Lecture Note #6C (Fall, 2022)

Liquid Interfaces

Surface energy and surface tension (5.2.1)
 Liquid surfaces (5.2.2-)
 Liquid films (5.3, 5.4, 5.5, 5.6)
 Thermodynamics of liquid Interfaces (5.7)
 Electrified and charged Interfaces (5.1, 5.8)

Reading: Kolasinski, ch.5, Somorjai, ch.3, Shaw, ch. 4 Pashley Surfactants, Langmuir films, Langmuir-Blodgett films, self assembly monolayers (5.3, 5.4, 5.5, 5.6)

Surface tension of 2-component systems

Surface activity

$$\gamma = \gamma_0 - \pi$$

 π : surface pressure (expanding pressure)

Surface active agent, surfactant : $\gamma \downarrow$

Adsorption and orientation at interfaces

$\gamma \downarrow \rightarrow \text{emulsification}$ If $\pi \ge \gamma_0$ microemulsion

Biotech. & Biotech. Equip. 33(1), 779 (2019)

Surfactant (surface active agent)

Classification of surfactant

- Molecules which drastically reduces the γ of water when added.
- Typically consists of hydrophobic hydrocarbon chain (tail) and hydrophilic group (head) such as -OH, -COOH, -SO₃H, -NH₂ etc.

head

• Surfactants are used in many important industrial applications

tail Table 4.2 Surface-active agents Anionic CH₃(CH₂)₁₆COO⁻Na⁺ Sodium stearate Most widely used $CH_3(CH_2)_7CH=CH(CH_2)_7COO^-Na^+$ Sodium oleate CH₃(CH₂)₁₁SO₄Na⁺ (low cost, performance) Sodium dodecyl sulphate CH₃(CH₂)₁₁.C₆H₄.SO₃Na⁺ Sodium dodecyl benzene sulphonate Cationic Surfactant: $CH_3(CH_2)_{11}NH_3^+Cl^$ expensive Dodecylamine hydrochloride Synthetic detergent $CH_{3}(CH_{2})_{15}N(CH_{3})_{3}^{+}Br^{-}$ Hexadecyltrimethyl ammonium bromide Wetting agent Non-ionic Emulsifier e.g. CH₃(CH₂)₁₁(O.CH₂.CH₂)₆OH* Polyethylene oxides dispersant Spans (sorbitan esters) Tweens (polyoxyethylene sorbitan esters) Ampholytic (amphiphilic) dodecyl betaine $C_{12}H_{25}N^{+}$

Self-assembly of surfactant: Micelle formation

- Micelle: organized aggregates
- When added in water, surfactant molecules strongly positively adsorb at the surface.
- Surfactant molecules in bulk water is thermodynamically unstable, so the bulk concentration is very small.
- The solubility of surfactants in water, especially the ones with a long alkyl chain, is very low.
- Above a certain temperature, Kraft Temperature T_K, the solubility increases rapidly because of micelle formation.
- Isolated surfactant molecules spontaneously form a stable aggregate
- (micelle) above a certain concentration, critical micelle concentration(CMC)
- Micelle formation occurs sharply at CMC like a phase transition.

Table 4.5 Krafft temperatures for sodium alkyl sulphates in water						ALC: YALL
Number	of carbon atoms	10	12	14	16	18
Krafft te	emperature/°C	8	16	30	45	56

 $T\uparrow \rightarrow$ solubility \uparrow , longer chain: insoluble

Micellization: alternative mechanism to adsorption by which the interface energy of surfactant solution might decrease

NaCl solution

Alcohol in water

One CH_3 group $\uparrow \rightarrow$ 1/3 of concentration to get same γ (Traube's rule) Longer HC chain \rightarrow surface activity (adsorption at interface) \uparrow $\rightarrow \gamma \downarrow$

Sharpness of CMC

- mS \leftrightarrow S_m : β = fraction of monomer in micelles
- c(1- β) c β /m c: solution concentration, m: # of monomer per micelle
- K = (c β /m) / [c(1- β)]^m $\rightarrow \beta = \beta$ (c) at constant K
- Kmc^{m-1} = $\beta/(1-\beta)^m$
- Typically, m ~ 100 and CMC ~ 10^{-3} .
- $\beta(c)$ is plotted in the bottom Figure Transition is fairly sharp $\rightarrow \lim (m \rightarrow \infty) \beta(c)$ is a step function

