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basic folding mechanism is constructed. This mechanism closely reproduces all the
main features of folds and wrinkles actually observed on typical crumpled sheet
metal structures. Calculations based on the energy balance postulate show that two-
thirds of the plastic energy is always dissipated through inextensional deformations
at stationary and moving plastic hinge lines. The extensional deformations are
confined to relatively small sections of the shell surface but they account for the
remaining one-third of the dissipated energy. The theory is illustrated by ap-

Pplication to the problem of progressive folding of thin-walled rectangular columns.
A good correlation is obtained with existing experimental data as far as the mean
crushing force and the geometry of the local collapse mode is concerned.

1 Introduction

Thin-walled structures are capable of carrying substantial
loads for deflections far beyond those corresponding to
ultimate or buckling loads. From the point of view of energy
absorption characteristics of compressed members, one is
mainly interested in deflections that exceed by two orders of
magnitude the shell thickness and become comparable to the
linear dimension of the structure. At the same time con-
sideration of initial peak load is important only to the extent
that the process of reaching this load may impose a certain
mode of collapse.

Very large deflections can be accommodated by sheet metal
structures through the formation of a complicated pattern of
folds and wrinkles. A distinctive feature of such a defor-
mation mechanism is that the strain energy (in the case of
elastic shells) or the rate of energy dissipation (in the case of
plastic shells) is concentrated over relatively narrow zones,
while the remainder of the structure undergoes a rigid body
motion. This is in sharp contrast with buckling or post-
buckling behavior of plates or shells where small per-
turbations around a predominantly compressive state lead to
amore or less uniform strain distribution.

Some further interesting observations can be made about
the crumpling process. The fold lines, which actually form a
double curvature surface, always lie in a certain plane. One
radius of curvature of the ‘‘fold line”’ is small and comparable
to the gauge thickness while the other is much larger. Once the
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local buckling wave is formed in the shell, its length stays
essentially unchanged while the amplitude grows as the
deformation progresses.

All these features of the structural response are local and
thus, to a certain degree, are independent of the scale or type
of the problem. This means that one should be able to
describe the mechanics of the crushing process at this local
level. Calculations of the crushing resistance of typical
components of automobile, aircraft, or ship structures will
then follow.

The progressive folding of box columns was studied among
others by Johnson et al. [1], Ohokubo et al. [2], and one of
the present author [3], under the assumption of purely
inextensional deformation modes with stationary or moving
hinge lines. On the other hand, for axially symmetric
problems such as tube inversion [4], crumpling of cylindrical
shells in the so-called crinkling deformation mode [5], and
crushing of rotationally symmetric shells [6,7], a
predominantly extensional type of deformation was assumed.
In the present paper these two approaches are combined to
develop a theory of the crushing behavior of a certain class of
shells.

A kinematic method of plasticity will be used, suitably
generalized to large deformation problems. The method
consists of constructing a kinematically admissible solution,
with at least three degrees of freedom (three free parameters)
around a simple one-degree-of-freedom folding mechanism.

2 Assumptions

The shape of the plastic collapse mode with large local
strains and curvatures can be assumed a priori on the basis of
experimental observations. Alternatively, = the folding
mechanisms can be systematically developed from a set of
basic assumptions in conjunction with the continuity con-
ditions at the propagating hinge lines. Here, the latter ap-
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proach is used since it will shed more light on the crushing
process of thin-walled structures. The following assumptions
are made:

(1) The structure consists initially of planar surface
elements. This assumption restricts the class of the considered
problem. For example, box beams and columns, plate in-
tersections, cellular structures, stiffened panels etc., all fall
within the considered class. The method may also be applied
to curved shells that are approximated by a system of flat
plates.

(2) The material is regarded as rigid-perfectly plastic with
a constant value of the flow stress o,. Since large plastic
strains are present in areas of high curvature, elastic effects
can be neglected and ¢, can be thought of as an average flow
stress. Strain hardening and strain rate sensitivity can be
accounted for in the present formalism at the expense of
considerably more complicated calculations.

