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I-7. Appendices

Appendix I-a

Cable Profiles of Suspension Bridges and their Associated Properties

A single flexible cable suspended between two fixed points is the
simplest suspension bridge. The initial problem in such a case is to
determine the form adopted by the cable when it is loaded solely by its
own weight, and to find the tension in the cable at any point along its
length. The solution of this.problem provides a starting point for a
consideration of the effects upon a suspended cable of extra.neoﬁs
applied forces, such as the dead weight of the stiffening structures
of a practical suspension bridge. This appendix is devoted to the
initial problem of determining the different cable profiles of sus-
pension bridges and their associated properties, as well as discover-

ing the most usable profile.

1. The Common Catenary

The curve in which a perfectly flexible uniform cable hangs
s &
when freely suspended between two fixed points is called a catenary.

e
"Perfectly flexible'" means that the cable resists applied load by
developing direct stresses only. It follows, therefore, that at any
cross section the resultant cable force is tangential to the cable pro-
file at that point and acts through the centroid of the cross section.

"Uniform' indicates that the weight per unit length, W, of the cable

is constant. This defines the classical problem of the common
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catenary which was f.i:rst solved by James Bernouilli, in 1691; the
earliest published solution was by David Gregory in 1697.

Consider a cable hanging symmetrically between two fixed
points at the same level, as shown in Fig. I-a-i. Let 0 be the
origin for the ordinates x and y . If the cable is treated as inex-
tensible, the vertical equilibrium of the element of the cable shown

in Fig. I-a-ii requires that

5i2

L (rdy) -, (I-a-1)

where T is the tension in the cable, is the weight of the cable

per unit length of the cable curve and is the sine of the angle of

ale 4

inclination, i.e., sin@.
The horizontal component of cable tension, H_ , is constant

since there are no acting longitudinal components of load.

H = Tidic- = constant , (I-a-2)
w ds

where = cosp . Consequently, Eq. I-a-1 is reduced to

dx
ds
0, 5% - vl

. (I-a-3)

Since W is constant, the solution of Eq. I-a-3 gives the

Catenary. Integration of Eq. I-a-3 yields

. o =1 dy _ W
sinh dx—,—,——Hw x + c;
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where c¢

1 is a constant of integration.

that c

But at x"!
1

£ dy
T2 7 dx
%and

sml €

a4 ()

w
Integration again, the following can be obtained

(I-a-4)

y = -%ﬂcosh[-ﬁ-ﬁ—(%—x):b c,

w

where €, 1is another constant of integration. The cable deflection
at mid-span (x =3

H

el

) is the sag, '/ , and therefore <, =f+/,r.__a.nd
/' H

w

TG-a-5)

This gives the shape of the curve adopted by the cable. When
required, the length of the catenary is given by

£
21%
S=J [l +(%.xx)] dx . (I-a-6)
0
Substituting 9
ubstituting . o

» obtained from Eq. I-a-5, in Eq. I-a-6 and integrat-
ing yields

(I-a-7)
The tension at any point in the cable is given by Eq. I-a-2 or

2%
=y 9s._ dy) I
T=H, = w[l +(dx) ] {E-a-5)
oX
Substituting the value

derived from Eq. I-a-5, Eq. I-a-8 is
reduced to
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- ¥ (L -
T=H cosh[H (2 » x):l (I-a-9)
w
This tension will be maximum at the ends of the span, where

x=0 or x=1, yielding

T __=H cosh( ‘”‘) . (I-2-10)
max w W

All the above results depend upon a knowledge of the parameter

ﬁW__ for their usefulness.
w

2. The Parabolic Cable

In many practical suspension Abridges the total dead weight of the
bridge, instead of being distributed as though uniform along the cables,
is distributed more uniformly across the span. Of more practical
importance than the common catenary, therefore, is the case of a
cable suspended between two points and so loaded (or with a weight
per unit length such) that the load per unit of span, £, rather than
the curve, is éonstant. Rgmarkably enough, although the catenary
was understood at the end of the seventeenth century, this related
yet sifnpler problem was not solved until one hundred years later. In
1794, a suspension bri&ge was proposed across the Neva, near
Le'ningra.d, and it was as a result of considering this proposed bridge
that Nicholas Fuss published his solution that year.

