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Proposal of Self-regulating soft robot

» Scheme of self-regulating shape memory alloy robots with ionic skin
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» Fast and strong reversible actuation controlled by joule heating with simple system
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Motivation of developing self-regulating sensor

» lonic hydrogel gripper
d Graspin air (P(AAc-co-AAm) layer on top)
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Zheng, J., et al. (2018). "Mimosa inspired bilayer hydrogel actuator functioning in multi-environments." Journal of Materials Chemistry C 6(6): 1320-1327.

Limitation of Low actuation stress, Low actuation frequency




Motivation of developing self-regulating sensor
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Rothermund et al, Bistable valve for autonomous control of soft actuators, Science Robotics (2018) p.7986

Limitation of Complex control system for high actuation frequency and stress
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Motivation of developing self-regulating sensor

» Motivation of this study

Capacitive ionic sensor

Two-way SMA

Temperature sensitive shape change Sensitive sensing system

Rapid response to the situation (Temp.) + Skin-like soft compliance

Structural materials Simple layer structure

» Capacitive strain sensor
Sandwich structure of
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Two-way Shape memory alloys

= Two-way SMA
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https://www.youtube.com/watch?v=xhykVMFDULk

J Ma, | Karaman & R.D. Noebe, Internatinal Materials Reviews 55 (2010)
https://en.wikipedia.org/wiki/Shape-memory_alloy

Various Application as temperature sensitive sensor / grabber



Two-way Shape memory alloys

— Macroscopic shape, size

One-way shape memory effect
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J Ma, | Karaman & R.D. Noebe, Internatinal Materials Reviews 55 (2010)

https://en.wikipedia.org/wiki/Shape-memory_alloy
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Material selection for Two-way SMA as Capacitive sensor

= Condition : Low T (Room temperature) > High T (Joule heating)

electric power input : 12.09 W

Contents lists available at ScienceDirect
AND é(lf:\i‘ajr\: UNDS

Journal of Alloys and Compounds

{ 1.338V, 9.04A

ELSEVIER journal homepage: www.elsevier.com/locate/jallcom || (ReS|StanCe SMA ere : 4.933Q/m)

Letter

Temperature profiles in a Ti-45Ni-5Cu (at%) shape memory alloy developed by
the Joule heating

“Temperature gradient from 504K to 413K

Seung-yong Yang?, Seok-won Kang®, Yeon-Min LimP, Yun-jung Lee€,

Jae-il Kim?, Tae-hyun Nam®* is developed by the Joule heating”

Table 1
Alloy compositions and transformation temperatures

Alloy Composition (at.%) Transformation points (°C)

Ti Ni Cu M, M, A, A,
A 49.1 509 - —1158  —30.7 1.9 446
B 495 505 — —778 —185 90  53.0
C 500 500 — —28.0 37.5 482 7718
D 49.0 410 10.0 7.6 298 345 500
| E 500 400 100 20.9 414 527  66.6]
F 485 415 100 14.4 37.5 426  60.0

S.Y. Yang et al., Journal of Alloys and Compounds 490 (2010) L28-L32
B . Stranadel et al., Materials Science and Engineering A 202 (1995) 148-156
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Phase transformation temperature of Ti,Ni,,Cu,,

= DSC analysis (10K/min)
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To reach the phase transformation temperature via joule heating
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Thermomechanical Cyclic training

“Training is a procedure to develop dislocation arrangements

which guide the formation of martensite variants of a preferred orientation”

= Diverse cyclic training method to apply two-way SME

5 With procedures Al andA2]the
1 load was applied at T > 4, and maintained during
cooling to below M, thus causing stress induced
martensite to form. With Al the stress was main-
tained throughout the cycle, while with A2 the
load was removed prior to heating and the reverse
transformation occurred under zero stress.

£ tw (%)

The specimens were cooled to below
M ; under no load and the stress was applied, causing
reorientation of the thermal martensite
oo o With Bl the load was then removed prior to
0 20 40 60 80 100 120 heating, while with B2 the load was reduced to the
Cycles same value as used with procedures Al and main-
Fig. 8. Effect of training procedure on two-way strain. tained at that value during heating to above A.