(3) The length of the local buckling wave 2H remains
constant during the formation of each buckle or fold. This is
true in many practical problems. Usually, the mode of
collapse of a thin-walled structure is either imposed by initial
imperfections or is dictated by initial elastic or plastic
buckling modes. The fact that this wavelength is not subjected
to any major changes later in the post-buckling process means
that there must be a way of determining H from the energy
consideration in the plastic range. We will explore this
possibility further in the paper.

(4) The constraints imposed on the crushing process by
the boundary and symmetry conditions are forcing the fold
lines to move through the material. The consideration of
folding about stationary (straight or curved) hinge lines is in
general much easier. Such collapse mechanisms are possible to
develop only if sufficient freedom is left for the boundaries to
deform. This problem has been analyzed in the literature, cf.
[1] and thus will not be considered here.

3 Analysis of Discontinuities

The conditions on the boundaries between rigid and
deforming zones will now be examined. Consider a curved
discontinuity line I' moving down the middle surface of the
shell x with the velocity V,. The hinge line is defined by the
surface vector n normal to I'. The line T is dividing the surface
x into two separable parts, the deformed part (+), behind T,
which is subjected to plastic deformations and the un-
deformed part (—), in front of I'. Denote by fany vector field
defined over the surface x. In particular f can be regarded as a
displacement vector f= {u*,u?}, in the local coordinate
system (x*,x3).

The conditions of kinematic continuity of f across T' take
the form

[T+ Valf! o In=0 }i={1,2,3l @.1)

L1+ Vo (Lf 1 nfnYin, =0 o,By=1{1,2} (3.2)
where the brackets denote discontinuities, if any of the en-
closed quantities across T, i.e., [7]=*n—"n, and V, is the
velocity of the hinge line in n direction. These equations can
be obtained from general continuity conditions for a three-
dimensional continuum formulated, for example, in [8] if the
first and second gradient of the function f is replaced by the
corresponding covariant differentiation.

In the case of rotationally symmetric shells the hinge line
becomes a circle and each of the continuity conditions (3.1)
aixd (3.2) yields only one scalar equation in the meridional
plane
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[F1+ V[ fal=0 (3.3)
[fal+ Vil faal =0 (3.4

where [ f,,] is a jump of the rate of rotation and [ f 4.1 is the
corresponding jump in the principle (meridional curvature).

Assuming that f and f are continuous across I, equation
(3.3) shows that the slope f, can be discontinuous only across
stationary hinge lines, for which ¥, =0. Similar results valid
for beams and flat circular plates were obtained earlier by
Hopkins [9] and Prager [10].

Two special cases of the general equations are of interest to
us. Let a circular hinge I' move down a cylindrical surface of
the radius R. The curvature and rate of rotation vanish in
front of T' and behind T are denoted, respectively, by
Jfaa=k=1/b, f,=6. Equation (3.4) says that such a line of
discontinuity is leaving behind a curved surface, defined by

6+V/b=0 (3.5)

In a small neighborhood of T this is the equation of a toroidal
surface with the small radius b and large radius a=R + b, Fig.
1(a).

Consider now a straight hinge line moving down a plane
surface. Equation (3.2) yields a condition analogous to (3.5)
but its interpretation is different. A translating or rotating
hinge lines is sweeping, respectively, a cylindrical or conical
surface of the radius b, Fig. 1(b,c). Reversing the directions of
motion, a converse statement is true. A toroidal surface is
transformed into a cylinder while a cylindrical or conical
surface becomes a plane.

