Seoul Nat'l University

Concrete in Plasticity

Sung-Gul Hong SNU March 2, 2006

From analysis to Design and Synthesis

History of Theory of Plasticity

- Gvosdev
- Drucker and Prager
- W.F Chen
- Johansen: Yield Line Theory
- Hillerborg: Strip Method
- The Technical University of Denmark:
- Nielsen and Braestrup
- Swiss Federal Institute of Technology in Zurich:
- Mueller and Marti
- Vecchio and Collinse in Canada
- T.T.C.Hsu in U.S.A

Limit Theory for Design of Reinforced Concrete

- Lower Bound
- Equilibrium
- Yield Condition
- Upper Bound
- Geometry
- Work equation

Normality Rules

Contents

- Theory of Plasticity
- Yield Conditions
- Theory of Plain Concrete
- Disks
- Beams
- Slabs
- Punching Shear
- Bond Strength

Theory of Plasticity

• 1.1 Constitutive Equations Von Mises's Flow Rule

Extreme Principles for Rigid-Plastic Materials \mathcal{E}

-Lower Bound Theorem-Upper Bound Theorem-Uniqueness Theorem

Yield Conditions

- Concrete
- Frictional hypothesis
- Reinforcing bar
- Disks
- Slabs

Determination of Parameters for More-Coulomb material

Failure Modes in Pure Shear

Sliding failure

Separation failure

Yield Condition in Plane Stress

Yield condition for Disk

Shear strength

Shear Strength of Disk

Relationship between Shear Strength and Reinforcement Ratio in Disk

Reinforcement in Disk based on Plasticity Solution

Fig. 6.5.4. Systems of resistance

Failure Mechanisms in Disks

Failure mechanism for element overreinforced in the x-direction.

Failure mechanism for underreinforced element.

Yield conditions for Slabs

- Pure bending -> yield line theory and strip method
- Pure torsion -> Sandwich model

Torsion in slabs

Top panel

 $t_p = (1 - 2\Phi_o) A_s f_Y h$

bottom panel

The Theory of Plain Concrete

- Constitutive Equations
- Dissipation Works
- Lines of Discontinuity
- Stress Fields
- Strain Fields
- Applications
- Concentrated Loadings

Constitutive Equations

- Coulomb Material
- Yield Condition *6 Surfaces*
- Strain Vectors

$$k\sigma_{1} - \sigma_{3} = f_{c}, \quad \sigma_{1} \ge \sigma_{2} \ge \sigma_{3}$$

$$k\sigma_{3} - \sigma_{1} = f_{c}, \quad \sigma_{3} \ge \sigma_{2} \ge \sigma_{1}$$

$$k\sigma_{1} - \sigma_{2} = f_{c}, \quad \sigma_{1} \ge \sigma_{3} \ge \sigma_{2}$$

$$k\sigma_{2} - \sigma_{1} = f_{c}, \quad \sigma_{2} \ge \sigma_{3} \ge \sigma_{1}$$

$$k\sigma_{2} - \sigma_{3} = f_{c}, \quad \sigma_{2} \ge \sigma_{1} \ge \sigma_{3}$$

$$k\sigma_{3} - \sigma_{2} = f_{c}, \quad \sigma_{3} \ge \sigma_{1} \ge \sigma_{2}$$

Plastic Strain Vector

 Along planes 		\mathcal{E}_1	\mathcal{E}_2	\mathcal{E}_3
$k\sigma_1 - \sigma_3 = f_c, \sigma_1 \ge \sigma_2 \ge \sigma_3$	1	λk	0	$-\lambda$
	2	$-\lambda$	0	λk
$q_i = \lambda \frac{\partial f}{\partial Q_i}$	3	λk	$-\lambda$	0
	4	$-\lambda$	λk	0
	5	0	λk	$-\lambda$
	6	0	$-\lambda$	λk

	\mathcal{E}_1	\mathcal{E}_2	\mathcal{E}_3
1	λk	0	$-\lambda$
2	$-\lambda$	0	λk
3	λk	$-\lambda$	0
4	$-\lambda$	λk	0
5	0	λk	$-\lambda$
6	0	$-\lambda$	λk

