The specific heat capacity of various solids as a function of T/θE. 
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16.2 Einstein’s Theory of the heat capacity of a solid

• At low temperatures, energy level of simple harmonic oscillator

𝜀𝑛 = 𝑛 +
1

2
ℎ𝜈 n = 0,1,2 ⋯

𝑍 = ∑exp − 𝑛 +
1

2
ℎ𝜈/𝑘𝑇 =

exp(−
ℎ𝜈
2𝑘𝑇

)

1 − exp(−
ℎ𝜈
𝑘𝑇
)

𝑁𝑛
𝑁

=
exp(−

𝜀𝑛
𝑘𝑇
)

𝑍
=
exp −

𝑛 +
1
2

ℎ𝜈

𝑘𝑇
𝑍

• The partition function

• For 3N simple harmonic independent oscillators, the total energy is

𝑬 = 𝟑𝑵∑
𝑵𝒏

𝑵
𝜺𝒏 = 𝟑𝑵

∑ 𝒏 +
𝟏
𝟐

𝒉𝝂 ∙ 𝐞𝐱𝐩 − 𝒏 +
𝟏
𝟐

𝒉𝝂/𝒌𝑻

𝒁
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16.2 Einstein’s Theory of the heat capacity of a solid

• The total energy is

𝐸 = 3𝑁
∑ 𝑛 +

1
2

ℎ𝜈 ∙ exp − 𝑛 +
1
2

ℎ𝜈/𝑘𝑇

𝑍

= 3𝑁
∑ 𝑛ℎ𝜈 +

1
2
ℎ𝜈 ∙ exp

−𝑛ℎ𝜈
𝑘𝑇

exp
−ℎ𝜈
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−ℎ𝜈
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∑exp
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𝑘𝑇

= 3𝑁
1

2
ℎ𝜈 + 3𝑁

∑𝑛ℎ𝜈 ∙ exp
−𝑛ℎ𝜈
𝑘𝑇

∑exp
−𝑛ℎ𝜈
𝑘𝑇

= 𝑘𝑇2
𝜕

𝜕𝑇
𝑙𝑛∑exp

−𝑛ℎ𝜈

𝑘𝑇
=
𝒉𝝂 ∙ 𝒆𝒙𝒑

−𝒉𝝂
𝒌𝑻

𝟏 − 𝒆𝒙𝒑
−𝒉𝝂
𝒌𝑻

∗
𝜕

𝜕𝑇
𝑙𝑛∑exp

−𝑛ℎ𝜈

𝑘𝑇
=

𝜕

𝜕𝑇
𝑙𝑛 1 + exp

−1ℎ𝜈

𝑘𝑇
+ exp

−2ℎ𝜈

𝑘𝑇
+⋯ ≈

𝜕
𝜕𝑇

ln
1

1 − exp
−ℎ𝜈
𝑘𝑇

=
𝐞𝐱𝐩

−𝒉𝝂
𝒌𝑻

∙
𝒉𝝂
𝒌𝑻𝟐

𝟏 − 𝐞𝐱𝐩
−𝒉𝝂
𝒌𝑻

• Equation for the vibrational energy of an Einstein solid

∴ 𝑬 =
𝟑𝑵

𝟐
𝒉𝝂 +

𝟑𝑵𝒉𝝂 ∙ 𝐞𝐱𝐩
−𝒉𝝂
𝒌𝑻

𝟏 − 𝐞𝐱𝐩
−𝒉𝝂
𝒌𝑻
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16.2 Einstein’s Theory of the heat capacity of a solid

• With 𝑁𝑘 = 𝑅, 

• The Einstein temperature, 𝜃𝐸 is defined as

𝜃𝐸 =
ℎ𝜈𝐸
𝑘

𝑪𝒗 = 𝟑𝑹
𝜽𝑬
𝑻

𝟐 𝐞𝐱𝐩(
𝜽𝑬
𝑻
)

𝒆𝒙𝒑(
𝜽𝑬
𝑻
) − 𝟏

𝟐

𝐶𝑣 =
𝜕𝐸

𝜕𝑇
𝑣

= 3𝑁ℎ𝜈
−exp

ℎ𝜈
𝑘𝑇

−ℎ𝜈
𝑘𝑇2

exp
ℎ𝜈
𝑘𝑇

− 1
2 = 3𝑁𝑘

ℎ𝜈

𝑘𝑇

2 exp
ℎ𝜈
𝑘𝑇

exp
ℎ𝜈
𝑘𝑇

− 1
2
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16.2 Einstein’s Theory of the heat capacity of a solid

• 𝜃𝐸=?

It is not possible to fine a value of 𝜃𝐸 which gives a good agreement with 

experiments at both high and low temperatures.

