

Advanced Redox Technology (ART) Lab 고도산화환원 환경공학 연구실

http://artlab.re.kr

Water Pollution-5

-Groundwater

Changha Lee

School of Chemical and Biological Engineering Seoul National University

What Is Groundwater?

$\sqrt{}$ It is water stored underground in aquifers

- Layers of sand, silt, clay, and/or rock
 - store, transmit, and yield water via the pores and cracks within the soil/rock.
- Not giant underground caves filled with water
 - 1 ft³ of loose sand will hold ≈ 2 gallons

(1 m³ holds 270 L)

- 1 ft³ of cracked sandstone will hold \approx 1 quart (1 m³ holds 33 L)

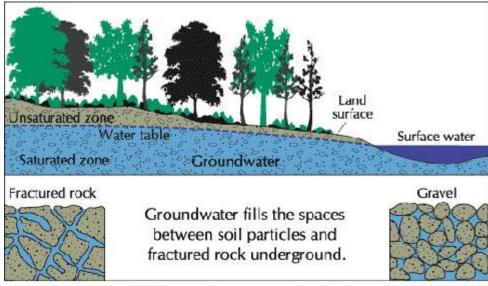
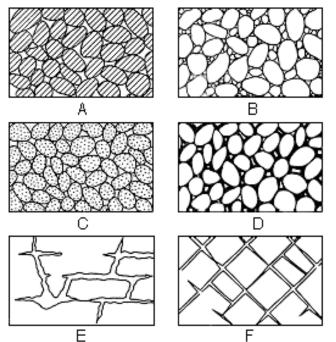
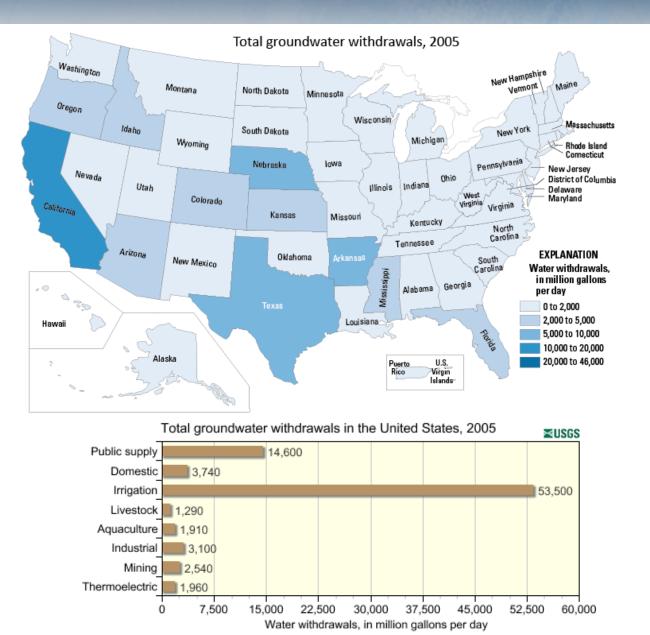



Image compliments of US Geological Survey, adapted by The Groundwater Foundation.

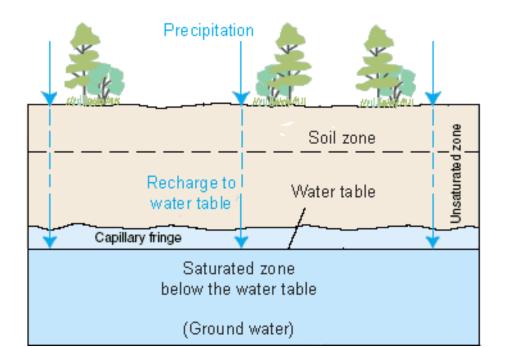
What Is Groundwater?

Better sorted (uniform particle size distribution) = higher porosity because smaller particles do not fill the pores



- A, Well-sorted sedimentary deposit with high porosity;
- B, poorly sorted sedimentary deposit with low porosity;
- **C**, well-sorted sedimentary deposit with porous pebbles, so that the deposit as a whole has a very high porosity;
- **D**, well-sorted sedimentary deposit with porosity diminished by the deposition of mineral matter in the interstices;
- E, rock rendered porous by solution;
- F, rock rendered porous by fracturing.

