Advanced Structural Analysis Part 10

Nonlinear analysis of suspension bridges and its application on geometry control 현수교 설계를 위한 비선형성의 이해와 형상관리에의 응용

서울대학교 건설환경공학부

김호경

탄성이론 (Elastic theory)

$$M(x) = M_0(x) - H_p \cdot y(x) + X(x)$$
• $M_0(x)$: 활하중에 의한 단순
$$H_p \quad 홈 모멘E$$
• : 활하중 수평장력
$$X(x) = \frac{l-x}{l} X_l + \frac{x}{l} X_r$$
• : 연속보에 의한 부가 휨모멘E

٠

🎬 서울대학교 구조설계연구실

Brooklyn Bridge (Roebling 1883)

No. of Concession, Name

처짐이론 (Deflection theory)

Tacoma Narrows Bridge의 붕괴 (1940)

선형화처짐이론(Linearized deflection theory)

$$M(x) = M_0(x) - H_p \cdot y(x) - H_w \cdot \eta(x) + X(x)$$

✓ Bleich (1950)

● p/w < 2/5 이면 실용적

사하중의 비율이 큰 현수교에
 더욱 유효

p|w

미분방정식으로 표현된 처짐이론

✔ 타정식 현수교

$$EI\eta''' - (H_w + H_p)\eta'' = p + H_p \cdot y''$$
$$= p - 8H_p \frac{f}{l^2}$$

🎬 서울대학교 구조설계연구실

구조 특성

	일반교량	현수교		
보강형의 강성(El)	처짐제어와 직결	처짐제어 효과가 적음		
고정하중 강도	휨모멘트 증대	보강형 휨모멘트 감소		
경제적 설계	주형의 강성확보 범위 내 에서 자중을 줄임	내풍안정성과 처짐 억제를 위해 어느 정도의 자중이 필요		

자정식일 경우의 처짐이론 (캠버가 없을 경우)

$$M(x) = M_{0}(x) - H_{p} \cdot y(x) - (H_{w} + H_{p}) \cdot \eta(x) + X(x)$$

+ $(H_{w} + H_{p}) \cdot \eta(x)$
= $M_{0}(x) - H_{p} \cdot y(x) + X(x)$
+ $H_{w} + H_{p}$
· 처짐이론의 적용이 탄성이론
형태로 표현됨.
+ $H_{w} + H_{p}$ · $H_{w} + H_{p}$
· $H_{w} + H_{p}$ · $H_{w} + H_{p}$
· $H_{w} + H_{p}$ · $H_{w} + H_{p}$

미분방정식으로 표현된 처짐이론

✔ 자정식 현수교

$$EI\eta''' - (H_w + H_p - (H_w + H_p))\eta'' = p - 8H_p \frac{f}{l^2}$$

결국 $EI\eta''' = p - 8H_p \frac{f}{l^2}$

🎬 서울대학교 구조설계연구실

전산구조 해석법

등가 보 모델링

✔ 부재의 상대위치(도심, 전단중심) ✔ 강성분포(Ely, Elz, GJ, Elw) ✔ 질량분포(m, lm)

	기호	요소	강성		지라	비고	
· · · · · · · · · · · · · · · · · · ·			단면강성	초기축력	25		
케이블	С	케이블요소	EA	케이블장력	집중질량		
행어	Н	케이블요소	EA	W/2	집중질량		
보강형(휨부재)	В	뼈대요소	EA, EI2, EI3, GJ	0	집중극관성	전단중심	
보강형(연결재)	R1	뼈대요소	EA, EI, GJ=∞	W/2 sinβ	0		
	R2	뼈대요소	EA, EI, GJ=∞	-W	0		
		질량			집중질량	무게중심	
W=보강형 단위길이당 중량							

