Micro Electro Mechanical Systems for mechanical engineering applications

Lecture 5:

MEMS fabrication II: surface micromachining (2)
Photolithography

Kahp-Yang Suh

Assistant Professor SNU MAE sky4u@snu.ac.kr

Surface Micromachining

Conventional Silicon Technology

Contents

- What is photolithography?
- Photoresists (PR)
- Lithography process
- Photomask
- Mask to wafer alignment
- Exposure techniques and system
- Problems of photolithography process
- Resolution enhancement techniques
- Lift off process
- Next generation lithography methods

What is photolithography?

 Photolithography: the process of transferring geometric shapes on a mask to the surface of a silicon wafer

Photoresist spin coating

Bake in the oven

Mask to wafer alignment

Overview

2) Spin coat

3) Soft bake

4) Alignment and Exposure

Post-exposure bake

6) Develop

7) Hard bake

5/30

8) Develop inspect

General photoresist

- Components of photoresists
 - Polymer (base resin): changes structure when exposed to radiation
 - Sensitizer: control the photochemical reaction in the polymeric phase
 - Casting solvent: allow spin application and formation of thin layer on the wafer
- Type of photoresists
 - Positive
 - Negative

Procedure

Positive PR (1)

Poly(methylmethacrylate) or PMMA

- Single component
- Photo induces chain scission of PMMA resist
- Short-wavelength lithography: deep UV, electron beam, Xray, ion-beam lithography
- High resolution

8/30

Positive PR (2)

- DQN resist
 - Most popular positive resist
 - Exposure source: 365, 400 nm mercury line
 - Two component
 - N (Novolak matrix resin)
 - Solvent added to adjust viscosity
 - Hydrophilic, itself alkali soluble
 - DQ (diazoquinone)
 - insoluble in base solution
 - photo-active compound

Negative PR (1)

- Bis(aryl)azide rubber resist
 - Cyclized polyisoprene
 - Non-photosensitive substrate material

10/30

- Synthetic rubber
- Bis(aryl)azide ABC compound
 - Photosensitive cross-linking agent

Catalyst of polyisoprene

Agent (Azide) for polyisoprene cross-linking

Cross-linking of polyisoprene

Seoul National Univ. MAE

Comparison of PRs

Comparison of positive and negative photoresists

Characteristic	Resist type	
	Positive	Negative
Adhesion to Si	Fair	Excellent
Step coverage	better	lower
Exposure time	Slower (10-15 sec)	Faster (2-3 sec)
Developer	Aqueous based	Organic solvent
Influence of oxygen	No	Yes
Minimum feature	0.5 µm and below	±2 μm
Wet chemical resistance	Good	Fair
Plasma etch resistance	Very good	Not very good
Pinhole count	Higher	Lower
material cost	More expensive	Less expensive

Special photoresist

- Thick PR: structures often require thick PR layer that are capable of high resolution and high aspect ratio.
- SU-8
 - Can be spin-coated as very thick films (to 500 µm in a single coat)
 - Excellent sensitivity
 - High resolution
 - Low optical absorption
 - High aspect ratio
 - Good thermal, chemical stability H3C-C-CH3
 - Exposure source
 - 365, 436 nm UV light
 - e-beam
 - x-ray

SU-8

- SU-8 process
 - Dehydrate bake
 - Coating
 - Relax
 - Soft bake: remove solvent
 - Exposure: photogenerated acid
 - Hard bake: cross-links the resist
 - Develop

High aspect ratio structure using SU-8 resist

Lithography process (1)

Basic step of photolithography

Clean wafers

(Solvent removal, hydrous oxide removal, removal of residual organic, ionic contamination..)

Deposit barrier layer

(SiO₂, Si₃N₄, metal..)

Coat with photoresist

- HMDS (enhance adhesion to Si) coating
- Photoresist coating

Lithography process (2)

Soft bake

- Improve adhesion
- Remove solvent from PR
- 5-30 min in the oven at 60-100 ℃

Align masks

- Each mask must be aligned to the previous pattern on the wafer

Expose pattern

- Expose through mask with highintensity UV light

Seoul National Univ. MAE

Lithography process (3)

Seoul National Univ. MAE

Resolution

Resolution(R) =
$$K_1 \frac{\lambda}{NA}$$

$$DOF = K_2 \frac{\lambda}{N \Lambda^2}$$

To get higher Resolution (small R)