Spherical micelle

- Nearly monodispersed.
- The size is limited and it depends on the nature of the lyophobic part of the surfactant.
 m S↔ S_m : S = monomer, S_m = micelle, m = aggregation number
- Counter ion binding: counter ion /S < 1

TABLE 8.1 Critical Micelle Concentration, Degree of Aggregation, and Effective FractionalIonization for Several Surfactants With and Without Added Salt

Surfactant	Solution	Critical micelle concentration (mole liter ⁻¹)	Aggregation number n	Ratio of charge to aggregation number, z/n
Sodium dodecyl	Water	0.00810	80	0.18
sulfate	0.02 M NaCl	0.00382	94	0.14
	0.03 M NaCl	0.00309	100	0.13
	0.10 M NaCl	0.00139	112	0.12
	0.20 M NaCl	0.00083	118	0.14
	0.40 M NaCl	0.00052	126	0.13
Dodecylamine	Water	0.01310	56	0.14
hydrochloride	0.0157 M NaCl	0.01040	93	0.13
this reaction. The mic	0.0237 M NaCl	0.00925	101	0.12
	0.0460 M NaCl	0.00723	142	0.09
Decyl trimethyl	Water	0.06800	36	0.25
ammonium bromide	0.013 M NaCl	0.06340	38	0.26
Dodecyl trimethyl	Water	0.01530	50	0.21
ammonium bromide	0.013 M NaCl	0.01070	56	0.17
Tetradecyl trimethyl	Water	0.00302	75	0.14 8.0
ammonium bromide	0.013 M NaCl	0.00180	96	0.13

Source: J. N. Phillips, Trans. Faraday Soc., 51, 561 (1955).

n = # of CH_2 unit in a straight chain hydrocarbon

n	12	14	16	18
m	33	46	60	78

CH₃(CH₂)₁₁-O-S(-O)₂-O⁻Na⁺ Sodium dodecyl sulphate

Structure of micelle

- Spherical, spherical bilayer, hexagonal, lamella
- Typically, micelles tends to be approximately spherical over a fairly wide range of concentration above CMC.
- There are often marked transition to larger, nonspherical liquid crystal structure at high concentrations.

Micelle structures; a) spherical, b) spherical vesicle bilayer, c) hexagonal, d) lamella

Biological cell membrane

Evidence for micelle formation

Fig. 3-20: Schematic diagram of physical property changes of aqueous solutions of sodium dodecyl sulfate at 25°C as a function of concentration.

Physical property changes at cmc

- 1. Molar conductivity Λ of ionic surfactants
- Ions contributes to the conductivity but ∧ gradually ↓ with increasing concentration because of ion-ion interactions.
- A sharp decrease in A above the c.m.c. due to micelle formation.
 - 1) The total viscous drag is reduced when micelles are formed.
 - Counter-ions becomes kinetically a part of micelle → the net charge of a micelle z is much smaller than n, reducing the # of counter-ions available for carrying current.
 - 3) The electrophoretic retardation effect of the ionic atmospheres of unattached counter-ions is greatly increases.
- the last two effects are responsible for the sharp decrease in A when micelles are formed.
- 2. Osmotic pressure Π
- πV = cRT (van't Hoff eq.)
- The # of molecules only slightly increases above c.m.c.

3. Turbidity τ

- Turbidity is due the scattering of visible light by particles.
- The scattering power increases with increasing particle size, reaching about maximum when the size is comparable to the wavelength.
- The size of an unassociated surfactant molecule is too small to appreciably scatter visible light.
- When micelle is formed, it can significantly scatter light.

4. Surface tension γ

- Surface tension sharply decreases with increasing surfactant concentration.
- However, when micelle is formed, it's concentration (number-based) increases very slowly.

Factors affecting CMC

1. Hydrophobic chain length n of straight aliphatic surfactant

Table 4.3 Critical micelle concentrations for a homologous series of sodium alkyl sulphates in water at 40°C¹¹

3	10	12	14	16	18
)	33	8.6	2.2	0.58	0.23
	3	8 10) 33	3 10 12 33 8.6	3 10 12 14 33 8.6 2.2	310121416338.62.20.58

ionic: $n \rightarrow n+1$, CMC(n+1)/CMC(n) ~ 1/2 non-ionic: $n \rightarrow n+1$, CMC(n+1)/CMC(n) ~ 1/3 log(CMC) = A - Bn: Klevens constants A and B

Table 3-6: Some values for CMC and aggregation number. From [From Rosen, M. J., Surfactants and Interfacial Phenomena, 2nd Ed., pp. 108ff, Wiley, New York, 1989.]