Groundwater Use


- Groundwater is <u>98%</u> of all freshwater available on earth
 - about 4,000 BC: 100-ft deep wells were hand-dug in the Middle East
- 1/3 of drinking water supply in the US is groundwater.
 - 67% irrigation, 20% industrial, 13% domestic
- Groundwater use has tripled in the past 40 years, and **50% of the US** population drink groundwater.

Groundwater Use

Terminology

- Unsaturated (vadose) zone air and water in the crevices. This water is not usable to humans, but plants can draw on it.
- Saturated zone all the spaces around the soil are filled with water (no air present) this water is called <u>groundwater</u>.
- Water table upper boundary of saturated zone (phreatic surface)
- Confining bed <u>aquitard</u>, <u>aquiclude</u> impermeable layer/ flow barrier.
- Aquifer saturated layer that water can flow through easily.

Types of Aquifers

- Perched water
 - confining layer or aquitard in the middle of an unsaturated zone
- Unconfined aquifer
 - aquitard present below the saturated zone
- Confined aquifer

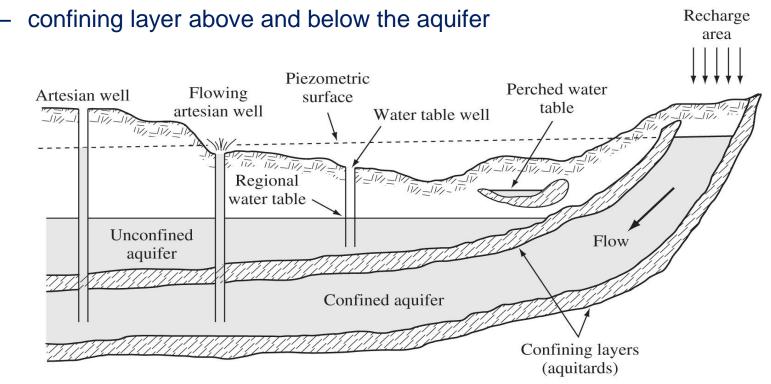


Figure: 05-27 Copyright © 2008 Pearson Prentice Hall, Inc.

Types of Wells

- Water table well drilled into an unconfined aquifer
 - Water is at level of the water table
- Artesian well tapped confined aquifer
 - Water may rise to above the regional water table
- The level an artesian well will rise to is called the piezometric surface

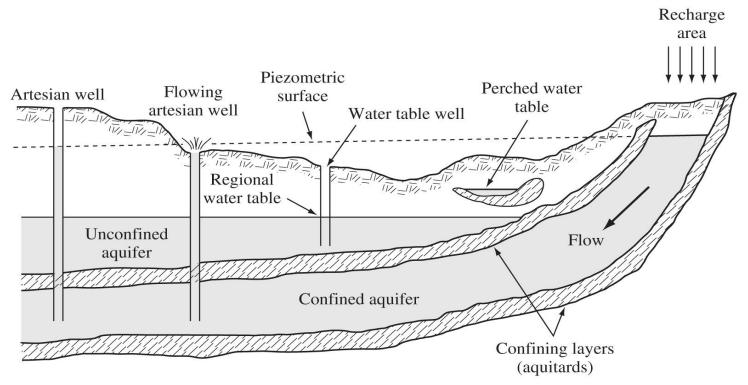
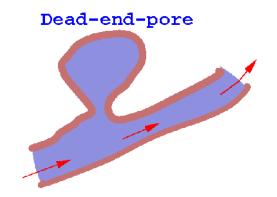


Figure: 05-27 Copyright © 2008 Pearson Prentice Hall, Inc.

Aquifer Properties

• Porosity


Ratio: volume of voids to total volume of material

Porosity
$$(\eta) = \frac{V_{voids}}{V_{solids} + V_{voids}} = \frac{V_{voids}}{V_{total volume of material}}$$

