Inverse Problems

Sec

Hoonyoung Jeong Department of Energy Resources Engineering Seoul National University

What is an Inverse Problem?

- Forward problem
 - ✓ Given model parameters (**m**) of a system, a forward model (*f*) calculates (or simulates) the responses (**d**) of the system
 - \checkmark A forward problem is represented by equations, initial conditions, and boundary conditions of a system
 - $\checkmark \mathbf{d} = f(\mathbf{m})$
- Inverse problem
 - ✓ Given model parameters of a system, an inverse model finds the most probable model parameters honoring observed data by calibrating the model parameters
 - ✓ The objective of an inverse problem is to find **m** minimizing the discrepancy (or gap, difference) between \mathbf{d}_{obs} and $f(\mathbf{m})$
 - \checkmark The discrepancy can be expressed in many ways, which is called an objective function
- Terminology
 - \checkmark **m**_{prior}: an initial solution, before inversion
 - \checkmark **m**_{posterior}: optimal solution, after inversion

History Matching is a Typical Inverse Problem

History Matching

- To calibrate model parameters
 - ✓ Rock properties
 - ✓ Fluid properties
 - ✓ Properties between rock and fluid
 - 🖌 Fault
 - ✓ Initial Conditions
 - ✓ Aquifer
- To find the most probable models conditioning to observed data

Things to be Careful about HM

- Undetermined problem
 - ✓ # of unknowns > # of equations
 - ✓Non-unique
 - \checkmark No single exact solution \rightarrow Multiple solutions
- Error
 - ✓Forward modeling error
 - ✓ Measurement error

Manual vs. Automatic HM

- Manual HM
 - ✓ To calibrate model parameters manually based on the intuition and experience of engineers
 - ✓ Critical step to understand reservoirs
- Automatic (or Assisted) HM
 - \checkmark To calibrate model parameters using optimization algorithms

A Bayesian Inversion Framework (1)

- We will derive the objective function for inversion using the Bayesian theory
- Inversion is to find **m** maximizing $P(\mathbf{m}|\mathbf{d}_{obs})$
 - ✓ $P(\mathbf{m}|\mathbf{d}_{obs})$ is a probility of **m** given \mathbf{d}_{obs}
 - $\checkmark \mathbf{d}_{obs}$ is an event that already happened
- Typical Four assumptions
 - ✓ The measurement errors in \mathbf{d}_{obs} follows a normal distribution with zero means
 - $\mathbf{d}_{obs} = \mathbf{d}_{true} + \epsilon_{measurement}$
 - ✓ The forward modeling errors in $f(\mathbf{m}_{true})$ follows a normal distribution with zero means
 - $\mathbf{d}_{true} = f(\mathbf{m}_{true}) + \epsilon_{modeling}$
 - ✓ The sum of $\epsilon_{measurement}$ and $\epsilon_{modeling}$ follows a normal distribution with zero means
 - $\mathbf{d}_{obs} = f(\mathbf{m}_{true}) + \epsilon$
 - $\epsilon \sim N(0, \mathbf{C}_d)$

 \checkmark **m**_{true} follows a normal distribution with mean **m**_{prior} and covariance matrix **C**_m

• $\mathbf{m}_{true} \sim N(\mathbf{m}_{prior}, \mathbf{C}_{\mathbf{m}})$

Univariate Normal Distribution

Multivariate Normal Distribution

•
$$f(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}\sqrt{\det(\mathbf{C}_{\mathbf{x}})}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}})^T \mathbf{C}_{\mathbf{x}}(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}})}$$
 where $\mathbf{x} = [x_1 \quad \cdots \quad x_N]^T$
and $\boldsymbol{\mu}_{\mathbf{x}} = [\mu_{x_1} \quad \cdots \quad \mu_{x_N}]^T$

A Bayesian Inversion Framework (2)