4 Basic Folding Mechanism

Following assumption 1, consider a typical hinge line
formed by an intersection of two plane surface elements
which initially were of the height H. Referring to Fig. 2 we see
that upon compression, the hinge line, originally positioned at

lines

Fig. 2 Kinematically
mechanisms

inadmissible and admissible folding
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Fig. 3 (a)Assembling two asymmetric modes with material discon-
tinuity; and (b) a fully consistant collapse mechanism

OB, has moved to a new position OB. Such a mode of
deformation is kinematically inadmissible since it in-
corporates a discontinuity in the slope across the moving
hinge line. A consistent collapse mechanism is obtained by
introducing two rotating hinge lines. The first line is imposing
a curvature and this line is followed by another one that is
removing the curvature back to zero. The resulting mode thus
consists of two flat trapezoidal elements continuously joined
by a section of a conical surface, Fig. 3. When two identical
modes described in the foregoing are assembled, a stationary
hingeline BC is formed across which the slope discontinuity is
admissible. This however results in a material discontinuity
over the remaining part of the joint line. The opening in-
creases from B, to B, and then is held constant along BA, Fig.
3. The width of the gap indicates how much extension or
compression would be required to ensure full geometric
compatibility. This difficulty could be overcome by inserting
a section of a cylindrical surface between the two deforming
elements along the horizontal edge CAB, Fig. 3. As the
deformation progresses, each of the horizontal lines split now
into two hinges moving in opposite directions. According to
the continuity condition (3.5) the central region bounded by
four moving circular arcs must form a section of a toroidal
surface. The deformation mode consisting of four trapezoidal
elements, a section of two horizontal cylindrical surfaces, two
inclined conical surfaces, and a section of a toroidal surface
will be called a basic folding mechanism.

Velocity and Strain Rate Fields. The global geometry of
four intersecting fold lines is shown in Fig. 4. The initial
geometry of the compressed element is defined by the height
2H, total width C, which is the length of the segments AB and
BC, and the angle 2y, between two adjacent plates. The
current geometry is described either by the crushing distance &
or the angle of rotation of the side panels « or the horizontal
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Fig.5 Plastic flow of a metal sheet through a toroidal surface

displacements of the point B. These quantities are mutually
related by

6=2H(1 —cos o) “.1)
S=H sin « 4.2)

The other two angles + (in the plane ABU) and 2 (in the plane
UBL) arerelated to ¥, and « through
18yo

1 = — b5 =
8= gh o &P

gy
Sinlpo
The motion of the element is described by the relative velocity
of the upper and lower edges (Points U and L)

(4.3)

8=2H(sin o) & 4.9
and the horizontal velocity of the point C
V=S=H(cos a)&- .5)

A central point in the present paper is the analysis of a
continuous deformation field leading to extensional defor-
mations in the localized zones. The velocity field in the section
of a toroidal shell can be determined in the fixed coordinate
system or more conveniently in the moving coordinate system
referred to the global collapse mode.

On substracting the convective part of the velocity field it
can be easily shown (cf. for example [19]), that the local
motion of the shell middle-surface in the considered zone is
nothing else but a radial flow of the material points over the
toroidal surface with the tangential velocity V,. This velocity
isrelated to the horizontal velocity V by Fig. 5.

V,=ab=V/tgy, 4.6)
Let us introduce a local coordinate system {6,¢,x>} where 8
and ¢ denote, respectively, meridional and circumferential

coordinates of the toroidal surface. Assuming inextensibility
of the shell in the meridional direction (A\y=1), the velocity
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vector in this system of coordinates has the following com-
ponents

v={wh,0,0}

where & denotes the angular velocity of the flow.

It is natural to introduce a consistent Eulerian description
of the plastic flow. The formulated problem is geometrically
nonlinear in strains and displacements. However, the formula
for the velocity strain is linear. The velocity field (4.7) gives
rise to the following components of the rate of extension A,g
and rate of curvature i,g, in the continuous deformation field
where «, 8, =0, ¢ (for details of derivation see, for example,
reference [12])

4.7

. 00 00
Neg = . y Keg = 4.8)
0 Ao 0 kg
where
. wb sin 6 wa sin 6
Nop == Mmoo 4.9)

There is also a jump in the curvature rate across the two
circular hinge lines

[kl =6=V,/b (4.9a)

In the preceding formulas @ and b denote, respectively, larger
and smaller radius of the toroidal surface and r is a current
position of the point with 6 coordinate with respect to the axis
of symmetry r=»5 cos 6+a.