Volume of water stored = V_{voids} = porosity * volume of material

• Specific yield (unconfined aquifer)

 volume of water available per unit area per unit decline in water table

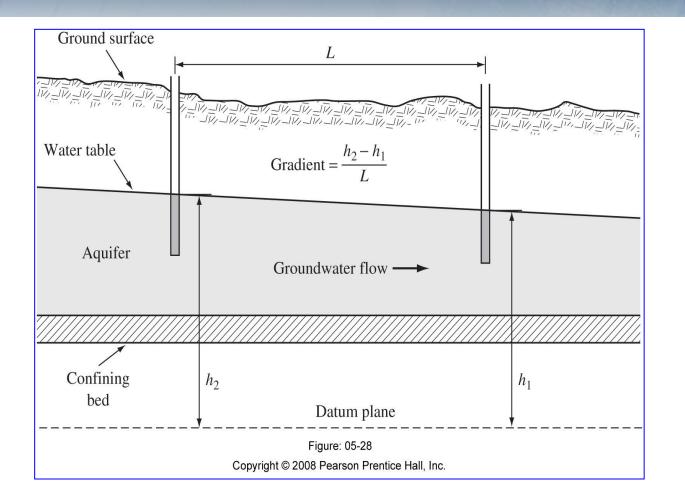
Volume of water available = specific yield * volume of material

Hydraulic Gradient

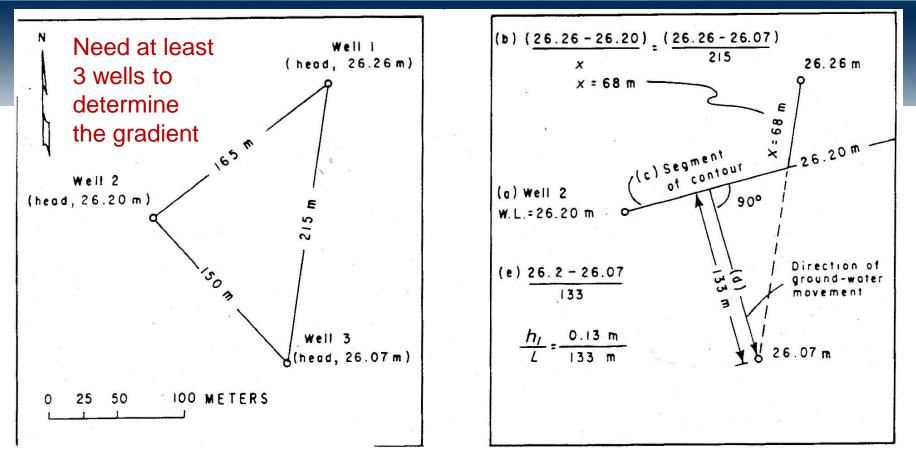
• Hydraulic head

- Distance from datum to water table (or piezometric surface for confined

aquifers, Units: ft-H₂O, or m-H₂O


(potential energy per unit weight)

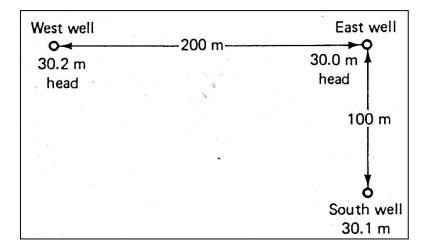
• Gradient


- Slope of the water table (or the potentiometric surface elevation e.g., water table for unconfined aquifers) - unitless
- decreases as groundwater flows due to head loss

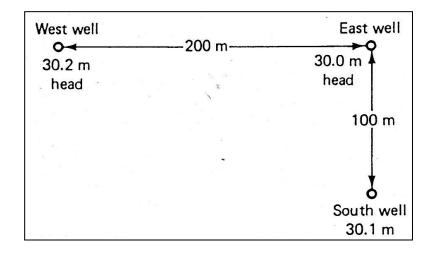
Hydraulic Gradient=	Change in Head	$h_{2}-h_{1}$	dh
	Horizontal distance	L	dL

Hydraulic Gradient

Hydraulic Gradient= $\frac{\text{Change in Head}}{\text{Horizontal distance}} = \frac{h_2 - h_1}{L} = \frac{dh}{dL}$



- a) Identify well with the intermediate water level (that is, neither the highest head nor the lowest head).
- b) Calculate the position between the well having the highest head and the well having the lowest head at which the head is the same as that in the intermediate well.
- c) Draw a straight line between the intermediate well and the point identified in step *b* as being between the well having the highest head and that having the lowest head. This line represents a segment of the water-level contour along which the total head is the same as that in the intermediate well.
- d) Draw a line perpendicular to the water-level contour and through either the well with the highest head or the well with the lowest head. This line parallels the direction of groundwater movement.
- e) Divide the difference between the head of the well and that of the contour by the distance between the well and the contour. The answer is the hydraulic gradient.


