
운영체제의기초:

Files and Directories

2023년 6월 6, 8일

홍성수
sshong@redwood.snu.ac.kr

SNU RTOSLab지도교수

서울대학교전기정보공학부 교수



2

Launching a Command

❖ Key players behind the scene

▪ Shell: command line interpreter

▪ OS: process launcher, file system as directory tree

Files and Directories

Shell

OS

ls
Read in Command from User

Locate Executable File “ls”

Load and Run
the Executable

Display the Output
for User



3

Agenda

I. Understanding Files and Directories

II. Parsing File Names

III. Some Useful Features

Files and Directories



I. Understanding Files and Directories



5

What is File? (1)

❖ Definition of a file in Unix

▪ “A named collection of bytes stored on storage”

• “Storage” can be hard disk drives or solid-state disks (SSD)

▪ In older OSes, programmer may actually see a different 

interface (e.g., records)

• But this doesn’t matter to the file system

– Just pack bytes into blocks, unpack them again on reading

▪ Bottom line

• A file is one key abstraction that virtualizes storage

• Underneath the abstraction exists a bunch of blocks stored on 

the storage device, particularly from the OS’ standpoint

I. Understanding Files and Directories



6

What is File? (2)

❖ A file in the Unix/Linux operating system

▪ Much more than just a named collection of bytes

▪ Corresponds to a named entity in the computer system

• Regular files

• Special files

– Directories, device files (I/O devices), network interfaces, portion of 

memory, kernel data structures, even black hole device like 
/dev/null

▪ File system provides users with a computer system’s logical 

name space

• Consists of names of all the logical/physical entities

in the system

I. Understanding Files and Directories



7

What is File? (3)

❖ Some useful commands for files

▪ “mv old new”

• Rename a file

▪ “rm file”

• Remove a file

▪ “cat file”/“more file”

• Print the contents of the file

▪ “touch file”

• Create an empty file

I. Understanding Files and Directories



8

What is File? (4)

❖ Some predefined files for each process

▪ “stdin”

• Standard input: keyboard of the process’ terminal

▪ “stdout”

• Standard output: display area of the process’ terminal

▪ “stderr”

• Standard error: display area of the process’ terminal

I. Understanding Files and Directories



9

What is File? (5)

❖ File redirection

▪ “cmd < file”

• Redirect stdin of cmd with file

▪ “cmd > file”

• Redirect stdout of cmd with file

▪ “cmd >> file”

• Redirect stdout of cmd with file to append the output

▪ “cmd 2> file”

• Redirect stderr of cmd with file

▪ “cmd1 | cmd2”

• Redirect stdout of cmd1 to stdin of cmd2 

• AKA pipe

I. Understanding Files and Directories



10

Naming and Parsing

❖ Naming: “How do users refer to their files?”

▪ Users need a way of getting back to files they created

• One approach is just to have users remember file IDs

• Of course, users want to use text or symbolic names

to refer to their files

❖ Name parsing: “How does OS find a file with a given 

name?”

▪ Starting from symbolic file name to file ID

• Gives rise to translation from file names to IDs

▪ Special disk structures called “directories” are used to tell 

what IDs correspond to what names

I. Understanding Files and Directories



11

What is Directory? (1)

❖ Directory

▪ A “place holder” for files and other directories

• Such directories are called subdirectories

▪ Another key abstraction that effectively virtualizes storage

▪ A directory-subdirectory relationship creates a hierarchical 

structure called “directory hierarchy” or “directory tree”

• Example directory tree in Linux

I. Understanding Files and Directories



12

What is Directory? (2)

❖ Special characters for file naming

▪ “/”

• Denotes the root of the directory tree, or

• Used as a delimiter between a directory and one of its 

subdirectories or files

▪ “.”

• Current directory or working directory

– Being logged in to a computer system,

you are always associated with a specific working directory

▪ “..”

