
운영체제의기초:

File System

2023년 6월 13, 15일

홍성수
sshong@redwood.snu.ac.kr

SNU RTOSLab지도교수

서울대학교전기정보공학부 교수

2

Agenda

I. Understanding File System

II. File Structures

III. Disk Block Management

IV. Performance

V. Reliability

VI. Evolution of Unix File Systems

VII. Disk Scheduling

File System

I. Understanding File System

4

What is File System? (1)

❖ File system

▪ From user’s standpoint: Directory tree

• A collection of directories and files organized

in a hierarchical manner

▪ From OS’ standpoint: Formatted storage volume

• A formatted collection of disk blocks in a given storage volume

• Disk blocks are used for storing

– File system metadata, AKA superblock

– File metadata, AKA inode blocks

– File data, AKA data blocks

I. Understanding File System

5

What is File System? (2)

❖ File system (cont’d)

▪ Purely software-based

• Does not require hardware support

unlike process management and virtual memory

– Surely exploits the hardware idiosyncrasies, though

▪ Offers a logical name space for the system

▪ Includes in-memory data structures and operations

to them for enhanced performance

❖ We’re going to delve into file system implementation

▪ Consider only disk drives as storage for simplicity’s sake

I. Understanding File System

6

Different Views on Files (1)

I. Understanding File System

User View

file name + byte offset

Kernel View

ino + logical block #

Device Driver View

physical block #

Device View

drive #

cylinder #

head #

sector #

….

fp

File

byte

… …

File

block

block #

.

.

.

File System

physical

block

Drive

7

Different Views on Files (2)

❖ Requires mappings between two adjacent layers

I. Understanding File System

···

···

File
(User’s View)

File
(Kernel’s View)

Block Device

Characters (1 B, 2 B)

Blocks (512 B, 1 KB, 4 KB)

Sector (512 B)

···

read/write

File ID, Block #

Meta DataData

8

Layered Implementation in Linux

I. Understanding File System

Virtual File System (VFS) Layer

File I/O File I/O
User Space

Kernel Space

Individual File Systems (ext3, ext4, JFFS2, ReiserFS, VFAT, …)

Buffer Cache (Page Cache)

I/O Schedulers

Block Driver
Block Driver

(FTL)

Disk
Flash

Flash

Kernel Space

Storage Media

···

Request Queue Request Queue

9

Design Goal for File System

❖ No. 1 design goal: “Speed up data access within file”

▪ Average access time must be low for all kinds of

“data access patterns”

❖ Types of data access patterns

1. Sequential access

2. Random access

3. Keyed access

I. Understanding File System

10

1. Sequential Access

❖ Behavior

▪ Programs read or write data within a file in order,

one data block after another

• To process information sequentially

▪ This is by far the most common mode

❖ Examples

▪ Text editor writes out a new file

▪ Compiler scans and compiles the source file

I. Understanding File System

11

2. Random Access

❖ Behavior

▪ Programs access data blocks in a file directly in random

order, without passing through its predecessors

• To process information according to the order determined

by the algorithm of the program

• The address of a block is called the block index or number

❖ Examples

▪ Page set for demand paging

▪ Indexed data structures like binary search tree

▪ Databases

I. Understanding File System

12

3. Keyed Access

❖ Behavior

▪ Search for data blocks with particular values

▪ Application-specific

• Used to be supported by old IBM OS

• Usually not provided by the modern OS

❖ Examples

▪ Hash table

▪ Associative database

▪ Dictionary

I. Understanding File System

13

Topics to be Covered

❖ File system internals

▪ Structure of a file

▪ Disk block management

• Disk block allocation

• Free block management

▪ Performance enhancement

• Buffer cache, page cache, inode cache

• Seek optimization

▪ Reliability

• fsck and journaling for crash consistency (recovery)

▪ Evolution of Unix file systems

▪ Disk scheduling

I. Understanding File System

II. File Structures

15

Design Considerations (1)