Incompressibility Condition. The general theory, on
which the derivation of equations (4.8) and (4.9) was based,
does not pose any restrictions as to the change of the shell
thickness during the deformation process. Since the material
is rigid-plastic, we can calculate the change of thickness from
the incompressibility condition. In view of the property
A\ = 1, this conditions reads

Ao =1 (4.10)

This condition can be written in an integral form which
related local wall thickness to the current radius of the
toroidal surface, hqro = Ar where A, is the initial thickness of
theshell and ry =a+b sin y.

5 Energy Dissipation

The rate of energy dissipated in the crushing process results
from the continuous and discontinuous velocity fields
E, = SS (M kg +NBN,5)dS+ SL M, bde G.)
where &, and )\,,B are given by (4.8) and (4.9) and the Cauchy
stress tensor is used in the definition of stress
resultants N*® and stress couples M*®. Note that both the
extent of continuous plastic deformations S and the length of
hinge lines L increase as the deformation progresses. Consider
now the first integral in (5.1).

Each element of the shell subjected to plastic flow un-
dergoes a finite rotation from 6, =«/2+y to 6, =w/2—y. It
seems appropriate here to introduce the corotational
definition of the yield condition discussed, for example, in
[12]. The yield condition is described by the same function of
the components of generalized stresses F(M*N*f)=0, in-
dependent of the actual configuration, i.e., the coordinates
{6,¢}. The form of the function F would then be formally
analogous to that describing a similar problem with in-
finitesimal deformations. In the case of rotationally sym-
metric shells with only two nonvanishing components of the
generalized strain rate tensor, the yield condition has the form

2
My |+ (1_"_@) -1

M, N, (5.2)
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where M, =1/4 gyh?, Ny =0,h and h represents the current,
variable shell thickness. The preceding equation in con-
junction with the associated flow rule suffices to determine
uniquely the continous rate of energy dissipation.

The surface element in (5.1) is expressed as

dS=rd¢ bdf (5.3)
and the limits of integration are
™ ™
- —y=<f= - 5.4
3 y= 5t v (5-4)

-B<$<B

where 28 is a central angle of toroidal section, variable with
the process, see Fig. 5, and the angle y is linearly increasing
with ¢ from ¥, to «/2 according to

T—2Y,
T

y=y + ¢ (5.40)

In the most general case of variable thickness and nonlinear
yield condition, the surface integral in (5.1) can be evaluated
and expressed in terms of elementary functions as shown in
[13]. However, the resulting expression is too complicated for
our purposes.

The effect of variable thickness is small except for problems
in which the ratio n=5b/a is relatively large, for example an
outside-in tube inversion. We will restrict our analysis to
small 5 and treat A as constant. We will also approximate (5.2)
by a square yield locus, circumscribed on the parabola. The
first integral in (5.1) is then reduced to

e et sas .
E, =S b{g [Mo wa b fN, 208 6] rde} dé
-B T/2-y r r

The first integration can be easily performed to give

. B
E, =S , [250172 N, sin ¢

1+ sin ¢
oMy 1non( T2 )}
+wa0 7’0‘1 l—nsln\l/ dd)

For small 5 the second term in the integrand of (5.5) can be

expanded in power series. Retaining only the linear term, this
formula reduces to

(-3)

. 8

E, =S s {20b sin Y[Nob+M,l} do (5.6)
Note that the dependence of the solution on the larger radius a
is weak and disappears altogether for small n. The first term
in the integrand of (5.6) represents the contribution of cir-
cumferential extension while the second term the contribution
of continuous bending (change of circumferential curvature).
Since b is always greater than the thickness of the shells and in
most cases is of the order of b=4h, the continuous bending
does not contribute much to the rate of energy dissipation in
regions of continuous deformation and thus can be neglected
in simplified calculations. Sawczuk and one of the present
authors [13] studied the ratio k¢¢/\,, and found that for
small 5 the stress profile is reduced to a single point on the
yield condition M =0, N=Nj,. The second integration can be
performed with the help of (4.5), (4.6), and (5.4a) and the

result is
4N,bH -2
obHw cos a{sin Yo sin(1r %)B
™

VT (T —290)igds

+cos g [l—cos (W—:%)]ﬁ} &

Integrating now (5.6a) over the whole deformation process,
the work done on a complete folding of the element through
the angle 7/2is