\sum	${\cal E}^+$	<i>b</i>
\sum	\mathcal{E}^{-}	$-\kappa$

	\mathcal{E}_1	\mathcal{E}_2	E ₃
1/5	$\lambda_1 k$	$\lambda_2 k$	$-(\lambda_1 + \lambda_2)$
4/5	$-\lambda_1$	$(\lambda_1 + \lambda_2)k$	$-\lambda_2$
4/2	$-(\lambda_1 + \lambda_2)$	$\lambda_2 k$	$\lambda_1 k$
2/6	$-\lambda_1$	$-\lambda_2$	$(\lambda_1 + \lambda_2)k$
3/6	$\lambda_1 k$	$-(\lambda_1 + \lambda_2)$	$\lambda_2 k$
1/3	$(\lambda_1 + \lambda_2)k$	$-\lambda_2$	$-\lambda_1$

Dissipation Work

Along plane 1

$$W = \sigma_1 \varepsilon_1 + \sigma_1 \varepsilon_1 + \sigma_1 \varepsilon_1 = \sigma_1 \lambda k - \sigma_3 \lambda = \lambda f_c$$

Along the edge 1/5

 $W = \left(\lambda_1 + \lambda_2\right) f_c$

At the apex

$$W = \left(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6\right) f_c$$

Modified Coulomb Material

Surfaces: 7, 8, 9

Edges: 1/7, 3/7, 6/9, 2/9, 4/8, 5/8, 8/7, 7/9, 8/9

Apex: 4/5/8, 7/8/9/1, 1/3/7, 3/7/6/9, 2/6/9, σ_2 8/9/2/4, 7/8/9

Dissipation Works

 $W = f_c \sum \left| \varepsilon^{-} \right| + f_t \left(\sum \varepsilon^{+} - k \sum \left| \varepsilon^{-} \right| \right)$

Coulomb Material

Failure section from a given stresses

For given
$$\sigma_x$$
 and τ_{xy}
 $\tan \beta = -\frac{\tau_{xy}}{\sigma_x - c \cot \varphi}$

Angle θ is determined.

$$\cos\left(2\theta + \varphi - \beta\right) = \frac{\sin\beta}{\sin\varphi}$$
$$\sigma_m = c \cot\varphi + \frac{\sigma_x - c \cot\varphi}{1 - \sin\varphi \sin\left(2\theta + \varphi\right)}$$

Stress σ and τ are calculated.

$$\sigma = (\sigma_m + c \cot \varphi) \cos^2 \varphi$$

Equilibrium Equations

Rankine Zone

Triangular Zone

Semi-empirical formula

Disks

- Constitutive Equations
- Dissipation Works
- Yield Zones
- Applications
- Strength Reduction due to Initial Cracks
- Strut and Tie Models
- Shear Walls

Discontinuous Stress Fields

Strength Reduction due to Sliding in Initial Cracks

Strut and Tie Models

- Strut
- Strut and Tie Systems
- Fans
- Non-concentric fans
- Concentric fans
- Fans with Bond

Single Strut

Fan-shaped stress fields

- Non-concentric fan
- Uniform Normal stress type
- Uniform Shear stress type

• Concentric Fan

Boundary Stress on Non-concentric fan-shaped stress field

Uniform normal stress on boundary of Non-concentric fan-shaped stress field

$d\Box = dx + (dw - dz)k + (w - z)dk$

Geometry for Infinitesimal Elements of Non-concentric Fan-shaped stress field (Uniform Normal stress type)

Uniform shear stress on boundary of Non-concentric fan-shaped stress field

Concentric Fan-shaped stress field

Stress State in Diagonal Compression Stress Fields

Strut with Diagonal Compression Field

Diagonal Compression Field

Strut with Fan-Shaped Stress Field

Chap. 5 Beams

- Beams in Bending
- Beams in Shear
- Transverse reinforcement
- Without transverse reinforcement
- Effective Concrete Compressive Strength
- Arch Actions
- Design
- With Normal Forces
- Beams in Torsion

 $A_{s}f_{Y} = y_{0}bf_{c}$ $\frac{y_{0}}{d} = \Phi$ $M_{p} = \left(1 - \frac{1}{2}\Phi\right)\Phi bd^{2}f_{c}$

 $M_p = bd^2 f_c$

Failure Mechanism in Bending

Shift in Tension Force in Stringer

$$\beta = 2\theta$$
 $\tan \theta = \sqrt{\frac{\psi}{1 - \psi}}$

$$\frac{\tau}{f_c} = \frac{1}{2} \left[\sqrt{1 + \left(\frac{a}{h}\right)^2} - \frac{a}{h} \right] + \psi \frac{a}{h}$$

Influence of Longitudinal Reinforcement on Shear Capacity

Beams in Torsion

- Space truss models
- Closed thin walled sections
- Extended application of beam models in shear