❖ Things to think about in designing a file structure

▪ Primary design goal

• Average access time must be low

for both sequential and random accesses

▪ Usage patterns

• Most files are small but large in number

• Much of the disk is allocated to large files

• Many of the I/O operations are made to large files

▪ Other design goals

• Per-file cost must be low

• But large files must have good performance

II. File Structures

16

Design Considerations (2)

❖ Possible forms of file structure

1. Contiguous files

2. Linked files

3. Indexed files

II. File Structures

17

1. Contiguous Files (1)

❖ Key structural properties

▪ Simply keeps the first block index and file size

❖ Disk layout example

▪ How do you perform file operations (e.g., read block 3)?

▪ How do you increase the file’s size?

II. File Structures

File A File B File C

2 1 3

18

1. Contiguous Files (2)

❖ Pros

▪ Simple file structure

▪ Both sequential and random accesses are simple and easy

▪ Optimized for seeks (just a few seeks)

❖ Cons

▪ Horrible fragmentation will make large files impossible

▪ Hard to predict the needed block size at file creation time

❖ Example: IBM OS/360

II. File Structures

19

2. Linked Files (1)

❖ Key structural properties

▪ Keeps a linked list of the allocated data blocks in a file

• Each data block keeps the pointer to the next

• File descriptor contains the pointer to the first data block

❖ Disk layout example

▪ How do you perform file operations (e.g., read block 3)?

▪ How do you figure out the file’s size?

II. File Structures

File A File B File C

20

2. Linked Files (2)

❖ Pros

▪ Files can be extended

▪ No fragmentation problems

▪ Sequential access is easy

• Just chase the links

❖ Cons

▪ Random access is virtually impossible

▪ Lots of seeks, even in sequential access

❖ Example: TOPS-10, Alto

II. File Structures

21

3. Indexed Files (1)

❖ Key structural properties

▪ Keeps an array of pointers to all the data blocks for each file

• The “index array” is created and stored in separate blocks

on file creation

• Data blocks are not allocated in the beginning

– Dynamically allocated from a free block pool

and their pointers filled in the index array

❖ Disk layout example

II. File Structures

File A File B File C

22

3. Indexed Files (2)

❖ Pros

▪ Not so much space wasted by over-predicting

▪ Both sequential and random accesses are easy

❖ Cons

▪ Still have to set the maximum file size

• Due to the static size limitation of the index array

▪ There will be lots of seeks

II. File Structures

23

3. Indexed Files (3)

❖ Example: Multi-level indexed files in 4.3 BSD

▪ Inode contains 14 pointers to data blocks

• The first 12 point to data blocks

• The next one to an indirect index block that contains

1024 additional pointers to data blocks

• The last one to a doubly indirect index block

▪ Maximum file length is fixed, but large

II. File Structures

24

3. Indexed Files (4)

❖ Example: Multi-level indexed files in 4.3 BSD

II. File Structures

11

Pointer 13

Pointer 12

Pointer 11

……..

Pointer 2

Pointer 1

Pointer 0

Attributes

Inode 0

1

Pointer 1023

……..

Pointer 1

Pointer 0

Pointer 1023

……..

Pointer 1

Pointer 0

Pointer 1023

……..

Pointer 1

Pointer 0

Pointer 1023

……..