Example

• Two wells are drilled 200 m apart along an east-west axis. The west well has a total head of 30.2 m and the east well has a 30.0 m head. A third well located 100 m due south of the east well has a total head of 30.1 m.

Find the magnitude and direction of the hydraulic gradient.

Example (solution)

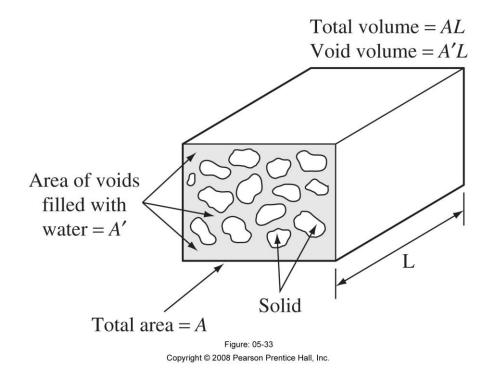


Groundwater Hydraulics

✓ Darcy's Law

- Groundwater flow rate is proportional to:
 - hydraulic gradient
 - hydraulic conductivity
 - cross-sectional area

Where, Q : flow rate (m³/day) A : cross sectional area (m²) dh/dL : hydraulic gradient K – hydraulic conductivity (m/day)

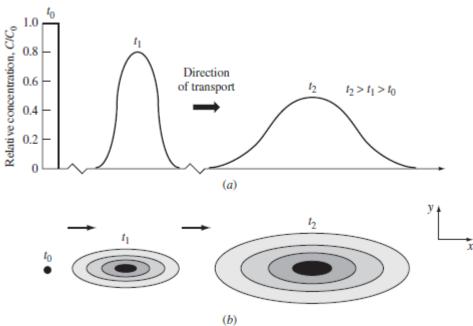

Groundwater Hydraulics

✓ Darcy Velocity (v)

$$v = K \frac{dh}{dL}$$

Average linear velocity (v')
 (seepage velocity)

$$v' = \frac{v}{\eta}$$

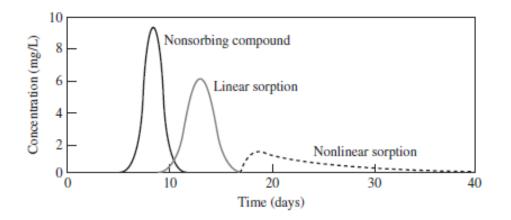

The real groundwater velocity is considerably faster than the Darcy velocity

Hydraulic Conductivity (K)

- Hydraulic conductivity (coefficient of permeability)
 - indicates how easily water can flow through material
- K values range widely
 - least permeable clays and granite: K= 0.0004 m/d
 - most permeable gravel: K = 4,100 m/d
- Aquifer classification:
 - homogenous (uniform) same K throughout
 - heterogeneous (non-uniform) different K's
- Directionality:
 - isotropic : K is uniform in every direction
 - anisotropic : K is different in different directions

Contaminant Transport

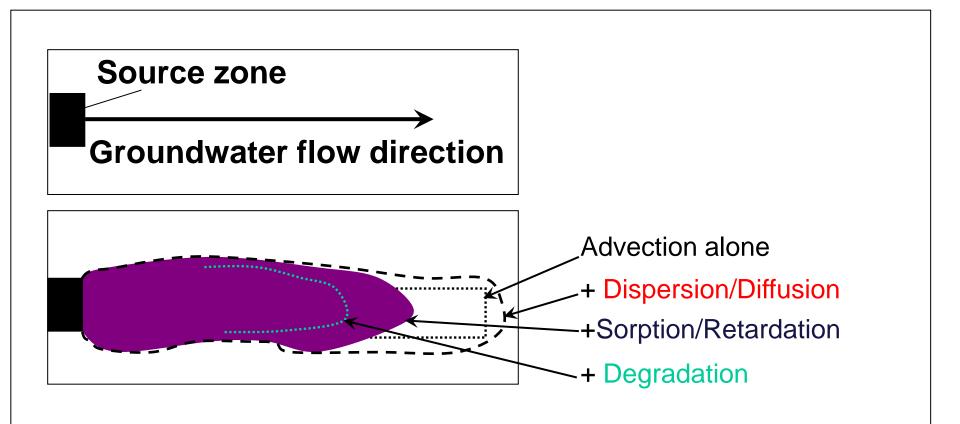
- The assumption that the contaminant travels as plug flow without spreading (dispersion) is not realistic.
- In reality there is dispersion.
- Dispersion occurs both along and normal to flow direction.
- Caused by velocity variation (Net effect = dilution)