1. Proper 𝜃𝐸 gives a good agreement at high temperatures,

2. At low temperatures     ->      𝑪𝒗,𝒆𝒙𝒑. > 𝑪𝒗,𝒕𝒉𝒆𝒐𝒓𝒚

3. When T -> 0, comparison with experiment is not satisfactory.

𝑇/𝜃𝐸

𝑪𝒗/3𝑅

Fig. Specific heat as function of Einstein temperature
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16.2 Einstein’s Theory of the heat capacity of a solid

• Einstein

Einstein theory assumes that all the molecules oscillate with 

the same frequency 𝝂

• Nernst and Lindemann

Nernst and Lindemann assume that the molecules of a solid 

could oscillate at two frequencies,  𝝂 and 𝟐𝝂

• Born, Von Karman, and Debye

They considered that the thermal vibrations of the individual 

molecules could be replaced by a set of stationary elastic 

waves having a continuous range of frequencies up to a 

certain maximum value, 𝝂 , 𝟐𝝂,⋯ , 𝝂𝒎𝒂𝒙
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16.3 Debye’s theory of the heat capacity of a solid

• Debye’s solid

Debye assumed solid as a continuous elastic solid composed of 

particles called phonon with stationary elastic sound waves. 

Therefore a solid of Debye’s theory is viewed as phonon gas.

L

Dilute phonon 

gas
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16.3 Debye’s theory of the heat capacity of a solid

• Quantum waves in a one-dimensional box

m m m m

k k k

a a a
Equilibrium distance

𝑦𝑛

𝑚
𝑑2𝑦𝑛
𝑑𝑥2

= 𝑘 𝑦𝑛+1 − 𝑦𝑛 − 𝑘 𝑦𝑛 − 𝑦𝑛−1

𝑦𝑛 = 𝐴 cos 2𝜋 𝜈𝑡 −
𝑛𝑎

𝜆
(𝜈: 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝜆: 𝑤𝑎𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ)
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16.3 Debye’s theory of the heat capacity of a solid

• Quantum waves in a one-dimensional box

Wave function

Wave velocity

𝜓 = 𝐴 sin 𝑘𝑥 𝜓(0) = 𝜓(𝐿) = 0

𝑘 =
2𝜋

𝜆
=
𝑛𝜋

𝐿
𝑛 = 1,2,3⋯ ,

𝑐 = 𝜆𝜈

𝑛 =
2𝐿

𝜆
=
2𝐿

𝑐
𝜈 =

2𝑉1/3

𝑐
𝜈 𝑉 = L3

n2 = 𝑛𝑥
2+𝑛𝑦

2+𝑛𝑧
2

Fig. A shell of thickness dn of an 

octant of a sphere of radius n 
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16.3 Debye’s theory of the heat capacity of a solid

• Density of frequency distribution

Because there are 3N oscillators, there must be upper limit of 

frequency, 𝜈𝑚.

𝑔 𝜈 𝑑𝜈 ∶ 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝜈 𝑡𝑜 𝜈 + 𝑑𝜈

𝑔 𝜈 𝑑𝜈 =
1

8
4𝜋𝑛2𝑑𝑛 =

𝜋

2
𝑛2𝑑𝑛

=
𝜋

2

4𝑉2/3

𝑐2
𝜈2

2𝑉1/3

𝑐
𝑑𝜈 =

4𝜋𝑉

𝑐3
𝜈2𝑑𝜈

Fig. Frequency spectra of crystal vibrations: 

(a) Einstein model; (b) Debye model. (a)                                                    (b)

𝑁

𝑉
:

1

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑜𝑚𝑖𝑐 𝑠𝑝𝑎𝑐𝑖𝑛𝑔

3𝑁 = න
0

𝜈𝑚

𝑔 𝜈 𝑑𝜈 = න
0

𝜈𝑚 4𝜋𝑉

𝑐3
𝜈2𝑑𝜈 =

4𝜋𝑉

𝑐3
1

3
𝜐𝑚

3

𝜐𝑚 ∝ (
𝑁

𝑉
)
1
3
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16.3 Debye’s theory of the heat capacity of a solid

• No restriction on the number of phonons per energy level. Thus phonons are 

bosons. So that phonon gas follows Bose-Einstein statistics. 

