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Appendix A—Deformational
Characteristics of Suspended Cables

A.1 Objectives

The current Chapter discusses the most important formulae that are required for a description
of the deformational characteristics of a suspended cable. These include the definition of cable
profile under selfweight (e.g. sag and angle of deviation at the anchorages), the evaluation of
undeformed and deformed cable length, and the estimation of the installed tension. Simplified
formulae and numerical modelling are also discussed, as well as the levels of error attained
for the approaches followed.

The intended application is the design and analysis of stays in cable-stayed bridges, although
other types of structures whose cables fit the basic assumptions made here, such as suspension-
bridges and guyed masts, are also considered.

A.2 Static Behaviour

Suspended cables are structural elements characterised by a significant non-linear behaviour.
The relatively low level of stress attained by these elements (determined by fatigue
considerations) makes this non-linearity predominantly geometric in nature.

A precise description of a cable suspended between two fixed points (Fig. A./) should
include the bending and axial deformation, marked by the mechanical stiffnesses Elo and
EAg, respectively. It should also take into consideration the installed axial tension Tp and
selfweight (the latter normally constant along the cable length, as long as the cross section
remains constant), and finally the end conditions. Given the large displacements caused by the
low Hexural stiffness, second order effects should also be included.

The evident complexity of the above stated problem is further compounded by the difficulty
in a rigorous assessment of the degree of restraint of rotations at the anchorages.

Some simplifications, which epable a more accurate and simple determination of the cable
profile z(x) and tension T(x) are, however, possible.
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A.2.1 General assumption: Elastic catenary

The basic assumption adopted in the study ,\MA
of a suspended cable is that the cable A

acts as a perfectly flexible elastic struc- H,
tural element. Ignoring the cable bending
stiffness is possible in view of its low
value when compartd with the axial stiff-

ness EAg. The bending effects can still be
assessed locally for the static behaviour

at the anchorages or integrated in the
dynamic modelling in a simplified form
(see Appendix B.4).

Figure A.2 illustrates the flexible cable
model resulting from the assumption of 1 ¢ 1
null bending stiffness. The equilibrium of T )
a segment with undeformed length s mea- Fig. A.1: Suspended cable subject to selfweight
sured from the support A (Fig. A2(b)) and axial tension

allows for the determination of the para-

metric equations (A.1) and (A.2) of the

cable profile, and of equation (A.3) for the evaluation of the tension 7 (s), given by Irvine [127]

Hys HyLg wayr Va AT (VA = WS/L())]
’ — ~ . o l " (Al)
x(s) EAq + W [smh (HA sinh Ha

.

Ws VA S HALo (VA)Z »
z(s) = Ao+ ===+
e EAO(W 2L0)+ W [ Ha
113
- [H(v_-—_u_)] A2
Hy

1
272
T(s) = [H} + (v — %i) ] (A.3)

0

In these equations, the Cartesian coordinates x and z of a generic point P are defined as a
function of the unstrained length s associated with the cable segment AP, depending on the
reactions at the end A, V, and Hy, on the cable weight W = mgLg, on the unstrained length
Lo, and on the axial stiffness FAg, Ao being the area of the undeformed cable cross section
and E being the elasticity modulus of the cable.
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The transcendental equations
(A.1) and (A.2) of the cable Ha
profile define the so-called
elastic catenary, and consti-
tute the most precise descrip-
tion of the cable geometry
under selfweight. The res-
olution of these equations
requires the knowledge of
the reactions Hy and Vi,
which are obtained by the

introduction of the boundary - i ¥ .
conditions, resulting in the Fig A.2: Suspended cable subject to selfweight and axial ten-

P(x.z)

\ T(s)

numerical solution of sion: (a) general simplified model; (b) equilibrium of the seg-
ment AP
Halg HaLg o f{Va sy (VA —W)
€= . h —— | — sinh A4
A o [sm A sin I, (A4)

i3
HyLg A (vA—W)2 4
+ . 1 — - 11 —_— AS
W [ + ( HA) g, (A.5)
The knowledge of V4 and H,4 allows also for the evaluation of the maximum tension along

the cable, Ty, given by

S 2 2 1
7.4 = [HA 2 VA]Z (A6)

and for the evaluation of the angle of deviation at the anchorages, wa and wp (Fig. A.3)

V
wy = atan (ﬁ%) -« (A7
VB VA—-W
= S fo) (ER i A8
wp = o atan(HB) o atan( HA) (A.8)

The cable sag d, defined as the maximum vertical distance to the chord, can be assessed at
the point S (Fig. A.3), characterised by the Lagrangian coordinate ss

Sg = % (VA —h yf—) (A9)

and is given by

h
d = z(ss) — 75 *s= x(ss) (A.10)
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Finally the deformed cable length L can be obtained by

HLo | Va Va2 Va (W)’
Ly=Lot+ —22 | A [14+(=2) +mm]| 2+ 1+
r=LotouEa | m V'Y (HA) timlgt Ha

Vo — W Va—W)\? Va—W Va—W)\?