(5.6a)
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E, =4Hb Ny I,(¥) =16 My Hb/h I,(y,)
where I, is defined by

5.7)

T
(m—2y0)egy,

(7{_2%)6+cos %[1 —cos (%)5]}@ 5.72)

s

/2
go cos a{sin Yo sin

11(1/’0)=

Since, according to (4.3), the angle 8 is a function of «, the
preceding integral is a known function of the angle vo.

The second integral in the expression (5.1) represents the
internal energy dissipation by the discontinuous velocity field
on the horizontal and inclined hinge lines. Consider first the
horizontal hinges. The length of each horizontal hinge line is
constant and equal to C. Because the hinge line is split, there
will be two such hinge lines in the basic folding mechanism.
The contribution of this mechanism is

E, =2M,Cé=2M,Caq, (5.8)
or after integration over the whole process
/2
E2=2§0 M,C da=M,C 5.9

Additional energy will be dissipated if the horizontal
boundary condition of the basic folding mechanisms were of
the clamped rather than simply supported type.

The length of the inclined hinge lines changes in the process
and is equal approximately to

L=2H/ sin v (5.10)

In more exact calculations, the large radius of the toroidal
surface would enter the expression for L. The inclined hinge
lines consist of two segments of straight lines and an arc of the
circle defined by the radius r, and central angle 2.

The discontinuity in the rate of rotation in the meridional
direction is constant along L and equal to

6=V,/b ¢.11)
Since there are two inclined hinge lines (one imposing and one

removing the curvature), the energy dissipation in this
deformation mechanism becomes

H?> 1 cosa
b tgy, siny
where the angle v is related to « by means of (4.3). The

corresponding work done upon complete folding, obtained
from (5.12) is

E;=2M, Lé=4M, (.12)

E; =4M, I, (yo)H?*/b
where I; is defined by
1 (™2 cos«
IR
3(¥o) 729 o Siny

The rate of external work done on compressing the basic
folding mechanisms is

E ., =Pé=P+2H(sin o) (5.14)

while the total plastic work required to crush the element
through the distance 2H equals

E.. =2PH

(5.13)

(5.15)

6 Properties of the Solution

Having identified the basic mechanisms of plastic
dissipation one can proceed now to the calculation of the
crushing resistance of thin-walled structural members that can
be assembled from the basic folding mechanism. Some in-
teresting observations can be made at the general level without
specifying any particular type of a structure.
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The instantaneous crushing force P is defined by the
requirement that the rate of internal and external energy
dissipation be equal, E.,, = E, +E, + E;. This is equivalent to
assuming a global equilibrium in the shell. However, locally
the equilibrium may be violated. The terms & drops out from
both sides of the equation and an expression is obtained for
the force-shortening characteristics of the compressed
member. This expression involves two unknown geometrical
parameters A and b (the third parameter ¢ disappeared in
simplified calculations). To determine these parameters,
consider the mean crushing force P,,, defined by the balance
of total energies E,.,, =E, +E, +E;. It is easy to see from
(5.7), (5.9), and (5.13) that the general form of the formula
for P, is

P, b C H

M, =A, 7 +A2H+A3 5
where numerical values of the parameters 4,, 4,, and A, are
known and depend on the type of problem.

It seems reasonable to postulate that the collapse
mechanism, which activates and persists in the course of the
crushing process leads to the least possible amount of the
mean crushing force. Indeed, the minimum of (6.1) does exist
with respect to both H and b. The unknown parameters can
thus be determined from the set of equations

oP,, —0, Eu‘l -0

oH ab
Postulating a similar condition for the instantaneous rather
than mean crushing force would be appropriate only if an
additional dissipation mechanism, responsible for the change
in the wavelength H was considered and if random or
buckling-induced imperfections were accounted for. Without
these measures, the optimality condition for the rate of energy
dissipation would lead to the variable wavelength, which
contradicts the assumption 3. This interesting problem is
discussed at length in [14].