𝑁 𝜈 𝑑𝜈 =
𝑔 𝜈 𝑑𝜈

𝑒ℎ𝜈/𝑘𝑇 − 1
= ൞

9𝑁

𝜈𝑚
3

𝜈2𝑑𝜈

𝑒ℎ𝜈/𝑘𝑇 − 1
0

𝜈 ≤ 𝜈𝑚

𝜈 > 𝜈𝑚

𝑈 = න
0

𝜈𝑚 1

2
ℎ𝑣 +

ℎ𝑣

𝑒ℎ𝜈/𝑘𝑇 − 1
𝑔 𝜈 𝑑𝜈

= න
0

𝜈𝑚

ℎ𝑣𝑁 𝜈 𝑑𝜈 + න
0

𝜈𝑚 1

2
ℎ𝑣𝑔 𝜈 𝑑𝜈

𝑁(𝜀)

𝑔(𝜀)
=

1

𝑒(𝜀−𝜇)/𝑘𝑇 − 1
𝜇 = 0 = ቇ

𝜕𝐹

𝜕𝑁
𝑇,𝑉

• The total energy 

# of photons 𝜈 𝑡𝑜 𝜈 + 𝑑𝜈

# of possible frequencies

𝑼− 𝑼𝟎 =
𝟗𝑵

𝒗𝒎
𝟑
න
𝟎

𝒗𝒎 𝒉𝒗𝟑𝒅𝒗

𝒆
𝒉𝒗
𝒌𝑻 − 𝟏

𝑈0 = න
0

𝜈𝑚 1

2
ℎ𝑣

4𝜋𝑉

𝑐3
𝜈2𝑑𝜈 =

2𝜋𝑉ℎ

𝑐3
න
0

𝜈𝑚

𝜈3𝑑𝜈

=
𝜋𝑉ℎ

2𝑐3
𝜈4 =

9

8
𝑁ℎ𝜈𝑚
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16.3 Debye’s theory of the heat capacity of a solid

Debye temperature 𝜃𝐷 is defined as

𝑈 − 𝑈0 =
9𝑁

𝑣𝑚
3
න
0

𝑣𝑚 ℎ𝑣3𝑑𝑣

𝑒ℎ𝜈/𝑘𝑇 − 1

𝐶𝑣 =
𝜕𝑈

𝜕𝑇
=

9𝑁

𝜈𝑚
3
න
0

𝜈𝑚 𝑑

𝑑𝑇

1

𝑒ℎ𝜈/𝑘𝑇 − 1
ℎ𝜈3𝑑𝜈

=
9𝑁

𝜈𝑚
3
න
0

𝜈𝑚
ℎ𝜈
𝑘𝑇2

𝑒ℎ𝜈/𝑘𝑇

𝑒ℎ𝜈/𝑘𝑇 − 1 2
ℎ𝜈3𝑑𝜈

=
9𝑁ℎ2

𝜈𝑚
3

1

𝑘𝑇2
න
0

𝜈𝑚 𝜈4𝑒ℎ𝜈/𝑘𝑇

𝑒ℎ𝜈/𝑘𝑇 − 1 2
𝑑𝜈

= 𝟗𝑵𝒌
𝑻

𝜽𝑫

𝟑

න
𝟎

𝜽𝑫/𝑻 𝒙𝟒𝒆𝒙

(𝒆𝒙 − 𝟏)𝟐
𝒅𝒙

𝐿𝑒𝑡 𝑥 =
ℎ𝜈

𝑘𝑇
, 𝑥𝑚=

ℎ𝜈𝑚
𝑘𝑇

=
𝜃𝐷
𝑇

𝜽𝑫 ≡
𝒉𝒗𝒎
𝒌
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16.3 Debye’s theory of the heat capacity of a solid

For high temperatures, T ≫ 𝜃𝐷 𝑎𝑛𝑑 𝑥 ≪ 1. So 𝑒𝑥 − 1 ≈ 𝑥, 𝑒𝑥 = 1.

For low temperatures, T ≪ 𝜃𝐷

න
0

𝜃𝐷
𝑇
𝑥2𝑑𝑥 =

1

3

𝜃𝐷
𝑇

3

𝐶𝑣 ≈ 9𝑁𝑘
𝑇

𝜃𝐷

3

න
0

𝜃𝐷
𝑇 𝑥4𝑒𝑥

𝑥2
𝑑𝑥 = 9𝑁𝑘

𝑇

𝜃𝐷

3
1

3

𝜃𝐷
𝑇

3

= 3𝑁𝑘

න
0

∞ 𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥 =

4𝜋4

15

𝑪𝒗 =
𝟒𝝅𝟒

𝟏𝟓

𝑻

𝜽𝑫

𝟑

𝟗𝑵𝒌 =
𝟏𝟐𝝅𝟒

𝟓
𝑵𝒌

𝑻

𝜽𝑫

𝟑

𝐶𝑣 = 9𝑁𝑘
𝑇

𝜃𝐷

3

න
0

𝜃𝐷/𝑇 𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

Debye’s 𝑇3 law