Pointer 1

Pointer 0

1035

12

13

2059

1036

1037

3083

2058

2059

Data Blocks Data Blocks

Data Blocks

Data Blocks

Double Indirect Block
Indirect Block

Indirect Block

Indirect Block

Block Size = 4 KB

25

3. Indexed Files (5)

❖ Example: Multi-level indexed files in 4.3 BSD

▪ Pros

• Simple, easy to implement

• Incremental expansion

• Easy access to small files

▪ Cons

• Indirect mechanism lacks support for very efficient access to

large files

– Up to two extra inode accesses for each real data access

• Block-by-block organization of the free block pool may mean

that file data get spread around the disk

– A lot of seeks

II. File Structures

III. Disk Block Management

27

Design Considerations (1)

❖ Design goals

▪ Performance

• Average access time must be low for both sequential and

random accesses

– Low overhead in manipulating data structures

– Less seeks per access

▪ Reliability

• Information must last safely for long period of time

III. Disk Block Management

28

Design Considerations (2)

❖ Logical view of a disk drive

▪ A linear array of blocks

• Map three-dimensional disk structure to the array of sectors

– Give each sector a number from 0 up

– One-to-one mapping from sectors to blocks

III. Disk Block Management

29

Topics to be Covered

❖ Disk block allocation

❖ Free block management

III. Disk Block Management

30

Cases for Disk Block Allocation

❖ Disk blocks are used to store

▪ File contents

• Stored in data blocks

▪ File metadata

• Stored in inode blocks

▪ File system metadata

• Stored in superblocks

▪ Boot loader program

• Stored in block 0, traditionally (often empty)

III. Disk Block Management

31

Data Block Allocation Policies

❖ Three possibilities

1. Contiguous allocation

2. Block-based allocation

3. Extent-based allocation

III. Disk Block Management

32

1. Contiguous Allocation (1)

❖ Operations

▪ Allocate disk space to files like segmented memory

▪ Make the user specify its length and allocate all the

requested space at once when creating a file

▪ Keep a free list of unused areas (free blocks) of the disk

▪ File descriptor contains

• Location and size of the allocated space

III. Disk Block Management

33

1. Contiguous Allocation (2)

❖ Pros

▪ Both sequential and random accesses are simple and easy

▪ Optimized for seeks (a few seeks)

❖ Cons

▪ Horrible fragmentation will make large files impossible

▪ Hard to predict the needed block size at file creation time

❖ Example: IBM OS/360

III. Disk Block Management

File A File B File C

2 1 3

34

2. Block-based Allocation (1)

❖ Operations

▪ Disk blocks are allocated as they are used

• Minimal number of blocks are allocated to a file in an attempt to

conserve storage space

▪ When a file is extended, blocks are allocated from a free

block map

• Blocks are allocated in a random order

▪ Each file must contain and maintain block allocation

information, often called metadata

• File system metadata is written synchronously to disk

– File size changes must wait for each metadata operation to

complete

– Metadata operations significantly slow down

the overall file system performance

III. Disk Block Management

35

2. Block-based Allocation (2)

❖ Pros

▪ Efficient disk space usage

❖ Cons

▪ Excessive seeks for sequential accesses

▪ Extra disk IO to read and write the metadata

III. Disk Block Management

36

2. Block-based Allocation (3)

❖ Example: Traditional Unix file system (UFS)