Retardation Factor

- Along with the dispersion of pollutants we need to consider retardation of organic pollutants (caused by sorption)
- Retardation factor (R_f) accounts for the fact that some materials are absorbed more strongly to particles than others, and migrate slower than water
- v_s = linear (pore) velocity of retarded substance

$$R_f = \frac{v'}{v_s} \ge 1$$


• R_f depends on the type of chemical and the aquifer matrix (larger for hydrophobic pollutants and higher organic carbon in aquifer material)

Fate and Transport of Pollutants in Aquifers

- Advection (bulk flow)
- Dispersion (dilution)
- Sorption (retardation & reduced bioavailability)
- Volatilization (in vadose zone)
- Chemical transformations
- Biotransformations
- Plant uptake

Transport Processes of Pollutants in Aquifers

Importance of Volatilization

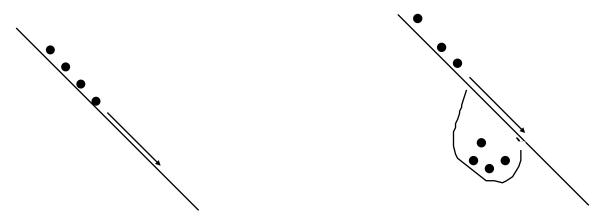
concentration in air

•	Examples	$H = \frac{\text{concentration in an}}{\text{concentration in water}}$
	Hazardous substance	$H\left(\frac{\operatorname{atm-m^3}}{\operatorname{mole}}\right)$
	vinyl chloride	2.4
	carbon tetrachloride	0.023
	tricloroethylene	0.0088
	benzo(a)pyrene	0.0000049

Which contaminant tends to remain in water?

Henry's Law:

•

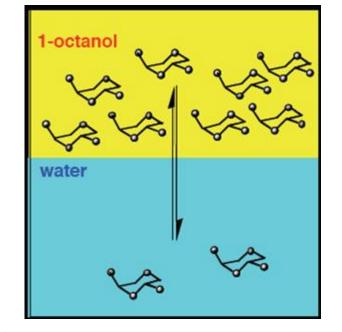

Which contaminant tends to escape to atmosphere?

Which contaminant is easier to remove by air stripping?

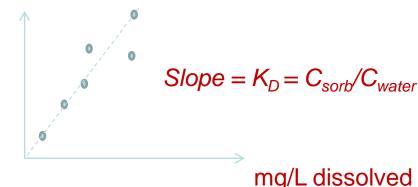
Importance of Sorption

• Retards migration velocity of contaminants in aquifers (R)

No Sorption	With Sorption "trap"
100 balls reach end during a given time, Δt	Balls do not reach end until sorption trap is filled. Maybe only 10 reach end during the same time, Δt


- The tendency of a pollutant to sorb to the aquifer material depends on various factors, and increases with
 - the organic matter content of the soil
 - the hydrophobicity of the substance

Importance of Sorption

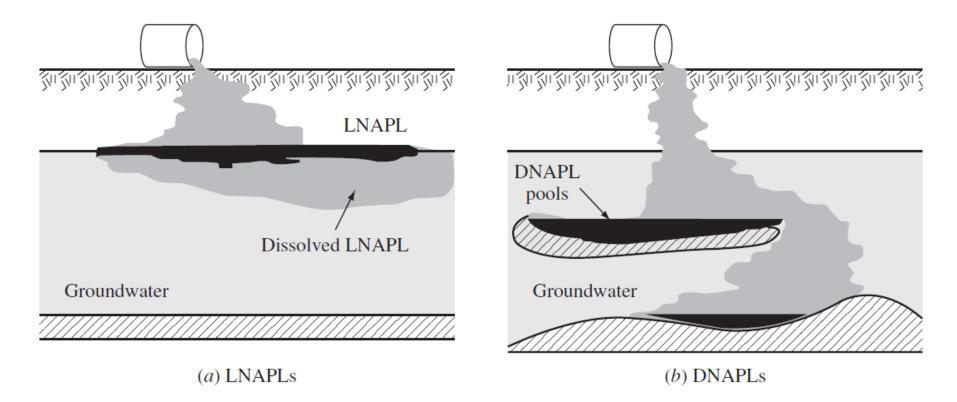

 The hydrophobicity of a substance is generally indicated by the "octanol/water partitioning coefficient" (K_{ow}):