Surfactant	Medium	$T(^{\circ}C)$	CMC (mM)	Agg. No., <i>n</i>
C10H21SO4Na+	H ₂ O	40	33	40 _{30°C}
C12H25SO4 Na*	H_2O	40	8.6	54
C14H29SO4Na*	H ₂ O	40	2.2	
C12H25SO4 Na+	H ₂ O	25	8.2	
C12H25SO4Na*	0.01 M NaCl	21	5.6	
C12H25SO4Na+	0.03 M NaCl	21	3.2	
C12H25SO4 Na*	0.10 M NaCl	21	1.5	90 _{20°C}
C14H29SO4Na*	0.01 M NaCl	23		138
C12H25SO4 Na+	3M urea	25	9.0	
C ₁₂ H ₂₅ N(CH ₃) ₃ ⁺ Br ⁻	H ₂ O	25	1.6	50 _{23°C}
n-C12H25(C2H4O)7OH	H ₂ O	25	0.05	
n-C12H25(C2H4O)6OH	H ₂ O	25	0.05	
n-C12H25(C2H4O)14OH	H ₂ O	25	0.055	- atvictissi-
C16H33(C2H4O)6OH	H ₂ O	25		2,430
C16H33(C2H4O)6OH	H ₂ O	34		16,600

Note: n of nonionic surfactant is much larger

			•		
Inni	C	CII	rta	Ct2	ante
		JU			

Surfactant series	<i>T</i> (°C)	Α	В
Na carboxylates (soaps)	20	1.85	0.30
K carboxylates (soaps)	25	1.92	0.29
Na (K) n-alkyl 1-sulfates or -sulfonates	25	0/1.5	0.30
Na n-alkane-1-sulfonates	40	1.59	0.29
Na n-alkane-1-sulfonates	55	1.15	0.26
Na n-alkane-1-sulfonates	60	1.42	.0.28
Na n-alkane-1-sulfates	45	1.42	0.30
Na n-alkane-1-sulfates	60	1.35	0.28
Na n-alkane-2-sulfates	55	1.28	0.27
Na p-n-alkylbenzenesulfonates	55	1.6 ₈	0.29
Na p-n-alkylbenzenesulfonates	70	1.33	0.27
n-Alkylammonium chlorides	25	1.25	0.27
n-Alkylammonium chlorides	45	1.7,	0.30
n-Alkyltrimethylammonium bromides	25	1.72	0.30
n-Alkyltrimethylammonium chlorides (in 0.1 M NaCl)	25	1.23	0.33
n-Alkyltrimethylammonium bromides	60	1.7,	0.29
n-Alklpyridinium bromides	30	1.72	0.31
$n-C_{n}H_{2n+1}(OC_{2}H_{4})_{6}OH$	25	1.82	0.49

PEO surfactants

Surfactant series	T (°C)	A'	B'
n-C12H25(OC2H4)xOH	23	-4.4	+0.046
n-C12H25(OC2H4)xOH	55	-4.8	+0.013
p-t-C ₈ H ₁₇ C ₆ H ₄ (OC ₂ H ₄) _x OH	25	-3.8	+0.029
C ₉ H ₁₉ C ₆ H ₄ (OC ₂ H ₄) _x OH	25	-4.3	+0.020
n-C16H33(OC2H4)xOH	25	-5.9	+0.024

2. Type of surfactant

• Nonionic surfactants (PEO type) have lower CMC's than ionic ones for the same HC chain length and temperature: ~ an order of magnitude

• Micelle formation of ionic surfactants is less favored because of the electrostatic repulsion between adjacent charged head groups.

3. Presence of electrolytes

- For ionic surfactants, addition of electrolytes(salts) lowers CMC.
- Counter ions (of added salt) near the head groups reduce the electrostatic repulsion, and

therefore micelle formation is more favored.