Torsional Strength Model

Cracking Torsional Limit

$$\sigma_1 = \tau = \frac{T}{2A_0t}$$

$$t = \frac{3A_{cp}}{4p_{cp}}, A_0 = \frac{2}{3}A_{cp}$$

$$\sigma_1 = \tau = \frac{Tp_{cp}}{A_{cp}^2}$$

Cracking Torsion

$$\sigma_1 = \frac{1}{3}\sqrt{f_{ck}}$$
$$\sigma_1 = 0.7\sqrt{f_{ck}}$$
$$\sigma_1 = \frac{1}{6}\sqrt{f_{ck}}$$

휨인장 파괴 강도: 균열 휨강도 산정

압축-인장 파괴 강도: 전단 강도산정

$$T_{cr} = \frac{1}{6} \sqrt{f_{ck}} \left(\frac{A_{cp}^2}{p_{cp}} \right)$$

$$V = 0.97 V_{cr}$$

$$T_{th} = \phi \frac{\sqrt{f_{ck}}}{12} \left(\frac{A_{cp}^2}{p_{cp}}\right)$$

비틀림 강도

 $T = V_1 y_0 + V_2 x_0$

길이방향 철근

$$N = \frac{T_n}{2A_o} 2(x_o + y_o) \cot \theta$$

$$A_l f_{yl} = N$$

$$A_{l} = \frac{T_{n} p_{h}}{2A_{o} f_{fl}} \cot \theta$$

전단-비틀림 조합

Direct sum

Root-square sum

압축장의 압축파괴 한계 비틀림으로 유발된 압축용력

$$f_{cd} = \frac{V_2}{ty_o \cos\theta \sin\theta} = \frac{T_u p_h}{1.7A_{oh}^2 \cos\theta \sin\theta}$$

전단력으로 유발된 압축응력

$$f_{cd} = \frac{V_u}{b_w d \cos \theta \sin \theta}$$

최소철근

$$A_{v} + 2A_{t} = \frac{1}{16}\sqrt{f_{ck}} \frac{b_{w}s}{f_{yv}} \ge \frac{b_{w}s}{3f_{yv}}$$

Slabs

- Statical Conditions
- Geometrical Conditions
- Constitutive Equations
- Yield Zones
- Upper Bound Solutions
- Lower Bound Solutions

Upper bound Solutions

- Assume yield lines
- Work equations
- Minimize the upper bound solutions

Axes of rotations Lines of plastic hinges Fan mechanisms Corner levers

Lower Bound Solutions

$$\frac{\partial^2 m_x}{\partial x^2} - 2\frac{\partial^2 m_{xy}}{\partial x \partial y} + \frac{\partial^2 m_y}{\partial y^2} = -p$$

$$m_{x} = a + bx + cx^{2}$$
$$m_{y} = d + ey + fy^{2}$$
$$m_{xy} = g + hx + my + ixy$$

Punching Shear

- Upper Bound Solutions
- Practical Applications
- Eccentric Loading
- Effect if Counter-pressure
- Edge and Corner Loads

Truncated cone with half-angle α_0 $r = \frac{d}{2} + x \tan \alpha_0$ $P = \pi f_c \frac{h}{2} \frac{\left(d \cos \alpha_0 + h \sin \alpha_0\right) \left(l - m \sin \alpha_0\right)}{\cos^2 \alpha_0}$

Use of Euler Equation

• Minimization of functional

$$P = \pi f_c \int_0^n F(r, r') dx$$

• Complete solution

$$r = a \cosh \frac{x}{c} + b \sinh \frac{x}{c}$$

$$r = a \cosh \frac{x}{c} + b \sinh \frac{x}{c}$$

$$r = \begin{cases} \frac{d}{2} + x \tan \varphi \\ a \cosh \frac{x - h_0}{c} + b \sinh \frac{x - h_0}{c} \end{cases}$$
Shear in Joints

- Monolithic Concrete
- Strength of Different Types of Joints
- Crack as a Joint
- Construction Joint
- Butt Joints
- Keyed Joints

Bond Strength

- Local Bond Strength
- Failure Mechanisms in Sections
- Effect of Transverse Reinforcement

Failure Mechanisms

Closing Remarks and Future Topics

- Compatibility based Upper bound Solutions
- Ultimate Deformation Estimation Models
- Application to Composite structures
- How to handle Brittle Failures : Fracture mechanics
- Bond Strength applications