III. Disk Block Management

inode

Virtual Disk

37

3. Extent-based Allocation (1)

❖ Extent

▪ A large contiguous area of storage reserved for a file

• Represented as a range of block numbers

– File stores each range compactly as a starting address-size pair,

instead of storing every block number in the range

❖ Operations

▪ Allocate a file an extent when it is created

▪ Allocate a new extent each time the file exhausts

the space available in its last extent

▪ File metadata is written only when a new extent is allocated

• Subsequent data writes do not require additional metadata

writes until the next extent is allocated

III. Disk Block Management

38

3. Extent-based Allocation (2)

❖ Pros

▪ Optimized disk seek patterns

• Efficient for sequential accesses

• Grouping block-writes into extents allows the file system

to issue larger physical disk writes

▪ The amount of file metadata gets smaller

• Files with on a few very large extents require only a small

amount of metadata

❖ Cons

▪ Disk space fragmentation may make it hard to find

consecutive blocks for large extents

III. Disk Block Management

39

3. Extent-based Allocation (3)

❖ Examples: Linux ext4, VxFS, QFS

III. Disk Block Management

inode

Extent 2

Extent 1

Extent 0
7

7

10

40

Free Block Management

❖ Need to efficiently keep track of free blocks

1. Free list

2. Bitmap (AKA bit vector)

III. Disk Block Management

41

1. Free List (1)

❖ Key idea

▪ Free disk blocks are linked together

• A free block contains a pointer to the next free block

• The block number of the very first free disk block is stored

at a separate location on disk and is also cached in memory

• The last free block would contain a null pointer indicating the

end of free list

▪ Used in old Unix file system in 1974

• Major reason behind the poor performance of the file system

III. Disk Block Management

Source: https://www.geeksforgeeks.org/free-space-management-in-operating-system

42

1. Free List (2)

❖ Pros

▪ Simple to implement

▪ Space-efficiency

• No need for extra bookkeeping space

❖ Cons

▪ Poor scalability

• Finding free space becomes slower as the disk fills

▪ Fragmentation

• Due to frequent file creation and deletion

• Slows down

– Finding free space and sequential reads due to excessive seeks

III. Disk Block Management

Source: https://www.geeksforgeeks.org/free-space-management-in-operating-system

43

2. Bitmap (1)

❖ Key idea

▪ Just an array of bits, one per block

• “0” means block allocated, “1” means block free

• For a disk drive with 8 KB block, one-to-64 K compression ratio

• Usually keeps entire bitmap in memory most of the time

▪ Used in enhanced form in most file systems of Linux

III. Disk Block Management

Source: https://en.wikipedia.org/wiki/Free_space_bitmap

44

2. Bitmap (2)

❖ Pros

▪ Simple to implement

• Most CPUs have fast bitmap processing hardware logic

▪ Excellent way to avoid fragmentation since it’s easy

to find a large chunk of free space and allocate it to a file

• Fast random access allocation check

– Simply scanning words in a bitmap for a non-zero word

• Fast deletion

– No need for overwriting on deletion: just flip the bits

▪ Fixed cost

• 2 TB drive could be fully represented with only 64 MB bitmap

III. Disk Block Management

Source: https://en.wikipedia.org/wiki/Free_space_bitmap

45

2. Bitmap (3)

❖ Cons

▪ Wasteful on larger disks

▪ Poor scalability

• Finding free space becomes slower as the disk fills

• Performance drops precipitously on all operations

if bitmap is larger than available memory

▪ Fragmentation

• Due to frequent file creation and deletion

• Slows down file operations

– Finding free space and sequential reads due to excessive seeks

III. Disk Block Management

Source: https://en.wikipedia.org/wiki/Free_space_bitmap

46

2. Bitmap (4)

❖ Enhancements for ever-increasing drive size

▪ Split bitmap into chunks

• Separate array stores the number of free blocks in each chunk

• Chunks with insufficient space are skipped over

• Finding free space entails searching the summary array first,

then searching the associated bitmap chunk for the exact

blocks available

III. Disk Block Management

Source: https://en.wikipedia.org/wiki/Free_space_bitmap

IV. Performance

48

Why File System Performance?

❖ Huge gap between DRAM and disk performance

▪ Representative access time numbers

• Register: 1 cycle (~1 ns)

• Cache: 5~15 ns

• DRAM: 50~150 ns

• SSD: 20~100 𝜇s

• Disk: 5~10 ms

▪ Performance gap: 1,000~100,000 times

• Distance between the earth and the moon

– 363,104 km

• Try to save trips to the moon as much as you can!

IV. Performance

Source: The NASA/NOAA DSCOVR spacecraft captured this in July 2016. (Image credit: NASA/NOAA)

49

How to Improve Performance?

