
Ch. 6

POTENTIAL SWEEP

METHODS



6.1 INTRODUCTION

▪ Potential Sweep Methods

� The potential is varied linearly with time 

(i.e., the applied signal is a voltage ramp) 

� with sweep rates v ranging from 10 mV/s to about 1000 V/s with conventional 

electrodes



6.1 INTRODUCTION

▪ In this experiment, 

� it is customary to record the current as a function of potential,

� obviously equivalent to recording current versus time. 

▪ The formal name for the method is linear potential sweep chronoamperometry, 

� but most workers refer to it as linear sweep voltammetry (LSV)



6.1 INTRODUCTION

▪ A typical LSV response curve for the anthracene (A) system considered in Ch. 5

1) If the scan is begun at a potential well positive of E0' for the reduction, 

� only nonfaradaic currents flow for a while.

2) When the electrode potential reaches the vicinity of E0', 

� the reduction begins and current starts to flow. 

3) As the potential continues to grow more negative, 

� the surface concentration of anthracene must drop; 

� hence the flux to the surface (and the current) increases. 



6.1 INTRODUCTION

4) As the potential moves past E0', 

� the surface concentration drops nearly to zero 

� mass transfer of anthracene to the surface reaches a maximum rate 

5) Then it declines as the depletion effect sets in. 

� the observation is therefore a peaked current-potential curve

input output Concentration profiles



6.1 INTRODUCTION

▪ Let us consider what happens if we reverse the potential scan 

▪ Suddenly the potential is sweeping in a positive direction, 

� in the electrode's vicinity there is a large concentration of the oxidizable anion radical 

of anthracene. 

▪ As the potential approaches, then passes, E0', 

� the electrochemical balance at the surface grows more and more favorable toward the 

neutral anthracene species. 

� Thus the anion radical becomes reoxidized and an anodic current flows. 



6.1 INTRODUCTION

▪ This reversal current has a shape much like that of the forward peak for essentially the 

same reasons.

▪ This a reversal technique is called cyclic voltammetry (CV)



6.2 NERNSTIAN (REVERSIBLE) SYSTEMS

▪ Consider the reaction О + nе ⇄ R

▪ Assume semi-infinite linear diffusion and a solution initially containing only species O, 

with the electrode held initially at a potential Ei, where no electrode reaction occurs.

▪ The potential is swept linearly at v (V/s) so that the potential at any time is

▪ If we can assume that the rate of electron transfer is rapid at the electrode surface, 

� species О and R immediately adjust to the ratio dictated by the Nernst equation



6.2 NERNSTIAN (REVERSIBLE) SYSTEMS

▪ However, the surface concentration relation must be recognized as having a time-

dependent form:

▪ Because of the time dependence, the Laplace transformation cannot be performed 

� the mathematics for sweep experiments are greatly complicated as a consequence. 

▪ The boundary condition can be written

only when θ is not a function of time



6.2 NERNSTIAN (REVERSIBLE) SYSTEMS

▪ Laplace transformation of the diffusion equations and application of the initial and 

semi-infinite conditions leads to

▪ The transform of the current is given by

▪ Thus,
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6.2 NERNSTIAN (REVERSIBLE) SYSTEMS

▪ By inverting with the convolution theorem, we obtain

: τ in the integral is a dummy variable that is lost when the definite integral is evaluated.
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6.2 NERNSTIAN (REVERSIBLE) SYSTEMS

▪ By letting

▪ Similarly, an expression for CR(0,t) can be obtained (assuming R is initially absent):



6.2 NERNSTIAN (REVERSIBLE) SYSTEMS

▪ An analytical solution cannot be obtained, and a numerical method must be employed.



6.2 NERNSTIAN (REVERSIBLE) SYSTEMS

▪ Before solving the equation numerically, it is convenient 

� (a) to change from i(t) to i(E), since that is the way in which the data are usually 

considered

� (b) to put the equation in a dimensionless form so that a single numerical solution will 

give results that will be useful under any experimental conditions. 

▪ The dimensionless form is accomplished by using the following substitution:

τ = z/σ

dτ = dz/σ

z= 0 at τ = 0

z = σt at τ = t



6.2 NERNSTIAN (REVERSIBLE) SYSTEMS

▪ So,

dividing by

the dimensionless variables: 

� is a function of E

� At any value of 

can be obtained by the solution  At τ= t



6.2 NERNSTIAN (REVERSIBLE) SYSTEMS

▪ Rearrangement:

▪ At any given point,

� is a pure number

▪ The functional relationship between the current at any point on the LSV curve and the 

variables.

� i is proportional to CO* and v1/2.



6.2 NERNSTIAN (REVERSIBLE) SYSTEMS

▪ Solution:

�

as a function of

or



6.2 NERNSTIAN (REVERSIBLE) SYSTEMS

▪ Linear potential sweep voltammogram in terms of dimensionless current function



6.2.2 Peak Current and Potential

▪ The function and hence the current

� reaches a maximum where                 0.4463   (Table 6.2.1) 

▪ So, the peak current, ip, is

▪ At 25oC, 

: iP in amperes, A in cm2, DO in cm2/s, CO* in mol/cm3, and v in V/s

▪ The peak potential, Ep, is (Table 6.2.1)

: a plot of iP vs. v1/2 � n or DO



6.2.2 Peak Current and Potential

▪ Because the peak is somewhat broad, so that the peak potential may be difficult to 

determine

� it is sometimes convenient to report the potential at iP/2, called the half-peak potential,

EP/2, which is

▪ Thus for a reversible wave, EP is independent of scan rate, and iP (as well as the current

at any other point on the wave) is proportional to v1/2.