🎬 서울대학교 구조설계연구실

바닥판의 관성 질량 고려법

확보하려면,

🎬 서울대학교 구조설계연구실

관성 질량 고려 예

• Deck & Asphalt

$$\begin{split} W_{total} &= W_{deck} + W_{asphalt} = (0.07 \times 30.8 \times 2.3 + 0.31 \times 34.6 \times 2.5) \times 4.1 = 130.27 ton \\ &\left(2.3 \times \frac{0.07 \times 30.8^3}{12} + 2.5 \times \frac{0.31 \times 34.6^3}{12}\right) \times 4.1 = 2 \times W_{EdgeNode} \times 17^2 \\ &\therefore W_{EdgeNode} = 21.76 ton \\ &W_{CenterNode} = W_{total} - W_{EdgeNode} = 130.27 - 21.76 \times 2 = 86.77 ton \end{split}$$

Vertical Displacement 3 w+p Nonlinear Linear Displacement (m) 2 1 0 Non-Cable Structure .2 0 .4 .6 .8 1 Load (Softening) Load ratio Horizontal Tension Additional Tension (ton) 1000 Nonlinear 1000 Linear Cable Structure (Hardening) 1000 Displacement 1000 .4 .6 Load ratio .2 .8 0 1

NL-NL v.s. NL-L

✓ 비선형해석을 통해 초기형상 잡은 후 활하중해석을 수행하는 경우

근사 선형화 해석법

✓ 비선형해석을 통하지 않고 초기형상을 잡은 후 활하중 해 석을 수행하는 경우

- 형상분석으로 케이블 절점좌표와 초기 장력을 추정
- 트러스부재의 접선강도 구성

 u_2

u₁

• $K_T U = P$

선형화유한변위이론

• [K]_g=[T][K]_l[T]^T; [T]: 변환매트릭스

- 대변위에 의한 부재변환매트릭스 재구성
- 부재내력(인장,압축)에 따른 강도매트릭스 변화를 매단계 고려
- ✔ 대변위 해석 (기하비선형 해석)
- $\{F\} = \{[K1] + [K2]\}\{U\}$
- 초기 부재내력에 따른 기하강성행렬만을 고려
- ✔ 선형화 유한변위이론
- [K3] : 추가 부재력에 의한 기하강성행렬
- [K1] : 선형강성행렬 • [K2] : 초기 부재력에 의한 기하강성행렬
- ${F} = {[K1] + [K2] + [K3]} {U}$
- 부재내력(인장,압축)에 따른 기하강성행렬을 매단계 고려

✔ 유한변위이론

현수교 해석 관련 프로그램

프로그램명	개발자	초기 형상 결정	선형화 유한변위 해석	시공 단계 대변위 해석	동적 해석	케이블요소	장점
SNUSUS	김호경(서울대)	0	Ο	0	0	탄성현수선 비선형트러스	버페팅해석 엄밀한 형상해석
CONSUB	이명재(서울대)	0	0	0	-	탄성현수선	엄밀한 형상해석
Midas/Civil	MIDAS IT	0	0	0	0	장력고려트러스 탄성현수선	GUI 지속적 개발투자
RITTAI	CHODAI	0	0	?	0	장력고려트러스	많은 설계 실적
SAP2000	CSI	X	0	x	0	장력고려트러스	보편성, 안정성
ABAQUS 등 범용프로그램	-	х	?	?	0	트러스	보편성, 안정성

형상해석법 - 고정하중하 목표 구조계 결정

✓ 설계 변수 ● 고정하중 크기 ● 수직 새그량

영종대교

17 Jahr

- 새들의 높이
- 교폭
- 행거의 경사각
- 주케이블 정착구 위치

강형의 고정하중 분포 등은 기지값이다.

- 주케이블 양단좌표 및 중앙점 새그량, 행어의 보강형 정착점 좌표, 보
- 주케이블과 행어가 만나는 점과 점 사이에서 케이블 부재는 직선이다.
- 행어가 수직하므로 주케이블 수평장력은 전 경간 일정하다.
- 행어는 교축 직각방향에 대해서만 경사져 있다. 즉 교축을 따라서는
- ✔ 기본 가정
- 선형 유한변위이론으로 활하중해석 수행
- 계산된 초기장력으로 트러스의 횡방향(비선형) 강도를 구성
- 절점 사이의 주케이블을 직선으로 간주하여 형상해석식을 유도
- ✔ 오츠키 박사(장대)의 제안

간략법(장대, 오츠키)

수직면내에서의 형상 (1)