Table 4.4 Critical micelle of sodium chloride solutions at 1	concentrat 25°C ¹¹	tions of sodium dodecyl sulphate in aqueous CH ₃ (CH ₂) ₁₁ -O-S(=O)-O ⁻ Na ⁺					
c. (NaCl)/mol dm ^{-3}	0	0.01	0.03	0.1	0.3		
c.m.c./10 ⁻³ mol dm ⁻³	8.1	5.6	3.1	1.5	0.7		

4. Temperature

- Micelle formation is opposed by thermal agitation and CMC is expected to increases T[↑]. This is not always the case.
- T-dependence is, in general complex because of various competing factors.
- For ionic surfactant, the dependence is weak over a significant T-range.
- For nonionic surfactant (PEO type), CMC sharply↓ with T↑ due to the progressive dehydration of the PEO groups (Fig.3-23 b) until a point (cloud point) is reached where very large micelles are formed, producing visible turbidity.
- The transition occurring at cloud point is sharp like a macroscopic phase transition.

At lower T Enthalpy of micellization > 0 (endothermic) \rightarrow micellization is entropy directed

5. Addition of organic molecules

e.g. alcohol → reduced electrostatic repulsion & steric hindrance →cmc↓ sugar → structure makers (water structuring) → cmc↓ urea or formamide → structure breakers → cmc↑

Energetics of micellization

Interactions involved in micelle formation

Monomer

- Hydrophobic effect (breaking H-bonds among H₂O molecules
- Hydration of the hydrophilic groups
- Entropy of monomers with respect to micelle

Micelle

- Electrostatic repulsion between adjacent ionic head groups
- Significant entropy of hydrophobic chains,

$$\begin{array}{ll} \textbf{mS} & \leftrightarrow ~\textbf{S}_m ~;~ \textbf{K} = (c\beta/m) ~/ ~ [c(1-\beta)]^m & ;~ \beta = ~fraction~of~total~monomers~in~micelles\\ & \Delta G^0 = - ~RT~ln~K\\ per mole~of~monomer,~ \Delta G^0 = - ~(RT/m)~ln~K \end{array}$$

= - (RT/m) $\ln(c\beta/m)$ + RT $\ln[c(1-\beta)]$ = RT [- { $\ln(c\beta/m)$ }/m + $\ln{c(1-\beta)}$]

At CMC, $\beta \sim 0$ and the <u>1st term ~ 0</u> because of a large m. Therefore, $\Delta G^0 = RT \ln(CMC)$ dG = VdP – SdT, and $\Delta S^0 = -(\partial G^0/\partial T)_p$

 $\Delta S^{0} = - d(\Delta G^{0})/dT = - RT d \ln(CMC)/dT - R \ln(CMC)$ $\Delta H^{0} = \Delta G^{0} + T \Delta S^{0} = - RT^{2} d \ln(CMC)/dT$

- In general, CMC \uparrow with T \uparrow , \rightarrow micellization process is an exothermic process.
- As stated earlier, it is not always the case.
- This suggests that the entropy of a micelle is not small, i.e., the inner hydrophobic part has significant freedom (motion).

TABLE 8.3 Some Thermodynamic Properties for the Micellization Process at or

 Near 25°C for Various Surfactants

Surfactant	ΔG_{mic}^{0} (kJ mole ⁻¹)	ΔH_{mic}^{0} (kJ mole ⁻¹)	ΔS_{mic}^{0} (J K ⁻¹ mole ⁻¹)
Dodecyl pyridinium bromide	-21.0	-4.06	+ 56.9
Sodium dodecyl sulfate ^a	-21.9	+2.51	+ 81.9
N-Dodecyl-N,N-dimethyl glycine	-25.6	- 5.86	+ 64.9
Polyoxyethylene(6) decanol	-27.3	+15.1	+142.0
N,N-Dimethyl dodecyl amine oxide	-25.4	0 +7.11	+109.0

Source: Data from J. H. Fendler and E. J. Fendler, Catalysis in Micellar and Macromolecular Systems, Academic Press, New York, 1975. "Calculated in Example 8.4.