 $K_{ow} = \frac{\text{concentration in octanol}}{\text{concentration in water}}$

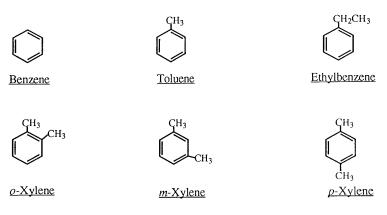
 K_{ow} can be correlated to the partitioning (or distribution) coefficient between the aquifer material and groundwater, K_D

Importance of Sorption

Substance	K _{ow}	R _f
acrolein	0.8	1
chloroform	93	6
benzene	135	8
tricloroethylene	195	13
chlorobenzene	692	24
DDT	8,000,000	19,609

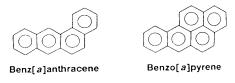

- Which substance migrates further from contamination source?
- Which substance tends to remain near the source?
- Which substance can be removed easier using activated carbon adsorption?

Why is Groundwater Contamination Such a Big Challenge?


- The chemicals involved:
 - xenobiotic : foreign to natural biota
 - anthropogenic : of human origin
 - toxic (cause a variety of health effects)
 - resistant to environmental degradation (recalcitrance)
 - relatively mobile or relatively immobile (risk)
- The "treatment domain"
 - The contaminants are "out of site." Thus, contamination is difficult to find, and once found, may still be difficult to remediate.

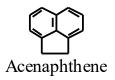
Different Treatment Domains DNAPL vs. LNAPL

NAPL: nonaqueous-phase liquids LNAPL: light nonaqueous-phase liquids DNAPL: dense nonaqueous-phase liquids


1. Hydrocarbons

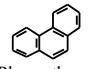
a) BTEX COMPOUNDS

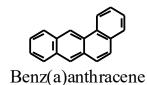
- Sources: Fuel production, transportation and storage
- Toxic to CNS, benzene can cause leukemia at 1 ppb
- Relatively high solubility in water = high migration potential
- Specific gravity < 1 = floaters
- Volatile, hydrophobic, biodegradable

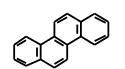

b) PAH COMPOUNDS

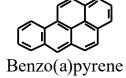
- Sources: Petroleum spills, and combustion of organics
- Many are carcinogens
- Low solubility in water, sorb strongly onto soil

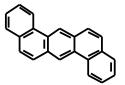
Representative PAHs •

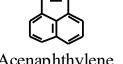




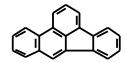




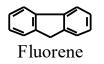

Phenanthrene

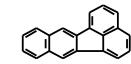


Chrysene

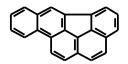


Dibenz(a,h)anthracene

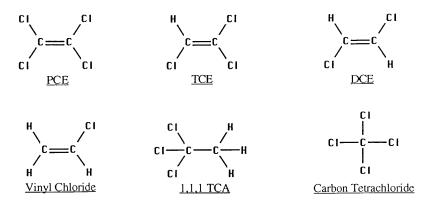


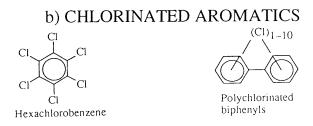

Fluoranthene

Benzo(b)fluoranthene



Benzo(k)fluoranthene


Benzo(g,h,i)perylene


Indeno(1,2,3-cd)pyrene

2. Chlorinated compounds

a) CHLORINATED ALIPHATICS

- Sources: Solvents, degreasers, propellants, polymers
- Carcinogenic (Vinyl chloride very potent)
- Relatively high solubility in water = high migration potential
- Specific gravity > 1 = sinkers
- Volatile, biotransformable, hydrophobic (except VC and CT)

- Sources: Wood preservers, fungicides, dielectric fluids
- Diverse toxic effects, many are carcinogens
- Low solubility in water, sorb strongly onto soil