The solution to equation (6.2) is

6.1)

(6.2)

b=A4,4,/4% YCh:, H=YAI/A,4, YCh, (6.3)
Substituting (6.3) back into (6.1) we obtain
P
X/!ﬂ =34, 4,4, YC/h (6.4)
]

This is an extremely interesting and important result. It shows
that all three major mechanisms of energy dissipation
discussed in the paper, contribute equally to the total energy
dissipation, irrespective of the actual numerical values of the
coefficient 4, 4,, and A;. This property follows directly
from the coupling effect of the continuous deformations in
the toroidal surface. In particular, we can see that two-thirds
of the plastic energy is always dissipated through inex-
tensional deformations at stationary and moving plastic hinge
lines. The extensional deformations, confined to the small
fraction of the total area of the shell, are responsible for the
remaining one-third of the dissipated energy.

The expression (6.3) can be used in conjunction with the
rate of energy balance equation to derive the load-deflection
characteristics of the member. Its general form is

P(5)=P,f(8) 6.5)
and a detailed discussion of its validity is presented in [14].

7 Applications, Crushing of a Box Column

This problem received a great deal of attention in the
literature in view of its obvious application in controlling the
process of energy absorption by automobile bodies during a
front or rear-end collision.
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The experimentally observed collapse mechanism of a
rectangular column can be modeled with a good accuracy by
an assembly of four basic folding mechanisms, each of the
length C. The crumpling process of a rectangular tube is
progressive, each new fold is being formed after the previous
one is completed, Fig. 6. The corresponding force-shortening
characteritics exhibits fluctuations around a mean value with
peaks and valleys positioned at regular intervals 2H, Fig. 7.
The energy absorption of the member is thus well charac-
terized by the mean crushing for P,,. The dimensions of the
rectangular cross section ¢x d, the wall thickness #, the angle
2o =90 deg between plates, and the flow stress o, are all
considered as known. The sought-off quantities are the mean
crushing force P,,, the wavelength H, and therolling radius b.
The values of the integrals, corresponding to = /4 are
I,=0.58,1;=1.11.

Since a section of the rectangular tube is composed of four
basic folding elements, all energies, calculated in Section 5
should be multiplied by four. Moreover, because of clamped
boundary conditions at horizontal edges, the energy E,
should be doubled. The energy balance equation yields

bH H?
2HPm=M0{6411—h“+87l'C+16 I3—b—} (7.1)

where C=1/2 (c+d). By comparing (7.1) with (6.1), the

Fig.6 Typical view of the fully crushed rectangular box column

FORCE P
(LBS)

values of the coefficients are found to be 4, =32/, =18.56,
A,=4m, A;=8I;=8091. The solution for H and b
calculated from (6.3) is

H=0983 VrC?, b=0.687 YHC (1.2)
while the expression (6.4) for the mean crushing force

becomes
P, 3/ (o)
— =38.27 -
M, h

In particular, for a square tube, for which c=d=C, a simple
and practical formula is obtained

P,,=9.560,h°* C'2 (7.4)

where in transforming of (7.3) into (7.4) a definition of the
fully plastic moment was used.

Attention is drawn here to the term A*3. In all known
solutions to this problem, based on inextensional collapse
modes, the crushing force was proportional to h?, 2, 3]. If
pure extensions were present in sheet metal structures, the
crushing force would be proportional to Ny=aph. In the
present analysis the ratio of bending and extension is 2:1 and
this property is also reflected in the value of the exponent 7. It
is interesting to note that in crushing problems with
axisymmetric deformation modes, the circumferential ex-
tension and bending are present in equal proportions, leading
to the term A5 in the expression for the crushing force, [4,
5,7].