- Which event (**d**_{obs} and **m**_{true}) happens earlier in **d**_{obs} = f(**m**_{true}) + ε
 ✓ **d**_{obs} is bottomhole pressure, flow rates, GOR
 ✓ **m**_{true} already happened, and **d**_{obs} happens later
- What is the probability of \mathbf{d}_{obs} when \mathbf{m}_{true} exists? $\checkmark \epsilon = \mathbf{d}_{obs} - f(\mathbf{m}_{true}) \sim N(0, C_d)$ $\checkmark P(\mathbf{d}_{obs} | \mathbf{m}_{true}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\mathbf{C_d})}} e^{-\frac{1}{2} (\mathbf{d}_{obs} - f(\mathbf{m}_{true}))^T \mathbf{C_d} (\mathbf{d}_{obs} - f(\mathbf{m}_{true}))}$
- What is the probability of \mathbf{m}_{true} ? $\checkmark \mathbf{m}_{true} \sim N(\mathbf{m}_{prior}, \mathbf{C}_{\mathbf{m}})$ $\checkmark P(\mathbf{m}_{true}) = \frac{1}{(2\pi)^{n/2}\sqrt{\det(\mathbf{C}_{\mathbf{m}})}} e^{-\frac{1}{2}(\mathbf{m}_{true} - \mathbf{m}_{prior})^T \mathbf{C}_{\mathbf{m}}(\mathbf{m}_{true} - \mathbf{m}_{prior})}$

A Bayesian Inversion Framework (3)

- We want to find \mathbf{m}_{true} , so \mathbf{m}_{true} is replaced with \mathbf{m}
- We know $P(\mathbf{d}_{obs}|\mathbf{m})$ and $P(\mathbf{m})$, but we want to know $P(\mathbf{m}|\mathbf{d}_{obs})$
- Bayesian theorem

 $\checkmark P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ $\checkmark P(\mathbf{m}|\mathbf{d}_{obs}) = \frac{P(\mathbf{d}_{obs}|\mathbf{m})P(\mathbf{m})}{P(\mathbf{d}_{obs})} \approx e^{-\frac{1}{2}(\mathbf{d}_{obs}-f(\mathbf{m}))^{T}\mathbf{C}_{\mathbf{d}}(\mathbf{d}_{obs}-f(\mathbf{m}))} e^{-\frac{1}{2}(\mathbf{m}-\mathbf{m}_{prior})^{T}\mathbf{C}_{\mathbf{m}}(\mathbf{m}-\mathbf{m}_{prior})}$ $= e^{-\frac{1}{2}\left[\left(\mathbf{d}_{obs}-f(\mathbf{m})\right)^{T}\mathbf{C}_{\mathbf{d}}(\mathbf{d}_{obs}-f(\mathbf{m})) + (\mathbf{m}-\mathbf{m}_{prior})^{T}\mathbf{C}_{\mathbf{m}}(\mathbf{m}-\mathbf{m}_{prior})\right]}$

Maximum Likelihood Estimation and Maximum A Posterior

• Maximum A Posterior (MAP)

 $\checkmark P(\mathbf{m}|\mathbf{d}_{obs}) \approx e^{-\frac{1}{2} \left[\left(\mathbf{d}_{obs} - f(\mathbf{m}) \right)^T \mathbf{C}_{\mathbf{d}} \left(\mathbf{d}_{obs} - f(\mathbf{m}) \right) + (\mathbf{m} - \mathbf{m}_{prior})^T \mathbf{C}_{\mathbf{m}} (\mathbf{m} - \mathbf{m}_{prior}) \right]}$ ✓ We want to find **m** maximizing $P(\mathbf{m}|\mathbf{d}_{obs})$ ✓ Find **m** minimizing $(\mathbf{d}_{obs} - f(\mathbf{m}))^T \mathbf{C}_{\mathbf{d}} (\mathbf{d}_{obs} - f(\mathbf{m})) + (\mathbf{m} - \mathbf{m}_{prior})^T \mathbf{C}_{\mathbf{m}} (\mathbf{m} - \mathbf{m}_{prior})$ $\checkmark O(\mathbf{m}) = (\mathbf{d}_{obs} - f(\mathbf{m}))^T \mathbf{C}_{\mathbf{d}} (\mathbf{d}_{obs} - f(\mathbf{m})) + (\mathbf{m} - \mathbf{m}_{prior})^T \mathbf{C}_{\mathbf{m}} (\mathbf{m} - \mathbf{m}_{prior})$ • Maximum Likelihood Estimation (MLE) ✓ Likelihood probability ≈ $e^{-\frac{1}{2}(\mathbf{d}_{obs}-f(\mathbf{m}))^T \mathbf{C}_{\mathbf{d}}(\mathbf{d}_{obs}-f(\mathbf{m}))}$ ✓ Find **m** minimizing $(\mathbf{d}_{obs} - f(\mathbf{m}))^T \mathbf{C}_{\mathbf{d}} (\mathbf{d}_{obs} - f(\mathbf{m}))$ $\checkmark O(\mathbf{m}) = (\mathbf{d}_{obs} - f(\mathbf{m}))^T \mathbf{C}_{\mathbf{d}} (\mathbf{d}_{obs} - f(\mathbf{m}))$ \checkmark Find **m** without considering the prior probability \checkmark Possible if **m** does not change much compared to **m**_{prior}