- 절점 i에서의 장력의 평형 조건 $T_i \frac{d_i}{l_i} = T_{i+1} \frac{d_{i+1}}{l_{i+1}}$, $i = 1, 2, \dots, N-1$
- 전 절점에서의 장력의 평형 조건 $T_1 \frac{d_1}{l_1} = T_2 \frac{d_2}{l_2} = \dots = T_N \frac{d_N}{l_N} = T_x$
- 횡단면 내에서의 평형 조건

$$T_{x}\left(-\frac{z_{i-1}-z_{i}}{d_{i}}+\frac{z_{i}-z_{i+1}}{d_{i+1}}\right) = P_{i}\frac{z_{Gi}-z_{i}}{h_{i}} + W_{Ci} = W_{Si} + W_{Ci} , i = 1, 2, \cdots, N-1$$

● 추가 적합 조건

$$z_{\frac{N}{2}} = \frac{1}{2}(z_N + z_0) + f$$

수직면내에서의 형상 (2)

$$T_{x}\left(-\frac{z_{i-1}-z_{i}}{d_{i}}+\frac{z_{i}-z_{i+1}}{d_{i+1}}\right) = P_{i}\frac{z_{Gi}-z_{i}}{h_{i}} + W_{Ci} = W_{Si} + W_{Ci} \quad , \ i = 1, 2, \cdots, N-1$$

● 추가 적합 조건

$$z_{\frac{N}{2}} = \frac{1}{2}(z_N + z_0) + f$$

수평면 내에서의 형상

✔ 수직면(X-Z면)의 평형식 유도와 동일하게 수평면(X-Y면)의 힘의 평형을 유도

$$T_{x}\left(-\frac{y_{i-1}-y_{i}}{d_{i}}+\frac{y_{i}-y_{i+1}}{d_{i+1}}\right) = P_{i}\frac{y_{Gi}-y_{i}}{h_{i}} = W_{Si}\frac{y_{Gi}-y_{i}}{z_{Gi}-z_{i}} , i = 1, 2, \cdots, N-1$$

• T_x 가 기지의 값이므로 미지수와 평형식의 수가 같음

형상결정 수계산 예제 (1)

✔ 지간 300m, 새그 60m (영종대교와 동일한 조건)

$$N = 4$$

 $z_0 = 0m, \ z_N = z_4 = 0m$
 $z_{N/2} = z_2 = 60m$
 $x_0 = 0m, \ x_1 = 75m, \ x_2 = 150m, \ x_3 = 225m, \ x_4 = 300m$
 $d_1 = d_2 = d_3 = d_4 = 75m$

형상결정 수계산 예제 (2)

- ✔ 주케이블과 보강형등 교량의 자중을 단위길이당 50tonf로 가정
 - 각 절점에 걸리는 자중 = $W_i + P_i = 50 \times 75m / 2 = 1,875tonf$
- ✓ 변수 변 환
 Z_i = z_i z₀ $\frac{z_N z_0}{L} x_i$ or $z_i = z_0 + \frac{z_N z_0}{L} x_i + Z_i$ ∴ Z₀ = Z_N = 0m, Z_{N/2} = 60m

형상결정 수계산 예제 (3)

✔ 평형방정식

$$H\left(-\frac{Z_{i-1}-Z_{i}}{d_{i}}+\frac{Z_{i}-Z_{i+1}}{d_{i+1}}\right)=W_{i}+P_{i}$$

$$i=1, \quad (H/75)\left\{-\left(Z_{0}-Z_{1}\right)+\left(Z_{1}-Z_{2}\right)\right\}=1,875$$

$$i=2, \quad (H/75)\left\{-\left(Z_{1}-Z_{2}\right)+\left(Z_{2}-Z_{3}\right)\right\}=1,875$$

$$i=3, \quad (H/75)\left\{-\left(Z_{2}-Z_{3}\right)+\left(Z_{3}-Z_{4}\right)\right\}=1,875$$

assume $H = 75tonf \Rightarrow Z_1 = Z_3 = 2,812.5m, Z_2 = 3,750m$

選 서울대학교 구조설계연구실

multiply 60/3,750 = 1/62.5 to $Z_1, Z_2, and Z_3$

형상결정 수계산 예제 (4)

