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What is an Inverse Problem?

* Forward problem

v" Given model parameters (m) of a system, a forward model (f) calculates (or simulates) the responses (d) of the
system

v" A forward problem is represented by equations, initial conditions, and boundary conditions of a system
v d=f(m)

 Inverse problem

v" Given model parameters of a system, an inverse model finds the most probable model parameters honoring
observed data by calibrating the model parameters

v" The objective of an inverse problem is to find m minimizing the discrepancy (or gap, difference) between d
and f(m)

v" The discrepancy can be expressed in many ways, which is called an objective function

* Terminology
v/ My, an initial solution, before inversion
v My, ,gterior: Optimal solution, after inversion



History Matching is a Typical Inverse Problem
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* To calibrate model parameters
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Things to be Careftul about HM

* Undetermined problem
v'# of unknowns > # of equations
v'Non-unique
v'No single exact solution =» Multiple solutions

e Error
v'Forward modeling error
v'Measurement error



Manual vs. Automatic HM

e Manual HM

v'To calibrate model parameters manually based on the intuition and experience
of engineers

v'Critical step to understand reservoirs

* Automatic (or Assisted) HM

v'To calibrate model parameters using optimization algorithms



A Bayesian Inversion Framework (1)

* We will derive the objective function for inversion using the Bayesian theory

e Inversion is to find m maximizing P(m|d,;)
v ' P(m|d,,;) is a probility of m given d
v d, ;s is an event that already happened
* Typical Four assumptions
v’ The measurement errors in d, ;s follows a normal distribution with zero means

\ dObS = dtrue + Emeasurement
v’ The forward modeling errors in f (m;,,.) follows a normal distribution with zero means

" diye = f(mtrue) + €modeling
v The sum of €peqsurement AN €mogeling follows a normal distribution with zero means
" dyps = f(Myg) t€
= ¢e~N(0,Cy)
v’ My, follows a normal distribution with mean m,,,.;,,- and covariance matrix Cy,
" Mypye ~ N(mpriort Cm)



Univariate Normal Distribution
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Multivariate Normal Distribution
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A Bayesian Inversion Framework (2)

* Which event (d,;s and m,,,) happens earlier in d,,; = f(m;y,.) + €
v'd, s is bottomhole pressure, flow rates, GOR
v'm;,,. already happened, and d,; happens later

* What 1s the probability of d ;¢ when my,.,,, exists?

Ve =dops — f(Myrye) ~ N(O,Cy)
‘/P(dobslmtrue) = ! e_%(dobs_f(mtrue))TCd(dobs_f(mtrue))

(2m)™/2,/det(Cq)
* What 1s the probability of m,.,,.?
‘/mtrue ~ N(mprior; Cm)
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A Bayesian Inversion Framework (3)

* We want to find my,.,, SO M4, 1s replaced with m

* We know P(d,,|m) and P(m), but we want to know P(m|d,;.)
* Bayesian theorem

P(B|A)P(A
VP(A|B) = “E T
1 1

3\ e_%[(dobs_f(m))TCd(dobs_f(m))+(m_mprior)TCm(m_mprior)]



Maximum Likelihood Estimation and
Maximum A Posterior
* Maximum A Posterior (MAP)

‘/P(mldobs) ~ e_%[(dobs_f(m))TCd(dobs_f(m))+(m_mprior)TCm(m_mprior)]
v ' We want to find m maximizing P(m|d,)
‘/Flnd m mlnlleIHg (dobs — f(m))TCd(dobs - f(m)) + (m - mprior)TCm(m - mprior)
v O(m) (% (dobs _ f(m))TCd(dobs _ f(m)) + (m _ mprior)TCm(m — mprior)
* Maximum Likelihood Estimation (MLE)
1
v Likelihood probability ~ e ~2(debs™ (M) Ca(dops=f (m)
v’ Find m minimizing (dps — f(m))TCd(dobS — f(m))
v O(m) — (dobs K f(m))TCd(dobs _ f(m))

v' Find m without considering the prior probability
v’ Possible if m does not change much compared to my.;,;



Procedure of HM
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