Procedure of HM

@ Calculore the objective function $O(m_k)$:) Open the simulation data file ii) Replace your keywords with k, , ... , kH ex) In the data file PERMX $100 \leftarrow k_1$ 200 E Kr iii) Run the simulation iv) Read the result v) Calculate and return J(nk) $O(m_k) = \frac{1}{2} (dobs - g(m))^T C_0^{-1} (dobs - g(m))$ + - (m-mprior) Cia (m-mprior)

③ Calculate ∇O(MK) Using FDM or a stochastic gradient
 ④ Update XK+1 Using your gradient-based optimization method
 ⑤ Repeat O~ ⊕ Until convergence criteria are satisfied.
 Nd - 5 JINJ ≤ 2 O(M MAP) ≤ Nd + 5 JINJ
 from Eq. 8.6 in Invarse Theory for Petroleum Peservoir characterization and History Matching

Cd

d = [Pi P2 P3]^T where Pi, P2. P, are bottomhole pressures at Wells 1, 2, 3 $C_{d} = \begin{bmatrix} 6_{p_{1}}^{2} & 6_{p_{1},p_{2}} & 6_{p_{1},p_{3}} \\ 6_{p_{2},p_{1}} & 6_{p_{2}}^{2} & 6_{p_{2},p_{3}} \\ 6_{p_{3},p_{1}} & 6_{p_{3},p_{2}} & 6_{p_{3}}^{2} \end{bmatrix}$ Normally, covariance between different data is assumed to be $\frac{(d_{obs} - g(m))^{T} C_{d}^{-1} (d_{obs} - g(m))}{(p_{1,obs} - p_{1})^{2}} + \frac{(p_{2,obs} - p_{2})^{2}}{(p_{2,obs} - p_{2})^{2}} + \frac{(p_{3,obs} - p_{3})^{2}}{(p_{2} - p_{2})^{2}} + \frac{(p_{2,obs} - p_{3})^{2}}{(p_{2} - p_{2})^{2}} + \frac{(p_{2,obs} - p_{3})^{2}}{(p_{2} - p_{3})^{2}} + \frac{(p_{2,obs$ $Cd = \begin{bmatrix} 6p^2 & 6p^2 & 6p^2 \\ 0 & 6p^2 & 6p^2 \end{bmatrix}$ ~ vizer weight : 221 € col 202 less weighted

C_m $M = [k_1 \ k_2 \ k_3]^T$ where k_1, k_2, k_3 are permeability values at cells 1,2,3 $C_{m} = \begin{bmatrix} G_{k_{1}}^{2} & G_{k_{1},k_{2}} & G_{k_{1},k_{3}} \\ G_{k_{2},k_{1}} & G_{k_{2}}^{2} & G_{k_{2},k_{3}} \\ G_{k_{3},k_{1}} & G_{k_{3},k_{2}} & G_{k_{3}}^{2} \end{bmatrix}$ $G_{k_1,k_2} = C_{ov}(k_1,k_2) = 6^2 - 2(h)$