Now, consider the cable, as before, to be perfectly flexible
and inextensible. The vertical load on the element, ds, of the

- %
cable will be wds (instead of Wds which was for the common
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catenai-y). Again, the equilibrium of this element of the cable gives
T3 = H_ = constant (I-a-11
3s - H, = constant , -a-11)
and
& [yan. &
= (rdY--w . (I-a-12)
Furthermore, Egs. I-a-11 and I-a-12 give
dzx *ds
HW dxz o e -d—x- . (I-a-13)

When v;'gxi is constant, the profile of the cable is a parabola (which

is the essence of the discovery made by Fuss).
However, for flat-sag cables of constant weight per unit length,

the slope of the cable profile is everywhere small and, therefore

ds ~ dx .

The differential equation of the equilibrium curve is then

accurately specified as

<
a, |
?NLN
1
€3

(I-a-14)

The solution of this differential equation, for the coordinate

system shown in Fig. I-a-i, is the parabola

wi?
X X -
V=m;[r'(r)z] : R

The cable deflection at mid-span (x = -;—) is the sag , /, and

the horizontal component of cable tension is
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_wi
Hw-———8f . (I-a-16)

The tension at any point in the cable is given by Eq. I-a-8, and

its value is

*2,2 3
T = Hw[l + - (1 ¥ 2(1’5))2] (I-a-17)

L
w
The maximum tension in the cable, occuring at either support; will
* .
- l/;{fv HEwn)? . (I-a-18)

With the aid of Eq. I-a-16, Eq. I-a-15 is more conveniently written as

be

y = -4-2[ x(@-x) . (I-a-19)
]

It is worthwhile to note that this equation is also valid for the
parabolic cable shown in Fig. I-a-iii.
The length of the parabolic cable is given in general by

Eq. I-a-6, and in this particular case the total length is therefore

J;[l ’ {i/ RGP %))}2]%‘1" . | (I-a-20)

It is convenient, and sufficiently accurate, to expand the integrand
of Eq. 1-a-20 in a binomial series and then to carry out the integration

term by term. If this is done, it is found that

A 2 :
st [1 +§({) - %({)4 +... ] : (I-a-21)
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ratios, it is sufficient to adopt

=[13)°] .

for most practical purposes.

SIS

and for small

Similarly, in the more general case when the two ends are not
on the same level, as shown in Fig. I-a-iii, this formula for s still
holds provided that both Yy and the sag fl are measured from the

closing chord joined the two end supports.

3. Some Other Cases

In the case of the common catenary, W was constant measured
along the cable; in the case of the parabolic cable, \;'I; was constant
measured along the span (horizontal) of the cable. In addition, there
is the heterogeneous cable in which w is a variable, whether
measured along the cable or the span. Shortly after solving the
catenary problem, Bernouilli proceeded to solve this more general
problem, inquiring into the law of the variation of w associated with
various possible geometrical forms for the cable. The main result
from this kind of approach concludes that w measured along the

ds

. %
cable must vary so that w 5 corresponding to w measured along

the span, is a constant. A further result of interest is that when

3
w(g—s-) is constant, the curve is cycloid. Another example of a

dx
possible cable profile is the catenary of uniform strength developed
by Gilbert in 1826, in which the cable's cross sectional area is

proportional to the tension acting upon it. But this approach limits
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:=e spans of suspension bridge cables, which should be set by con-

.:4erations other than mathematical limits.

4. Comparison of Cable Profiles

The cables of suspension bridges are commonly constructed
it a uniform cross-sectional area, and thus, if allowed to hang
ireely, they would adopt the form of the common catenary given by
r7. I-a-5. But in practice they are often constructed at the site on
: temporary platform, and the roadway is hung from them by vertical
: :spension rods so that when all is complete, and the structure is
earing its own weight, the form of the cables is more nearly
r:rabolic. The aim of this erection procedure is to ensure that the
‘rad weight of the whole bridge (roughly uniform measured along the
:2an! be carried wholly by the cables and suspension rod without
aising bending actions in any stiffening structures.

Thus practical interest naturally settles upon the parabolic
Tither than the catenary profile of cable, but there is another reason
‘-t this. The profiles of the two curves are very similar in terms of
‘neir ratios of span to sag which fall in the range common in
> iipension bridges:(usually 8:1 or more). And since the cable
=rofiles are alike, the loads in the cable and in any subsidiary
firucture of the real bridge will also be similar. In these circum-
*lances it is patural to adopt the parabolic profile, with its greater
wiplicity and familiarity, as the standard one for suspension bridges,

i=d 3
d this has become the general custom.