Solubilization

- Surfactant solutions above the CMC can solubilize otherwise insoluble organic material by incorporating it into the interior of micelles.
- Examples: the dye xylenol orange disolves only sparingly in pure water but gives a deep red solution with sodium dodecyl sulphate present above its CMC.
- Of practical importance in many applications;
 - 1) formulation of pharmaceutical and other water-insoluble ingredients,
 - 2) detergency (removal of oily soil),
 - 3) emulsion polymerization,
 - 4) micellar catalysis of organic reactions

Emulsion polymerization: Harkins model

- e.g.: polymerization of polystyrene
- Monomer distribution
 - A: monomer droplet
 - B: inside a micelle (solubilized)
 - C: in water (dissolved, isolated)
- Polymerization occurs within micelles size and shape (spherical bead) regulation
- Radical polymerization
- Initiators(R·) formed in water, combining with dissolved monomers to form $RM \rightarrow$ transferred into micelles; the probability of diffusion into a micelle is much greater than that into a monomer droplet because of much larger surface areas of micelles.

Spreading

Adhesion and cohesion

Dupré equation

- Work of adshesion $W_a = \gamma_A + \gamma_B \gamma_{AB}$
- Work of cohesion $W_c = \gamma_A + \gamma_A \gamma_{AA} (= 0) = 2 \gamma_A$

Figure 4.15 Work of adhesion (a) and of cohesion (b)

Spreading of one liquid on another

- When a drop of an insoluble oil is placed on a clean water surface it may
 - 1) remain as a lens (non-spreading)
 - 2) spread as a thin film until it is uniformly distributed over the surface as a duplex film (a film thick enough for the two interface to be independent and posses characteristic surface tension)
 - 3) spread as a monolayer, leaving excess oil as lenses in equilibrium (Fig.4.17)

•If the lens in Fig, 4.16 is very thin, a contact area change of dA is accompanied by $dG = [(\gamma_0 + \gamma_{OW}) - \gamma_W] dA = -S dA$

Initial spreading coefficient S S = γ_W - (γ_O + γ_{OW}) : oil on water

- If dG < 0 or S > 0: spontaneous spreading
- If dG > 0 or S < 0 :contraction of the lens
- If dG = 0 or S = 0 : equilibrium

Figure 4.16 A drop of non-spreading oil on a water surface

Table 4.6	Initial spreading coefficients	(in mN m-	1) for	liquids o	n water	at	20°C54
(By courtes	sy of Academic Press Inc.)						

Liquid	$\gamma_{WA} - (\gamma_{OA} + \gamma_{OW}) = S$	Conclusion
<i>n</i> -Hexadecane	72.8 - (30.0 + 52.1) = -9.3	will not spread on water
n-Octane	72.8 - (21.8 + 50.8) = +0.2	will just spread on pure water
n-Octanol	72.8 - (27.5 + 8.5) = +36.8	will spread against containmation

Additivity of intermolecular force

 $\begin{aligned} \gamma_{W} &= \gamma_{W}^{d} + \gamma_{W}^{h} & \text{Dispersion} \\ \gamma_{Hg} &= \gamma_{Hg}^{d} + \gamma_{Hg}^{m} & \text{Dispersion} \\ \gamma_{OW} &= \gamma_{O}^{d} + (\gamma_{W}^{d} + \gamma_{W}^{h}) - 2 \times (\gamma_{W}^{d} \times \gamma_{O}^{d})^{\frac{1}{2}} \\ \text{Ex: n-hexane-water interface} & H \end{aligned}$

Dispersion force (van der Waals) + hydrogen bonding Dispersion force (van der Waals) + metal bonding

 $51.1 = 18.4 + 72.8 - 2 \times (\gamma_W^d \times 18.4)^{\nu_2}$

 $\gamma_{\rm W}^{\rm d}=21.8~\rm mNm^{-1}$

$$\gamma_{\rm W}^{\rm h} = 72.8 - 21.8 = 51.0 \ {\rm mNm^{-1}}$$

Table 4.1 Surface tensions and interfacial tensions against water for liquids at 20°C (in mN m⁻¹)

Liquid	γο	γi	Liquid	γο	γi
Water	72.8	_	Ethanol	22.3	
Benzene	28.9	35.0	n-Octanol	27.5	8.5
Acetic acid	27.6		<i>n</i> -Hexane	18.4	51.1
Acetone	23.7	_	<i>n</i> -Octane	21.8	50.8
CCl ₄	26.8	45.1	Mercury	485	375

 H_2O , $Hg \rightarrow high \gamma$ hydrogen bonding, Metal bonding

Spreading (cont'd)

• Substituting in the Dupré equation,

$$S = \gamma_{W} - (\gamma_{O} + \gamma_{OW}) = \gamma_{W} + \gamma_{O} - \gamma_{OW} - 2\gamma_{O} = W_{ow} - W_{oil}$$