- 1. increase NA
- 2. shorten wavelength λ
- 3. decrease K₁

To get higher Depth of Focus

- 1. decrease NA
- 2. lengthen λ
- 3. increase K_2

Here, λ is wavelangeth of light, *NA* is numerical aperture of lens, K_1 and K_2 are proportional constant of resist process NA = D/2f (D: diameter of the lens, f: focal length)

Projection: Key Parameters

Resolution:
$$l_m = k_1 \frac{\lambda}{NA}$$

wavelength of exposure parameter characterizing system and process dependence (typically between 0.25 and 1) numerical aperture

$$NA = n \sin \theta$$

n: index of refraction (light transmission med., 1 for air)

$$NA \approx \sin \theta$$

$$DOF = \frac{\pm l_m/2}{\tan \theta} \approx \frac{\pm l_m/2}{\sin \theta} = k_2 \frac{\lambda}{NA^2}$$

DOF: Depth of field

Need smaller Im and higher DOF Compromises of the optical design

Photomask

- Mask: the stencil used to repeatedly generate a desired pattern on resist-coated wafers
- Substrates of photomask: usually use optically flat glass or quartz
- Type of photo mask (mask polarity)
 - Light field: mostly clear, drawn feature=opaque
 - Dark field: mostly dark, drawn feature=clear

Photomask

- Degradation of photomask
 - Repeat alignment
 - Particle between mask and wafer
 - Exposure mode: contact due to high nitrogen pressure
 - Mask life: proportional to the number of exposure time
 - Automated alignment system: improvement of process speed, precision and mask degradation

Mask to wafer alignment

- Alignment: Each mask following the first must be carefully aligned to the previous pattern on the wafer
- 3 degrees of freedom between mask and wafer: (x,y,q)
- Use alignment marks on mask to register patterns prior to expose

Exposure technique

R: resolution, k a constant that is a function of the design/set-up parameters

Diffraction minimized by small (~0) mask-resist gap
Fast, simple & inexpensive
But, mask-wear, defect
generation & wafer-sized
mask and light scattering in
resist limits resolution

Less mask wear/contamination Fast, simple & inexpensive

But, Greater diffraction & less resolution Wafer sized mask

Harvard_Fabrication_ES174Si4.ppt - 2008

No mask contact/contamination Mask demagnified 4x and 5x usually Mask pattern at chip size with wafer stepped for exposure

Expensive instrumentation

Exposure source

- Mercury lamp
 - Common method
 - Usually use 365-nm(i-line) and 436-nm(g-line) spectral component
- Electron-beam
 - Can be focused to spots of the 100 nm
 - Can be used to directly write patterns in electron-sensitive resists
 - Usually use to make photomasks
- X-ray
 - Finest feature size
 - Mask material: heavy metal (ex: gold)

Problems of photolithography (1)

- Nonuniform spin coating
 - Phenomena: irregular coating, green color ring
 - Cause
 - Lack of photoresist
 - Wafer flexion due to vacuum
 - Bubble in the photoresist
 - Effect
 - Change the pattern size if the nonuniformity of thickness of photoresist film excess 10%
- Speed boat
 - Phenomena: boat wake originated from certain point

25/30

- Cause: impurities, Si chip, epi spike etc.
- Effect: rework

Problems of photolithography (2)

- Orange peel
 - Phenomena: spot such as orange peel
 - Cause: lack of exposure time, thick PR film, lack of soft bake time, standing wave
 - Effect: Thin PR film, appear pin hole, difficult to align
- Scum
 - Phenomena: residue of PR where must be removed
 - Cause: response of oxygen, excessive soft bake time
 - Effect: obstruct etching
- Development badness
 - Phenomena: the edge of pattern
 - · Clear field mask: blue halo
 - Dark field mask: residue of PR
 - Cause: bad developer, lack of cleaning time
 - Effect: obstruct etching

Problems of photolithography (3)

Various photoresist profiles after develop

Resolution enhancement technique (1)

- Phase shifting mask (PSM)
 - Minimum feature size approaching one-half of the wavelength of the illumination source can be achieved using PSM

Resolution enhancement technique (2)

- Optical proximity correction (OPC)
 - Use modified shapes of adjacent subresolution geometry to improve imaging capability

Figure on the mask Pattern on the wafer

- When the feature size is smaller than the resolution, the pattern will be distorted in several ways.
- Line width variation
- Corner rounding
- Line shortening

Modify the mask based on rules or model

Lift-off process

Lift off process

 the substrate is first covered with photoresist layer patterned with openings where the final material is to

appear