Using a semiempirical approach coupled with the modified
«effective width’’ theory, Aya and Takahashi, [15] obtained
the same exponent as in the formula (7.4). A larger value
n=1.86 was suggested in [16] on purely empirical grounds
while Magee and Thornton’s fit of test result gave a smaller
exponent n=1.60, [17].

Introducing structural effectiveness 7=P,/Ad, (non-
dimensional crushing stress) and relative density ¢=A4/4,
(solidity ratio) the formula (7.4) can be rewritten as

7=0.948 ¢*/3

where A, = C? and A=4hC.

The prediction of the preceding formula is shown in Fig. 8
by a dotted line. The present solution correlates well with
experimental points, reported in [17] and follows rather
closely the Magee and Thorton’s empirical fit of the test
results. Note, that in converting the experimental points to the
dimensionless coordinate n— ¢, the ultimate stress was used in
reference [17].

(7.3)

(7.5)

4000+
3000+ MEAN FORCE Pm
m- _—— ——
1000+
0 L 1 | 1 1 1 1
0 ] 2 3 5 6 7 8

DISPLACEMENT 8 (in)

Fig.7 Force-shortening characteristics of an axially compressed thin-
walled column (courtesy of Ford Motor Co. Research Lab.)
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Fig. 9 Theoretical and experimental wavelength as a function of the
column width
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Fig. 10 Length of the folding mode versus the aspect ratio of rec-
tangular cross section

Actually, for a work-hardening material, the plastic work
should be related to an average flow stress o,. This average
stress is much higher than the initial yield stress o, but is
always below the ultimate stress o,. Taking in (7.5) as a
reference stress a value that is smaller than o, would
automatically raise all the experimental points.

At the same time the resulting discrepancies will be, to a
large extent, offset by the fact that the actual distance over,
while the force P, exerts work, is 2H-a rather than 2H. Also,
inclusion of a variable (increasing) thickness in extensional
zones and retension of a small but finite parameter 5/a would
bring the n—¢ curve closer to experiments. As pointed out
earlier, these effects were deliberately disregarded in the
present analysis to offer a more clear interpretation of the
crushing process and to derive a simple closed-form solution.

Perhaps an even more critical test for the validation of the
present theory is to see how well it correlates with ex-
perimentally measured wavelength. This is shown in Fig. 9
and 10. The formula (7.2), which is now independent of g,
predicts correctly the height of the subsequent plastic folds in
the entire range of h/C for which the folding process is
progressive. The observation that for fixed (c+d), both H
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and P, do not depend on the aspect ratio c/d of the rec-.
tangular cross section is also featured by the present solution,
Fig. 10.

8 Conclusions

The present analysis explains some important qualitative’
features of the crushing process of thin shells. It shows that :
plastic deformations of the magnitude exceeding by far those : -
corresponding to the buckling or ultimate loads, are indeed :
confined to relatively small areas. The local curvature in these -
areas is relatively large, i.e., the radius of curvature b is small
compared to a linear dimension C. The zones of extensional
deformations are restricted to even smaller fraction of the
total area of the shell but they always contribute to as much as
one-third of the total energy dissipated in the structure. The
remaining two-thirds of the energy results in equal propor-
tions from inextensional deformations at stationary and
moving hinge lines.

Calculations have shown that in all types of shells the mean
crushing force depends markedly on the thickness of the shell
(h°%). At the same time the dependence on the linear
dimension C is much weaker (C'?). The present theory has -
also led to a good quantitative prediction of the mean
crushing force and the associated collapse mechanism for °
axially compressed rectangular box columns.

The folding mode, developed in the paper has a potential of
being used as a ‘‘special finite element’ in numerical
simulation of crash phenomena. This element could be used in
the areas where sharp folds and wrinkles are formed to
replace a necessarily dense and thus expansive finite element
mesh.

The present methodology has been used in the calculation
of the crushing strength of compressed and bent box columns
with other cross-sectional shapes, for example closed hat-
sections or channel sections. Some new results in this area can
be found in reference [18]. Equally simple and accurate results
were obtained for hexagonal cell structures and a relevant
report will bereleased shortly, reference [19].
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