Y. LIU et al., Acta metall. Mater. 38 (1990) 1321-1326.

Select A2 cyclic training method among 4 different method (100 Cycle)
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Cyclic training | Two-way Shape memory effect

100 cycle

with stress

HighT(T>A)) Low T (T < My)



Cyclic training | Two-way Shape memory effect

= After 100 cycle

1. To improve change of curvature

® Thickness reduction (Cold-Rolling & Heat-treatment)

2. To improve resistance for joule heating ™ Width reduction
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Cyclic training | Two-way Shape memory effect

Thickness : 1.1 mm - 0.8mm (27% cold-rolled)

We improved curvature difference by reducing the thickness of specimen.
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Fabrication of Capacitive ionic sensor

"
j—» lonic hydrogel

Dielectric layer (3M VHB)=—
= Soft cover + Sensor

Shape Memory Alloy <—
= Rigid Backbone + Electrode + Fast actuator

1
V A
oy

4 1 2 1
_L c — = + —
i R C Cgpr Cp 4
€
. _ G4
i R Cgpr/C ~ 10°
CIDI.
1: S C = CD —

When uniaxial force stretches dielectric 4 times,
both the width and the thickness of the dielectric reduce by a factor of V2,

and the capacitance of the dielectric scales as € = Cy4
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Adhesion of SMA and hydrogel

a PAAmM or PEGDA
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Yuk, H., et al. (2016). "Tough bonding of hydrogels to diverse non-porous surfaces." Nat Mater 15(2): 190-196.

(1

Tough bonding between shape memory alloy and hydrogel was achieved by silane coupling reaction
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Demonstration of Capacitive ionic sensor operation

(Normal) (Pressed) Time(s)

Capacitive ionic sensor with SMA successfully operated by finger pressure
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Demonstration of Capacitive ionic sensor operation
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Confirm capacitance change, however very small signal-to-noise ratio, and capacitance changes by contact surface
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» Scheme of proposed self-regulating shape memory alloy robots with ionic skin
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Dielectric layer (3M VHB)=—

j—» lonic hydrogel

Shape Memory Aﬂoy_ = Softcover + Sensor
= Rigid Backbone + Electrode + Fast actuator

» Significance of this study

Two-way SMA

Temperature sensitive shape change
Rapid response to the situation (Temp.)
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Sensitive sensing system
Skin-like soft compliance

Simple layer structure

» Fast and strong reversible actuation controlled by joule heating with simple system
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Thank you for your kind attention




Supplementary

International Journal of Non-Linear Mechanics
Volume 37, Issue 8, December 2002, Pages 1275-1281

LR,

ELSEVIER

Hysteresis in shape-memory alloys

Jordi Ortin ® & &, Lucas Delaey ®

X X
1t 1
_ W “ © from the classical work of Salzbrenner and Cohen [1]. In single crystals, the single-
T interface transformations (A) take place at two constant temperatures, whose
T » & ®» »_ x e difference characterizes the energy dissipation. The multiple-interface
<) . . SR TIT
X : ) transformations (B), on the contrary, extend in a temperature range, indicative of
\ @) the build-up and partial storage of elastic strain energy, with a dissipation
\ R E IR comparable to the previous case. In polycrystals of various grain sizes, (0.5 mm (C),
X e
0 \ , - 1.5mm (D), 4.0mm (E)), the transformation takes place via multiple interfaces. The
X 0 N M4 W W . . R R
e € behaviour is then comparable to (B), except that the extension in temperature of the
o transformations is much larger due to the misorientation between grains and the
M 6 W0 |4 0 W . . L. . .
x re) associated build-up of strain energy. This is demonstrated by the transformations in
1t . . : .
A a single crystal spark-cut from a coarse-grained polycrystal, shown in (F), which
behave very similarly to (B).
0




Supplementary

Thickness : 0.8mm 7| =2 &,
Diameter = 2cm - 4% Compressive / tensile strain

Diameter = 2.5cm - 3.2% Compressive / tensile strain

Beams: Pure Bending (4.1-4.5) MAE 314 — Solid Mechanics Yun Jing Beams: Pure Bending.
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Supplementary
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Fig. 3. Effect of number of training cycles and stress on
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Leptocephalus-inspired hydrogel actuators and robots

(this work)
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Yuk, H., et al. (2017). "Hydraulic hydrogel
actuators and robots optically and sonically
camouflaged in water." Nat Commun 8: 14230.
stresses. We further demonstrate that the
agile and transparent hydrogel actuators and

robots perform extraordinary functions u
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