❖ Clues

▪ Lowering the number of real disk accesses

• “Buffer cache”, “page cache” for lowering data block access

• “Inode cache” for lowering inode block access

▪ Reducing average data access time

• Seek optimization to reduces the number of seeks

IV. Performance

50

1. Buffer Cache

❖ Definition

▪ A pool of recently-accessed disk blocks

kept in main memory

❖ Key idea

▪ If the same blocks are referenced over and over,

there’s no need ever to read them from disk

▪ This solves the problem of slow access to large files

▪ How does a block cache compare with virtual memory?

IV. Performance

51

2. Page Cache (1)

❖ Definition

▪ A transparent cache for the pages originating from a disk

❖ Key idea

▪ OS keeps it in otherwise unused portions of the main

memory

• Resulting in quicker access to the contents of cached pages

• Implemented in kernels with the paging memory management

• Mostly transparent to applications

IV. Performance

Source: https://en.wikipedia.org/wiki/Page_cache

52

2. Page Cache (2)

❖ Rationale

▪ OS uses for the page cache physical memory not directly

allocated to applications

• The memory would otherwise be idle and is easily reclaimed

whenever applications request it

– No associated performance penalty

– OS might even report such memory as "free" or "available"

IV. Performance

Source: https://en.wikipedia.org/wiki/Page_cache

53

3. Inode Cache

❖ Definition

▪ A transparent cache for the inodes originating from a disk

❖ Key idea

▪ OS implements it as a hash table

• Points to lists of in-memory inodes with the same hash value

• Calculates hash value from the inumber and the device ID

▪ In-memory inode has a reference counter

• Inode with 0 reference can be a candidate for replacement

• Important inodes such as “/” don’t have 0 reference

IV. Performance

54

4. Seek Optimization

❖ Allocate disk blocks in a way to reduce seeks

▪ Try to allocate next block close to previous blocks of a file

• If disk isn’t full, this will usually work well

• If disk becomes full, this becomes VERY expensive, and

doesn’t get much in the way of adjacency

• Solution

– Keep a reserve (e.g., 10% of disk) and don’t even tell users about it

– Never let the disk get more than 90% full

▪ With multiple surfaces on disk, there are multiple optimal

next blocks in terms of “seek time”

• With 10% of disk free, can almost always use one of them

IV. Performance

V. Reliability

56

Why File System Reliability? (1)

❖ Data persistency – unique property of storage device

▪ File system data structures must persist

despite power loss or system crash

▪ “Crash consistency”

• Updating persistent data structures on disk atomically

despite the presence of a power loss or system crash

• Otherwise, on-disk data structure inconsistency accrues

▪ “Data integrity” or “data protection”

• Ensuring the data put into the disk drive remains the same as

the data returned from the disk, given the unreliable nature of

disk drives

V. Reliability

57

Why File System Reliability? (2)

❖ Crash inconsistency case 1:

▪ Suppose you have to update two on-disk data structures,

A and B, to complete a particular operation

• Ex: Inode and data bitmap

▪ Either one of these requests will reach the disk first

• Disk only services a single request at a time

▪ If the system crashes or loses power after one write

completes but before the other does, the on-disk data

structure will be left in an inconsistent state

V. Reliability

58

Why File System Reliability? (3)

❖ Crash inconsistency case 2:

▪ Metadata updates must be performed atomically

• Deleting a file in a directory

– Remove the directory entry of the file (data block of the directory)

– Free the inode of the file (inode bitmap)

– Free the disk blocks used by the file (data bitmap)

• What will happen if the system crashes after freeing the inode

and before removing the directory entry?