• Parent directory

I. Understanding Files and Directories



13

What is Directory? (3)

❖ Pathname as a file name

▪ Directory tree structure enables unique file naming

• Every entity in a directory tree has a unique path

from the root all the way down to the entity itself

– Ex: /etc/passwd, /home/user1

• Such a unique path serves as a file name and is called 
“absolute ” pathname

▪ Relative pathname

• A pathname that does not start with “/”

– Regarded as relative to the working directory (Ex: user1)

• Gives rise to the notion of “working directory”

I. Understanding Files and Directories



14

What is Directory? (4)

❖ Some commands for directories

▪ “cd”

• Change directory

• Moves to a new directory that becomes the new working 

directory

• Ex: cd /home/user1

▪ “ls”

• List files and subdirectories of the working directory

• Ex: ls -la

▪ “pwd”

• Print working directory

▪ “mkdir”/“rmdir”

• Make/remove directory

I. Understanding Files and Directories



15

Operations on Files and Directories

❖ Operations performed by OS on files

▪ Create and delete files

▪ Open files for reading and writing

▪ Seek within a file

▪ Read from and write to a file

▪ Close files

▪ Create directories to hold groups of files

▪ List the contents of a directory

▪ Removes files from a directory

I. Understanding Files and Directories



16

File I/O: Accessing Data in File (1)

❖ Key entities involved in file I/O

▪ File descriptor

• A number that uniquely identifies an open file

in a computer’s OS

• Three predefined file descriptors assigned to each process

– 0: standard input

– 1: standard output

– 2: standard error

▪ FILE pointer (AKA file stream)

• C struct returned by fopen() or fcreate()

• Corresponds to file descriptors

– Ex: stdin for 0, stdout for 1, stderr for 2

• Contains a “file pointer”

I. Understanding Files and Directories



17

Accessing Data in File (2)

❖ Key entities involved in file I/O (cont’d)

▪ File pointer

• Points to the current position of a read or write within a file

• Initially 0 when a file is opened or created

• Can be moved by accessing a byte in a file or invoking lseek()

I. Understanding Files and Directories



18

Accessing Data in File (3)

❖ Example

I. Understanding Files and Directories

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/types.h>

int main() {

char *fname = "data.txt";

int fd;

off_t fsize;

if ((fd = open(fname, O_RDONLY)) < 0) {

fprintf(stderr, "open error for %s\n", fname);

exit(1);

}

if ((fsize = lseek(fd, 0, SEEK_END)) < 0) {

fprintf(stderr, "lseek error\n");

exit(1);

}

}



II. Parsing File Names



20

Key Enablers (1): Directories

❖ Directory has the mapping instances

▪ Makes file name parsing possible

▪ A directory is in fact a special file containing tuples for its 

files and subdirectories

• Such a tuple is called a “dentry” or “directory entry”

▪ A dentry contains pairs of (file name, ID) as data contents

• File name: symbolic file name

• ID: index to the “file descriptor”

II. Parsing File Names



21

Key Enablers (2): File Descriptors (1)

❖ File descriptor

▪ Stores information of a file on disk

• It stays around on the disk even when the OS doesn’t

▪ Contains all kinds of information about the file

• File size

• Access time

• Owner and group ID

• Protection bits

▪ “List directory” command gives the file descriptor contents

II. Parsing File Names



22

Key Enablers (2): File Descriptors (2)

❖ File descriptor: How is it implemented?

▪ Stored in special areas of disk

• Originally

– File descriptor array at one side of disk

– Unix used to store all the descriptors in a fixed-size array on disk

• Then

– Descriptor array mid-way across disk

• Today

– Many small descriptor arrays spread across disk,

so descriptors can be near to file data

▪ Sizes of the descriptor arrays are determined

when the disk is initialized, and can’t be changed

II. Parsing File Names



23

Key Enablers (2): File Descriptors (3)

❖ File descriptor: How is it implemented? (cont’d)

▪ When a file is open, its descriptor is kept in main memory

▪ When the file is closed, the descriptor is stored back to disk

▪ In Unix

• The file descriptor is called an “inode” (index node)

• Its index in the array is called its “inumber” (AKA ino)

• Internally, the OS uses the ino to refer to the file

II. Parsing File Names



24

How Name Parsing Works? (1)