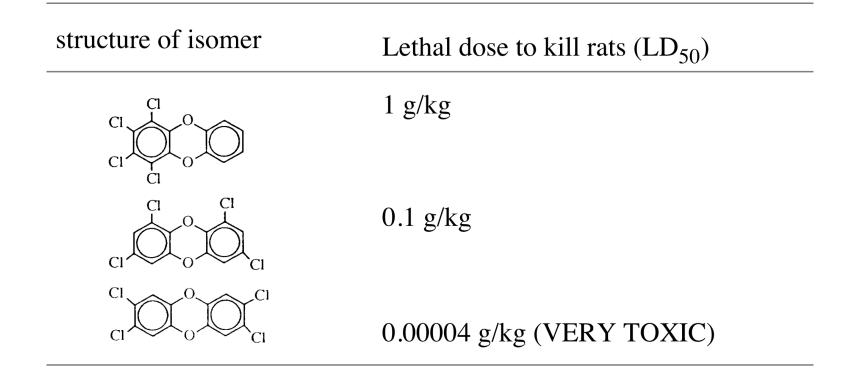
3.

Pesticides

Biodegradable Recalcitrant $O - CH_2 - COOH$ $O - CH_2 - COOH$ CI CI CI CI 2,4,5-T 2.4-D Ο CH₂ 0 11 — Ĉ — CH₂CI HC --- N ---- CH ---- CH₃ HN - C - OCH₃ CH₃ Propachlor Propham 0 CL 0-C-NH-CH3 CH2 CICCI CL Aldrin Carbaryl OCH-CH₃O CCI Methoxychlor CCI3 DDT

- Sources: Agricultural activities
- Persistent (biomagnification due to lipophillic nature)
- Generally sorb strongly onto soil
- Small changes in chemical structure affect biodegradation
- Degradable and recalcitrant are relative terms, and do not imply neither instant degradation nor indefinite resistance

Structure vs. Properties

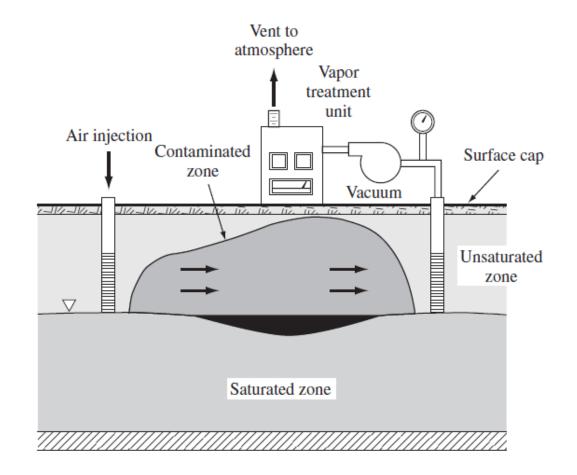

- Each substance has its own properties, reactivities, and effects. Hazardous substances with similar chemical structures can have very different environmental fates and consequences:
- Hydrolysis of chlorobutane:

 $C_4H_9CI + H_2O \rightarrow C_4H_9OH + H^++CI^-$

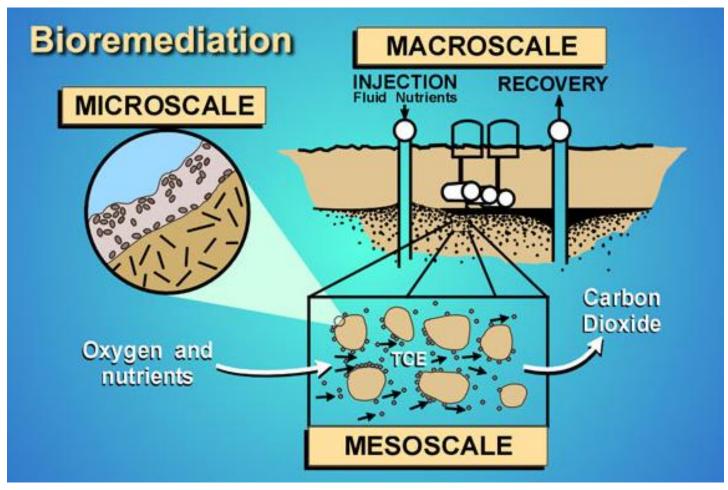
structure of isomer	half life $(t_{1/2})$
CH ₃ -CH ₂ -CH ₂ -CH ₂ -Cl	1 year
CH ₃ -CH ₂ CH-Cl	
CH ₃	1 month
$CH_{3} - CH_{3} - Cl$ $CH_{3} - CH_{3}$	30 sec