Factors influencing spreading Impurities

- Impurities in water lowers γ_W more than it does γ_{OW} , especially if γ_{OW} is already low.
 - ex: $S_{initial} = 0.2$ for n-octane on pure water $S_{initial} < 0$ for n-octane on contaminated water

Mutual saturation of one liquid with another

$$VV_{C} = VV_{O} = 2\gamma_{O}$$

Spreading occurs when oil adheres

to the water were strongly than it

 $W_a = W_{OW} = \gamma_O + \gamma_W - \gamma_{OW}$

coheres to itself,

n-octane spread on clean water surface, not on contaminated water Impurity in oil: $\gamma_{OW} \downarrow \rightarrow S > 0$

- The solubility of oil in water or vice versa at room temperature is small. However, the reduction in γ_W may be significant enough to affect spreading.
- Ex: Benzene on water

 $S_{initial} = 72.8 - (28.9 + 35.0) = 8.9 > 0$; spreading

- S_{final} = 62.4 (28.8 + 35.0) = -1.4 < 0 ; non-spreading
- Initial spreading stops, and the film may retract slightly to form very flat lens.
- Ex: n-hexanol on water $S_{initial} = 72.8 - (28.9 + 35.0) = 8.9 > 0$; spreading $S_{final} = 28.5 - (24.7 + 6.8) = -3.0 < 0$; non-spreading

The final state is shown in Fig. 4.17

Figure 4.17 Spreading of *n*-hexanol on a water surface

Monomolecular Film

Insoluble (Langmuir) monolayer

• Surfactant molecules adsorb at the surface, resulting in the reduction of the surface tension.

 $\gamma_0 - \gamma = \pi$, where π is the spreading pressure

- The spreading pressure can be measured using a surface balance (Fig. 4.18).
- The surfactant molecules form a monolayer film.

Figure 4.18 The principle of the Langmuir-Adam surface balance

Physical states of monomolecular films

- The monolayers can be roughly classified as
- 1. Condensed (solid) films
- Closely packed film with molecules steeply oriented towards the surface.

2. Liquid states

- Films are still coherent but occupy a much larger area than condensed films.
- It is like a highly compressible liquid, in this sense there is no real 3D equivalent.
- There exist a number of different expanded films, the most important being the liquid-expanded state.

3. 2D Gaseous films

- Molecules are separate and move about the surface independently.
- Surface pressure is exerted on the 2D barrier by a series of collisions

Figure 5.5 Phase diagram of surface pressure versus area per molecule (amphiphile) in a Langmuir film. The (hydrophobic) tails should only be considered rigid in the solid-like phase in which tail-tail interactions lock them into an ordered structure.

Gaseous films

• Molecules in a gaseous film behaves like a 2D gas.

Assume no lateral interaction

• Equation of state:

$$\begin{split} &\Gamma_2 = -c_2 / RT \; (d\gamma / dc_2) \;, \; \text{where } \Gamma_2 \; \text{is in mole/unit surface area.} & \text{Gibbs adsorption equation} \\ &\pi = \; \gamma_0 - \gamma = \; bc_2 \; \text{at low concentration, and } d\gamma / dc_2 = -b = -\pi/c_2. \\ &\Gamma_2 = -c_2 / RT \; (-\pi/c_2) = \pi / RT, \\ &\Gamma_2 = n_2 \; (\text{mole}) / \mathcal{A} = N_2 \; (\text{molecules}) / \mathcal{A} \; N_A = \pi / RT \\ &\mathcal{A} \; N_A / N_2 = RT / \pi \; \rightarrow \; \mathcal{A} / N_2 = kT / \; \pi \end{split}$$

Let A be the average surface area taken by a molecule, A = A / N_2

$\pi \mathbf{A} = \mathbf{kT}$

- It is just a 2D ideal gas law.
- As for 3D van der Waals equation,
- $(\pi \pi_0) (A A_0) = kT$ is more appropriate for real gases.

•e.g.: For CTAB (cetyl trimethyl ammonium bromide) $C_{16}H_{33}N(CH_3)_3^+Br^-$ at water- air interface, $\pi A = kT$ approximately holds, for

- The electrostatic repulsion between the ionic head group is nearly compensated by the attractive force between the alkyl chains.
- At water-oil interface, π is much larger for a given A because the repulsion $\mathbf{F} = \mathbf{q}^2 / 4\pi \epsilon \mathbf{r}$ is much stronger due to a smaller dielectric constant $\epsilon_r (= \epsilon / \epsilon_0)$ of the oil.