A2 P () (B i (e )) i
Table A.1 presents the geometric and
mechanic characteristics of a series of H,
cables from cable-stayed bridges, calcu-
lated on the basis of formulae (A.l) to
(A.11). These will be used as reference
for the next Section, where further simpli-
fications will be introduced. Some useful
conclusions can be inferred from the anal-

ysis of this table, which covers a wide
range of cables:

e Cable-stayed bridge cables are sub-
ject to relatively low stresses omax, NO
greater than 900 Mpa. For these cables
the variation of tension AT along the
length does not exceed 2% of the max-
imum tension;

e The values of the ratio 1"73“% attained for cable stays are also quite small and do not exceed
typically 5% of the maximum component of cable tension Tax. This ratio increases with
cable length, as happens with the longest of the Normandy bridge cables.

Fig. A.3: Elastic catenary

An important parameter characteristic of a suspended cable has been introduced by Irvine
[127], incorporating both the corresponding geometric and deformational characteristics. This
parameter A? is defined as

2
2 _ mgL L
EAp

where L and T represent the chord length and the component of tension along the cable chord,
respectively, and L, is a virtual length of cable defined by

L 7453 d\?
L,:[o (a) dx~L~[l+8(—I:)] (A.13)

Typical values attained by stay cables vary in the range 0-1, while for suspension bridges Xz
is normally greater than 100. Very large stay cables can have a A% value greater than 1, as
shown in Table A.1 for the largest cable of the Normandy bridge. Small values of A2 reflect
relatively highly stressed and low sagging cables, whose deformation is achieved essentially
by extensibility, while large values are typical of very low tensioned and higher sagging cables,
whose deformation is mainly of geometric nature, exhibiting therefore a relative inextensibility.

These different characteristics imply different levels of simplification both for static and
dynamic analyses.
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A.2.2 Elastic parabola

The use of the transcendental equations presented above to characterise the deformational
characteristics of stay cables requires numerical manipulation. Although commercially
available software can easily be employed, simplified practical formulae are of interest for a
wide range of situations.

The elastic parabola approach applies to shallow cables, i.c. cables with a smalk sag to span
d/L ratio, typically no greater than 1:8. This range covers stays from cable-stayed bridges
and most of the cables from suspension bridges. The assumption of a unit ratio between the
deformed and undeformed cable length yields the simple formulae for the cable profile defined
in cartesian coordinates

2(x) = %%’5 seca - x -(€—x)- [1+§ : (1—2%)]+ —Z--x (A.14)

where the parameter g, defined by & =

mgl sin o/ H represents a small quantity

for a shallow cable with a small slope.

Ignoring £, a simple equation of a parabola

is obtained for the description of the cable
b profile

|

x) = ing--seca-x-(i—x)
h

+-E - X (A.15)

4 [+
Fig. A.4: Elastic parabola

occurs at this same point and is given by

mgL?
8T

dp =

where the quantity T = H - seca repre-
sents the cable tension at the section whose
tangent is parallel to the chord (Fig. A.4).
Using the parabola approach, this section
occurs actually at the cable mid-point and
the sag dp, i.e. the maximum vertical devi-
ation of the cable profile to the chord,

(A.16)

The angles of deviation at the anchorages A and B, w4 and wg, are

WA = wp = atan mgL+h
S 2H " ¢)  ©

(A.17)

and the deformed cable length L, can be approximated by

8 (d,\* 32 (d
=L -1 Sl e ey - |t
L [+3 (L) 5 (L

(A.18)

Table A.2 presents the deformational characteristics of the above described stay cables based
on the parabolic approach expressions (A.15) to (A.18).