Structure vs. Toxicity

• Toxicity of tetrachlorodibenzo(1,4)dioxin (TCDD's)

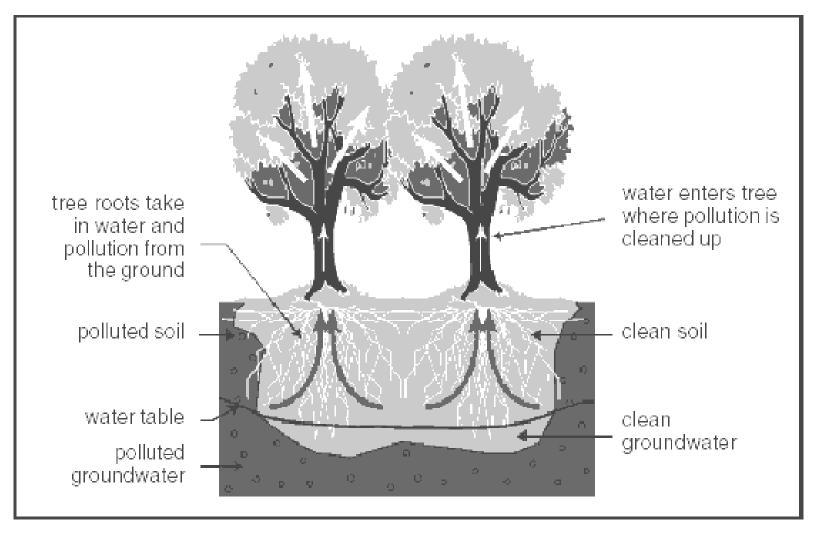


• Characteristics

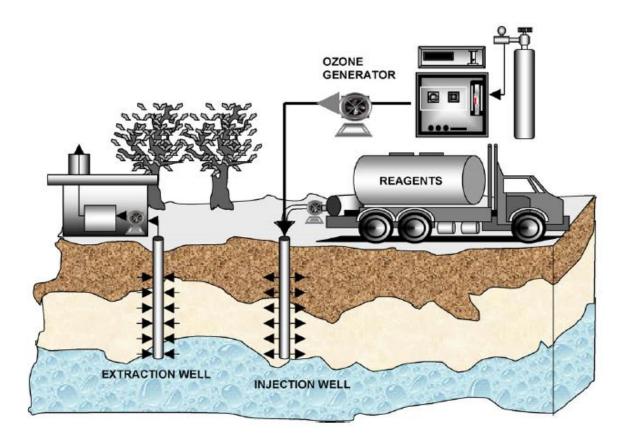

- Takes long time, hard to operate
- Closely related to soil remediation

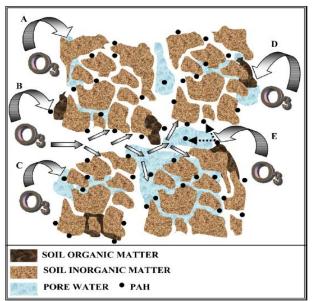
Classification

- In situ treatment
- Ex situ Treatment
- Bioremediation
- Phytoremediation
- Chemical treatment
- & others

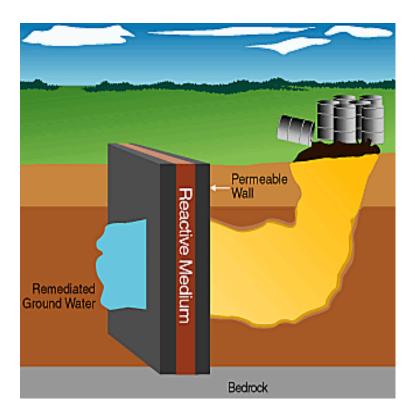


Soil Vapor Extraction




Bioremediation

(from the webpage of Center for Biofilm Engineering, MSU-Bozeman)


Phytoremediation (from the webpage of US EPA)

Chemical Oxidation

(ozone, Fenton's reagent, permanganate, persulfates, etc.)

Groundwater treatment using a ZVI permeable reactive barrier (PRB) (ZVI: zero-valent iron)