 \Rightarrow *H* = 4,687.5*tonf*

$$z_{1} = z_{0} + \frac{z_{N} - z_{0}}{L} x_{1} + Z_{1} = -69.573m$$

$$z_{2} = z_{0} + \frac{z_{N} - z_{0}}{L} x_{2} + Z_{2} = -54.573m$$

$$z_{3} = z_{0} + \frac{z_{N} - z_{0}}{L} x_{3} + Z_{3} = -69.573m$$

형상해석법 - 고정하중하 목표 구조계 결정

✔ 수직새그 외 주케이블 형상은 미지수 ✔ 가벤트 설치점, 주케이블 정착구에 보강재 밀집 배치 ✔ 기준 스트랜드 시공 오차 3cm

문제 인식 I: 모노-듀오 3차원 케이블

문제 인식 II: 보강트러스의 압축력

- ✔ 보강트러스가 주케이블을 지지하므로 큰 압축력 발생
- ✓ 구조해석적 측면에서 볼 때 고정하중 상태에서 케이블 지지 점의 변화를 의미
- ✓케이블 형상을 엄밀히 결정하여도 목표 구조계를 구현할 수 없음

🎬 서울대학교 구조설계연구실

케이블 시스템만의 형상 결정

오츠키 형상이 얼마나 업그레이드 되었는가?

Х-	Y-coord. (m)			Z-coord. (m)			
coord.	preliminary	final	difference	preliminary	final	difference	Remarks
(m)	analysis	analysis	(mm)	analysis	analysis	(mm)	
6.250	17.429	17.429	0	-48.062	-48.062	0	anchor point
25.000	15.711	15.693	18	-53.479	-53.462	17	
37.500	14.510	14.478	32	-58.145	-58.111	34	
50.000	13.175	13.132	43	-63.660	-63.609	51	
62.500	11.679	11.629	50	-70.024	-69.956	68	
75.000	10.008	9.957	51	-77.236	-77.157	79	
87.500	8.158	8.110	48	-85.297	-85.215	82	
100.000	6.125	6.086	39	-94.207	-94.134	73	
112.500	3.906	3.883	23	-103.960	-103.917	43	
125.000	1.500	1.500	0	-114.573	-114.573	0	tower saddle
137.500	3.661	3.632	29	-104.980	-104.938	42	
150.000	5.637	5.586	51	-96.239	-96.160	79	
162.500	7.428	7.360	68	-88.322	-88.230	92	
175.000	9.034	8.955	79	-81.239	-81.147	92	
187.500	10.454	10.369	85	-74.989	-74.905	84	
200.000	11.688	11.601	87	-69.572	-69.502	70	
212.500	12.735	12.650	85	-64.989	-64.935	54	
225.000	13.594	13.514	80	-61.239	-61.201	38	
237.500	14.264	14.191	73	-58.322	-58.300	22	
250.000	14.745	14.678	67	-56.239	-56.228	11	
262.500	15.034	14.973	61	-54.989	-54.985	4	
275.000	15.131	15.071	60	-54.573	-54.573	0	center point

전체 시스템의 형상 결정

고정하중 변위가 효과적으로 억제되었는가?

설계 변수			프리스트레스 도입하지 않은 경우	프리스트레스 도입한 경우
변위 (cm)	나 가장 아다	수평방향	5.251	0.000
	모강영 양단	수직방향	0.148	0.000
	조타 사다	수평방향	7.956	0.000
	구립 정권	수직방향	6.339	0.000
	즈레이브 저차비	수평방향	6.128	0.000
	구개이들 경직구	수직방향	0.335	0.000
	즈레이뷰 내그 (m)	수직	59.858	60.000
	〒개이글 제그 (m)	수평	13.573	13.631
장력 (kN)	즈레이뷰 스편자려	최대	46,254	40 5 41
	구개이를 구성성국	최소	46,176	49,541
		진입부	3,648	3,917
	행거	측경간	2,817-3,010	3,194-3,266
		주경간	2,785-2,983	3,185-3,218