154 Cable Vibrations in Cable-Stayed Bridges

Cable was O)=wp C) | T &N) [dp (m) | L, (m) | eqp (%) | €1 (%) | e1gp (%)
V. Gama

HCO1 0.0173 2056.8 | 0.031 | 34.697 | -61.8 1.2 -0.2
HC24 1.6239 6834.0 | 0.917 | 225.982| -14.6 1.4 —0.6
HCI15 1.1278 4336.4 | 0.460 | 147.461 | -19.2 1.4 -0.5
Guadiana

Central 1 1.1365 4841.0 | 0.524 | 168.548 | 124 1.0 -0.6
Central 16 0.1401 2166.3 | 0.029 | 49.485 | -85.3 1.1 -0.5
Normandy 4.3590 6933.6 | 4.572 [ 440985 | -3.6 23 —-04
Ikuchi* 2.5525 3531.9 | 1.526 |246.225 5.6 157 -0.4

Tuble A.2: Deformational characteristics of cables resultant from parabolic approach

It can observed from Table A.2 that the parabolic approach provides significant errors in the
description of the static behaviour of the cable, in local quantities, like the angles of deviation
to the chord at the anchorages and sag (g4,). The error committed increases both with the
angle of inclination of the cable to the horizontal and with the chord length. And even though
the error in the deformed cable length (£1s,) is low, the fact is that a very small error in the
initial cable length may result in a high error in the sag evaluation. Although very practical
and useful for an approximate analysis during the design phase, the parabolic approach is not
convenient whenever a precise description of the static behaviour of a stay cable is required,
namely for installation purposes.

A.2.3 Numerical modelling

The integration of the cable stay behaviour in the numerical description of a cable-stayed
bridge requires further simplifications whose effects should be acknowledged.

A.2.3.1 Linear model: Truss element

The simplest and also most common
approach employed in the numerical mod-
elling of a stay cable is based on the ide-
alisation of the so-called truss element.

The truss element is a two node elas-
tic finite element characterised by null
bending stiffness and an axial stiffness
EAg/L, whose weight is concentrated at
the nodes (Fig. A.5). These characteristics
correspond actually to the treatment of the
cable as a spring element, not accounting
for geometric effects and providing Fig. A.5: Truss element
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naturally a poor description of the local deformational characteristics: both the sag and angles
of deviation at anchorages are nil, the cable undeformed length is equal to the chord length,
and the tension is assumed constant along the cable.

Despite the poor local characteristics, the linear model is of great interest for a global analysis
of the bridge behaviour, allowing for a good estimation of the force distribution in the cable-
stayed bridge, and providing therefore important information for the design of the stay cables.
The major source of error associated with the linear model results from geometric effects. So,
for taut stay cables, with a'low AZ value, small errors are expected, while for less ténsioned
or very long cables, with high values of A2, the errors may be significant.

A.232 Linear model refinement: Equivalent modulus of elasticity

It is still possible to introduce the non-linear geometric behaviour in a simplified form. This
is achieved through the approximation of the cable profile by a parabola and determination of
the axial stiffness as a function of both the cable tension and sag. An Equivalent Modulus of
Elasticity £,, is obtained which incorporates these quantities through the parameter A% and is
given by

E

Eey = = (A.19)
1+ 53
Another equivalent formula is given by Ernst [128]
E
Ewy= ——7 (A.20)
1 Ty B
where y is the specific weight 12 : : . . —

and o is the tensile stress of
the cable. The variation of E., 1 o
with A? is represented in Fig. A.6, : :
showing that for standard taut LR bbbt
stay cables (A% < 1) the correc- :

tion is actually very small (A2 = § 06 1
1, E,q = 0.92 E), while for very
long stay cables the correc- ‘
tion becomes significant (for the :
largest of the Normandy stay & £ '
cables, A2 =3.1, E., = 0.79 E). o
Figure A.7 shows the variation of ?,m, 001
the ratio E./E with the cable

chord length for different levels .
of stress. Using information from Fig. A.6: Variation of the ratioE.q [ E with A?
Table A.1, one can understand that

this ratio is greater than 0.90 for

all of the analysed stay cables, except the largest of Normandy bridge.