❖ The Unix approach

▪ Generalize the directory structure to a tree

▪ Directories are stored on disk just like regular files except 

their file descriptors have special flag bits set

▪ Programs can read directories just like any other file

• Only special system programs may write directories

▪ Each directory contains <name, inumber> pairs in no 

particular order

• The file pointed to by the inumber may be another directory

– Hence, gets the hierarchical tree structure

• Names have slashes separating the levels of the tree

II. Parsing File Names



25

How Name Parsing Works? (2)

❖ The Unix approach (cont’d)

▪ There is one special directory, called the “root”

• This directory has no name, and is the file pointed to by 

inumber 2

– Inumbers 0 and 1 have other special purposes

▪ Example: /a/b/c

• Inode 2: Contains < “a”, 5 >

• Inode 5: Contains < “b”, 7 >

• Inode 7: Contains < “c”,14 >

• Inode 14: File c

II. Parsing File Names



26

How Name Parsing Works? (3)

❖ The Unix approach (cont’d)

▪ It is very nice that directories and inodes are separate,

and that directories are implemented just like files

• Simplifies the implementation and management of the file 

system structure

• Allows “normal” programs to manipulate directories as files

II. Parsing File Names



III. Some Useful Features



28

Revisiting Working Directory

❖ More on working directory

▪ It is cumbersome to constantly have to specify the full 

pathname for all files

▪ In Unix, there is one directory per process, called the 

“working directory,” which the system remembers

• When it gets a file name, it assumes that the file is in the 

working directory

– “/” is an escape to allow full pathnames

• The Unix shell automatically checks in several places for 

programs

– However, this is built into the shell, not into Unix

– So if any other program wants to do the same, it has to rebuild the 

facilities from scratch

▪ This is yet another example of locality

III. Some Useful Features



29

Making and Mounting File System (1)

❖ File system

▪ A hierarchical collection of directories and files

▪ A full directory tree that has the unique root directory (“/”)

• A file system is assigned an inumber space from 0

– Inumbers 0 and 1 have other special purposes

– The root has inumber of “2”

– Other directories and files will get inumbers greater than 2

▪ Created by the mkfs command (make file system)

• mkfs creates a directory tree on a volume of a storage device

III. Some Useful Features

$ mkfs –t ext3 /dev/sdb1



30

Making and Mounting File System (2)

❖ Mounting a file system

▪ A computer system has an assembly of multiple file systems

▪ After a new file system is created, it needs to be attached to 

a directory in an existing file system tree, often the root file 

system

• Such target directory is referred to as the “mount point”

• The mount point becomes the root of the file system

▪ Otherwise, the file system can’t be reached

III. Some Useful Features

$ mkfs –t ext3 /dev/sdb1

$ mount –t ext3 /dev/sda1 /home/users

$ cd /home/users



31

Hard and Symbolic Links (1)

❖ Hard link

▪ Allows more than one directory entry to refer to a single file

• Can create one or more new file names for an existing file

• The new file AKA link refers to the same inumber

– This link is called a hard link

– The old and new link must belong to the same file system

III. Some Useful Features

$ echo hello > file

$ cat file

hello

$ ln file file_link

$ cat file_link

hello

$ ls –i file file_link

671158084 file

671158084 file

$



32

Hard and Symbolic Links (2)

❖ Hard link (cont’d)

▪ How to delete a file that has one or more links?

• Unix uses reference counts in the inodes to keep track of the 

directory entries

• Only deletes file when the last directory entry goes away

III. Some Useful Features

$ stat file

Inode: 67158084 Links: 2

$ rm file

Removed ‘file’

$ stat file_link

Inode: 67158084 Links: 1

$ cat file_link

hello



33

Hard and Symbolic Links (3)

❖ Symbolic link

▪ Another type of link, AKA soft link

▪ A file whose contents are just another file name

▪ Also stored on disk just like regular files, but with a special 

flag set in descriptor

III. Some Useful Features

$ echo hello > file

$ ln –s file file_link

$ cat file_link

Hello

$ stat file

regular file

$ stat file_link

symbolic link