π – A curves for CTAB at
 Water-air and water-oil
 Interfaces at 20 °C

Condensed films

- Higher straight chain fatty acids such as stearic acid CH₃(CH₂)₁₆COOH and palmitic acidCH₃(CH₂)₁₄COOH are examples of condensed films.
- The cohesion (attractive interaction) is strong for these molecules, thus forming clusters and islands (Fig. 4.23).
- Because of this strong cohering tendency the surface pressure remains very low as the film is compressed and then rises rapidly when the molecules become tightly packed together.

- e.g.: πA curves for stearic acid spread on HCI solution at 20 °C (bottom Fig)
- At very low pressure molecular orientation is random and tilted (a)
- In the horizontal region the molecules are lifted up (b). The compressibility is large (easily compressible) and the pressure rise is very small.
- Initial pressure rise at 0.25 $nm^2 \rightarrow initial packing of end groups$.
- π A curve becomes very steep at 0.205 nm² \rightarrow more efficient packing by staggering and interlocking of the end groups.
- Limiting surface are = 0.20-0.22 nm² for straight chain fatty acid irrespective of the chain length.
- This value is close to the cross-section of crystalline SA measured by X-ray diffraction
- Further compression beyond this limit will eventually lead to collapse or buckling of the film.

Various forms of film deformation beyond the elastic limit.

Cross-sectional areas of various surfactant molecules measures from the $\pi - A$ curves

Expanded films

Oleicacid $CH_3(CH_2)_7CH=CH(CH_2)_7COOH$

- Oleicacid gives a much more expanded film than the corresponding saturated acid, stearic acid.
- Because of the double bond there is less cohesion between the hydrocarbon chains than the stearic acid and a greater affinity for the aqueous surface.
- So π is larger for a given A .

van der Waals equation $(\pi - \pi_0)(A-A_0) = kT$

The π – A curve for myristicacid, CH₃(CH₂)₁₂COOH, spread on 0.1 M HCl at 14 °C (bottom Fig.) shows its overall resemblance to the p-V curve of a 3D real gas.
But the liquid expanded state has no 3D equivalent.

Factors influencing the physical state of monomolecular films

- Lateral cohesion between the end groups(attraction)
- Cohesion depends on the geometry and orientation of the HC chain
- Affinity for the aqueous phase (attraction)
- A longer HC chain has a higher tendency for cohesion
- The transition temperature is lowered by ~ 5-8°C by adding one more CH_2 group.

The following factors will favor the formation of an expanded films;

- 1. Bulky head groups (ex: $-SO_4$, $-PO_4$) prevent efficient packing and, hence, maximum cohesion between the HC chains.
- 2. More than one polar head groups- e.g. unsaturated fatty acids, hydroxy acids.
- 3. More than one HC chain oriented in different direction for the polar part of the molecule- e.g. esters, glycerides
- 4. Bent HC chains gives very expanded films.
- 5. Branched HC chains.
- 6. The nature of the substrates.
- PH is very important for ionizable monolayers.
- The repulsion between ionized COO⁻ groups favors the formation of gaseous or liquid-expanded films at low T.
- Dissolved electrolytes have a profound effect on the state of the film;
 Ex: Ca²⁺ ions form insoluble calcium soaps with fatty acid films (unless the pH is very low), thus making the film more condensed.

Film deposition

Langmuir film: molecular film on the liquid surface

Langmuir-Blodgett film

A film of amphiphiles transferred on to a solid surface

Controlling parameters: pH, surface pressure etc.

Self assembled monolayers (SAMs)

Molecular assembles formed spontaneously by immersion of an appropriate substrate into a solution of an active surfactant in an organic solvent

Figure 5.11 Mechanism of self assembly: (a) disordered, mobile lattice gas; (b) lattice gas plus ordered islands; (c) saturated surface-aligned phase; (d) nucleation of solid-phase islands; (e) saturated solid phase. Self-assembly progresses in stages, as long as a sufficient supply of adsorbates is available, until the thermodynamically most favoured final state is reached. Not depicted in the figure is a reconstruction of the surface, which often accompanies the process.