The use of an Equivalent Modulus of Elasticity E., in the description of cable stay behaviour
provides an improved distribution of forces throughout the bridge cables and a better
approximation of the global cable deformability, and therefore an improved shape of the
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bridge profile under permanent loads. 1 v
It should be noted however that o a 6=750 MPa
second qrder effects associated with ekt
other bridge elements, namely the
deck and towers, which suffer sig- N B e N e A =400 MPa
nificant compressions, may be more
relevant in terms of the global bridge

behaviour. This means that the use % """"" S i 0=300 MPa,
of a non-linear geometric formulation P | I N VI PP, W S
for global static analysis of the bridge o4 1f .\ N\ i T
may be more relevant than the intro- ' =200 MPa
duction of corrections to sag/tension ~ OF TR (A
of individual cables. T 0 0. D . Mt i

. o=100 MPa

4(‘)0 0=50 MPa
Span length (m)

A.2.3.3 Linear model

refinement: Multi-link approach Fig. A.7: Variation of the ratio E.q/E with the cable

span for different levels of cable stress

A natural extension of the idealisa-
tion of the stay cable as a simple
truss element to a series of truss
elements (Fig. A.8) has been pro-
posed in the past [129] as a compu-
tational improvement that allows for
the accounting of geometric effects,
as long as the discretisation is com-
plemented with a geometric non-
linear analysis. Owing to the resulting
large dimension of numerical mod-
els, and to computational limitations,
the implementation of this modelling ~ mL
technique has not been a current trend 10

in the global modelling of a cable- pjs A 8: Multi-link approach: undeformed and

stayed bridge. It should be noticed deformed mesh under selfweight
however that currently available com-

mercial software and computer mem-

ory allow for reasonable computing times in the face of the advantages obtained: using an
adequate number of elements to discretise a stay cable, the corresponding weight, applied at
the nodes, approximates the distributed weight of the cable, and therefore the corresponding
profile approximates the elastic catenary profile. As for the number of necessary elements
to represent adequately the deformational behaviour of a stay cable, it is relevant to analyse
the error associated with the discretisation for several physical quantities of interest. For this
purpose, two stay cables from Vasco da Gama bridge were considered, the longest, HC024,
and the shortest, HCOI, with properties listed in Table A.1. The cables were discretised into a
successively growing number of truss elements. Taking the 100 link discretisation as a basis,
the relative errors obtained for various physical quantities were calculated and are plotted in
Fig. A.9. The analysed quantities are: the minimum axial force, Tmin; the sag d; the relative
rotation to the chord at one end, wg; and also the first five natural frequencies, f; to fs. The
relative errors, represented for each quantity in Fig. A.9, are designated respectively as ETmin,
Edv, Ewb, Efl, . . ., Ef5.
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The analysis of Fig. A.9: shows that a discretisation in 20 truss elements provides relative
errors of less than 5% in all the mentioned quantities for the two cables. But if, for example,
only the first three vibration modes of the cable are of interest and local effects, like the
end rotations, are not relevant, then a discretisation into 9 elements is sufficient, both for the
shortest and longest cables:

20.0 "
150 1 ——- ETmin
—¥—- Edv
= 10.0 1 —e— Ewb
£ o -
£ — ER
o r
s %% —En
£ o - B
& —a-- Efs
-10.0 1
—15.0 1
-20.0
(a)
20.0
15.0 1
10.0
£ 50
g 0 o .
-
2 50 :
= 3 3 =
T T S b e s R oo eccomennnd & EfS
1810/ d mss i e n E S o e e s ;.--.--__,__-: ............ s
-200 / — : — —
(b) Nutnber of links

Fig. A.9: Variation of relative error of discretisation with number of links for various physical
quantities in two cables of Vasco da Gama bridge: (a) HCO024; (b) HC 0!

A.2.3.4 Non-linear model: Cable element

The cable element is part of the element libraries of most commercial software packages and
is based on the approximation of the displacement field inside the element by a parabola of
(n=1)th order, where n is the number of nodes of the element. This description is of better
quality than the linear two node element, although it must be remembered that it is still based
on a linear elastic formulation. Therefore, only the division of the cable into various finite
elements combined with a geometric non-linear formulation provides a good approximation
of the corresponding static and dynamic behaviour.

A.2.3.5 Comparative analysis for global study of a cable-stayed bridge

In order to understand the relevance of the chosen numerical formulation of the stay cables
in the global behaviour of a cable-stayed bridge, some results of a study developed on a
conventional medium size bridge of this type are presented.
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The bridge [130], represented in Fig. A.1 0, is composed of a central span of 324 m, two lateral
spans of 135 m and two transition spans of 36 m, having a total length of 666 m. The 18 m
wide deck has a prestressed concrete box section that is partially supported at the concrete
100 m high A-shaped towers and suspended by stay cables. These are arranged in a semi-fan,
in a total of 32 pairs anchored at the top of each tower.