Summary

n(E - E
1/2

) (mV)

-300-200-1000100200

i

Ep

Ep/2

56.5/n mV

E1/2

v = 10a

v = 4a

v = 2a

v = a

v↑

Reversible



Example - Fe(CN)63-/4-
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▪ n, CO

*, A are known 

� DO (Fe(CN)63-) = 3.1 × 10-6 cm2/s

� Slope  = 0.0002
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6.3 TOTALLY IRREVERSIBLE SYSTEMS

▪ For a totally irreversible one-step, one-electron reaction

� The nernstian boundary condition is replaced by



6.3 TOTALLY IRREVERSIBLE SYSTEMS

▪ When we solve using the same numerical method as the reversible case,



6.3 TOTALLY IRREVERSIBLE SYSTEMS

▪ The function and hence the current

� reaches a maximum where                 0.4958  (Table 6.3.1) 

▪ So, the peak current, ip, is

▪ The peak potential, Ep, is (Table 6.3.1)

: For a totally irreversible wave, 

� EP is a function of scan rate
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6.2.4 Effect of Double-Layer Capacitance

▪ Consider the potential sweep experiment 

� in which nonfaradaic (capacitive) currents are comparable to faradaic currents

▪ For a potential step experiment at a stationary, constant-area electrode, 

� the charging current (nonfaradaic current) decays with time

▪ For a potential sweep experiment, a charging current (nonfaradaic current), 

� ic, is a steady state current (Ch. 1)



(c) Voltage Ramp (or Potential Sweep)

Current-time behavior resulting 

from a linear potential sweep 

applied to an RC circuit.

1.2.4  Double-Layer Capacitance and Charging Current in Electrochemical Measurements

▪ A voltage ramp or linear 

potential sweep

: a potential increases linearly 

with time 



▪ Let us derive the governing equation of the current transient, i, with time, t, when a 

potential increases linearly with time starting at some initial value (here assumed to be 

zero) at a sweep rate υ (in V s-1)

1) If such a ramp is applied to the RsCd circuit, the following equation still applies; 

hence

2) If q = 0 at t = 0,

1.2.4  Double-Layer Capacitance and Charging Current in Electrochemical Measurements



▪ The current rises from zero as the scan starts and attains a steady-state value, υCd

▪ This steady-state current can then be used to estimate Cd because υ is known

1.2.4  Double-Layer Capacitance and Charging Current in Electrochemical Measurements



6.2.4 Effect of Double-Layer Capacitance

▪ For the potential sweep experiments, 

� the measured current = the sum of faradaic and nonfaradaic currents

� the faradaic current must be measured from a baseline of charging current, 

▪ While faradaic peak current, ip, varies with v1/2 for linear diffusion,

� ic varies with v

� ic becomes relatively more important at faster scan rates. 

▪ Thus at high v and low CO* values, 

� severe distortion of the LSV wave occurs. 

� This effect often sets the limits of maximum useful scan rate and minimum useful 

concentration.



6.2.4 Effect of Double-Layer Capacitance



6.6 MULTICOMPONENT SYSTEMS AND MULTISTEP CHARGE TRANSFERS

▪ Consider the consecutive reduction of two substances О and O' 

in a potential scan experiment (multicomponent systems)

: О + ne � R and O’ + n’e � R’ occur. 

▪ If the diffusion of О and O’ takes place independently, 

� the fluxes are additive

� the i-E curve for the mixture: the sum of the individual i-E curves of О and O’



6.6 MULTICOMPONENT SYSTEMS AND MULTISTEP CHARGE TRANSFERS

▪ The measurement of i’P

� must be made using the decaying current of the first wave as the baseline. 

� Usually this baseline is obtained by assuming that the current past the peak potential 

follows that for the large-amplitude potential step and decays as t-1/2. 



6.6 MULTICOMPONENT SYSTEMS AND MULTISTEP CHARGE TRANSFERS

▪ An experimental approach to obtaining the baseline

� Since the concentration of О at the electrode falls essentially to zero at potentials just 

beyond Ep

� the current beyond Ep: independent of potential. 

� Thus if the voltammogram of a single-component system is recorded on a time base 

and the potential scan is held at about 60/n mV beyond Ep while the time base 

continues, 

� the current-time curve: the same as that obtained with the potential sweep 

continuing

Potential sweep and holding

Potential sweep

Single Component Systems 



6.6 MULTICOMPONENT SYSTEMS AND MULTISTEP CHARGE TRANSFERS

Potential sweep and holding

Potential sweep

i’P

Multicomponent Systems 



6.6 MULTICOMPONENT SYSTEMS AND MULTISTEP CHARGE TRANSFERS

Multicomponent Systems 



6.6 MULTICOMPONENT SYSTEMS AND MULTISTEP CHARGE TRANSFERS

▪ For the stepwise reduction of a single substance O (multistep charge transfer) 

� О + n1е � R1 (E1
0)  and  R1 + n2e � R2 (E2

0)

� similar to the two-component case, but more complicated. 

▪ If E1
0 and E2

0 are well separated, with E1
0 > E2

0 (i.e., О reduces before R1),

� observe two separate waves 

1) first wave: reduction of О to R1 with R1 diffusing into the solution

2) second wave: reduction of R1 to R2

� At the second wave, 

: О continues to be reduced, either 

i) directly at the electrode or 

ii) by reaction with R2 diffusing away from the electrode 

(O + R2 � 2R1), and R1 diffuses back toward the 

electrode to be reduced



6.6 MULTICOMPONENT SYSTEMS AND MULTISTEP CHARGE TRANSFERS

The i-E curve depends on ΔE0 (= E2
0 – E1

0)

(b) When ΔE0 is between 0 and -100 mV 

� the individual waves are merged into a 

broad wave whose EP is independent 

of scan rate.

(c) When ΔE0 = 0, 

� a single peak