Fig. A.10: General view of cable-stayed bridge under analysis

The stay cables’ chord length varies in the range of 49.5-170.2m, and the stress measured
on the site varies in the range of 340-680 MPa. The Irvine parameter A? varies, for the set
of cables, in the range of 0.0162-0.4795, meaning that the Equivalent Modulus of Elasticity
E.4, defined by (A.19), is in the range of 0.962- E, to 0.999 - E,, E, being the modulus
of elasticity of steel. The fundamental natural frequency of the stay cables is in the interval
between 0.78-2.97 Hz, while the first bridge natural frequencies of vertical, lateral and torsional
modes were calculated as 0.38, 0.52 and 1.49 Hz, respectively.

The studies developed on this bridge consisted in the analysis of the static response to
selfweight, followed by an evaluation of natural frequencies and modal shapes. This analysis
was performed introducing the various degrees of simplification referred along this Chapter,
i.e., (i) linear analysis based on idealisation of the cables as simple truss elements; (ii) linear
analysis based on idealisation of the cables as truss elements with correction of the Modulus
of Elasticity to take into account local effects (Equivalent Modulus of Elasticity approach);
(iii) non-linear geometric analysis, based on idealisation of the cables as simple truss elements
and (iv) non-linear geometric analysis based on the idealisation of each stay cable as a series
of ten truss elements (multi-link approach).

It should be noted that for simplification purposes, the equivalent Modulus of Elasticity of
stay cables was made uniform and equal to the average value of 0.975-E,.

Table A.3 systematises some of the most important results obtained, expressed in terms
of maximum displacement at the lateral span, midspan and top of one tower, maximum
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Fig. A.11: Dead load configuration of cable-stayed bridge for the analysis: (a) linear, E, =
200 GPa; (ii) Linear, E.q = 195 GPa; (c) geomelric non-linear, one Iruss element per cable;

(d) geometric non-linear, 10 truss elements per cable

Mode 1: 0.377Hz Mode 2: 0.508Hz

Mode 6: 0.963Hz

AP A

Mode 11: 1.49Hz

Mode 13: 1.64Hz

SOLVIA-POST 99.0 FACULDADE DE ENGENHARIA DO PORTO

Fig. A.12: Modal shapes associated with non-linear geometric model, idealising each stay
cables as one truss element
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compression force in the deck and towers, maximum bending moment in deck and tower, and
most relevant natural frequencies.

The analysis of this table shows that, although not very significant in absolute value, the
introduction of the equivalent modulus of elasticity leads to a substantial modification of the
deformed structure under selfweight. Figure A.11, representing the undeformed and deformed
finite element mesh obtained for each analysis, illustrates this aspect, showing that the
reduction of cable stiffnass leads to higher mid-span displacements. Note that the .deformed
configurations are represented at the same scale for the first three cases of analysis. The
comparison between deformed configurations obtained under linear or geometric non-linear
analyses shows very slight differences while the stay cables are idealised as single truss
elements (model (iii)). However, the idealisation of each stay cable as a series of ten truss
elements allows for the consideration of the cable geometric non-linearity, which significantly
changes both deformations and internal forces.

With respect to the dynamic behaviour of the bridge, it can be noticed from Table A.3
that the natural frequencies of the most relevant modes (modal configurations represented
in Fig. A.I2) have very slight variations for the various models, meaning that geomet-
ric non-inear effects have no significant influence in the global dynamic behaviour of
the bridge. It is important however to notice that the multi-link model leads to the
introduction of cable dynamics in the global bridge behaviour. As a consequence, Sig-
nificant coupling between cable and bridge vibration occurs, leading to numerous vibra-
tion modes, here called multiple modes, characterised by very close natural frequencies

=0.50595Hz

£=0.74721Hz

f=0.74951Hz

f=0.88536Hz2

Fig. A.13: Modal shapes associated with non-linear geometric model, idealising each stay
cable as a series of ten truss elements
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and similar configurations of deck and towers, but involving the participation of dif-
ferent cables [85]. Figure A.13 shows typical configurations of vibration modes involv-

ing the participation of cables with different degrees. It is thought that the para-
metric excitation phenomenon described in Chapter 5 is enhanced by this coupling

effect.