• In traditional file systems, such atomicity is achieved through

synchronous writes – a serious performance penalty

– Not a solution for a power loss, though

V. Reliability

59

Why File System Reliability? (4)

❖ Crash inconsistency case 3:

▪ Metadata inconsistency

• Need to read in inode from disk to access data blocks

• Often maintains in-memory cache of inodes to avoid

performance degradation

• Data inconsistency may occur between in-memory and

on-disk metadata in case of a system crash

– Causes on-disk data structure inconsistency

• Need to scan entire disk blocks to reconstruct

on-disk inodes during system boot after a system crash

– Serious problem for modern disk drives with huge volume

– Lazy approach to file system inconsistency

V. Reliability

60

Tools for File System Reliability

❖ Crash consistency

1. File system checker (fsck) of old Unix

2. Journaling

❖ Data integrity (data protection)

▪ RAID (redundant array of inexpensive disks)

▪ Checksumming

V. Reliability

61

1. File System Checker: fsck (1)

❖ Lazy approach to crash recovery

▪ Let inconsistencies happen and then fix them later,

usually when booting

▪ Implemented by a tool called fsck in Unix

• Run before the file system is mounted

▪ Can’t fix all problems, though

V. Reliability

62

1. File System Checker: fsck (2)

❖ Operations performed by fsck

1. Reads and checks all inodes and

builds a bitmap of used blocks

2. Records inumbers and block addresses of all directories

3. Validates the structure of the directory tree,

making sure that all links are accounted for

4. Validates directory contents to account for all the files

5. If any directories could not be attached to the directory tree
in phase 3, puts them into the lost+found directory

6. If any file could not be attached to a directory, puts it into
the lost+found directory

7. Checks the bitmaps and summary counts

of each cylinder group

V. Reliability

63

2. Journaling (1)

❖ Is “write-ahead logging”

▪ An approach taken from the DBMS world

• When updating on-disk data structures, first writes down a “log”

somewhere else on the disk, in a well-known location

– Log is a little note describing what you are about to do

– Writing this log is the “write-ahead” part

• Writing the log to disk guarantees the update even in the

presence of a crash

– Can go back and look at the log and know exactly what to fix (and

how to fix it) after a crash

• By design, journaling adds a bit of work during updates

– No need to scan the entire disk

– Greatly reduces the amount of work required during recovery

V. Reliability

64

2. Journaling (2)

❖ Representative file systems utilizing journaling

▪ Linux ext3, ext4, ReiserFS, IBM’s JFS, SGI’s XFS, NTFS

• ext2 lacks journaling

• ext3 supports journaling

V. Reliability

Boot

Area

Block

Group
Superblock

Block

Group

Block

Group

Boot

Area

Block

Group

Super

block

Block

Group

Block

Group
Journal

VI. Evolution of Unix File Systems

66

Unix File Systems

❖ Unix file systems have evolved

1. Old Unix file system (FS or s5fs) in 1974

2. Berkeley fast file system (FFS, often called UFS) in 1984

3. Log-structured file system (LFS) in 1991

4. ext2, ext3 file system in 1993~present

5. Sun’s network file system (NFS)

6. Sun’s virtual file system (VFS)

7. And many more

VI. Evolution of Unix File Systems

67

1. S5FS (1)

❖ Developed by Ken Thomson in 1972

▪ When Unix was first introduced

❖ File system structure

▪ File system resides on a single logical disk (partition)

▪ Each file system is self-contained

▪ A partition is a linear array of disk blocks

▪ The size of a block is 512 bytes multiplied by some power of

two (512, 1024, or 2048 bytes)

▪ The physical block number – an index into this array –

uniquely identifies a block on a given disk partition

VI. Evolution of Unix File Systems

68

1. S5FS (2)

❖ On-disk layout

▪ Boot area: may be empty

▪ Superblock: holds the metadata of the file system itself

▪ Inode list: fixed sized array of inodes

▪ Data blocks: holds files, directories, and indirect blocks

VI. Evolution of Unix File Systems

Boot

Area
Superblock Inode List Data Blocks

69

1. S5FS (3)

❖ Superblock

▪ Size in blocks of the file system

▪ Size in blocks of the inode list

▪ Number of free blocks and indoes

▪ Free block list

▪ Free inode list

VI. Evolution of Unix File Systems

70

1. S5FS (4)

❖ Drawbacks

▪ Reliability concern on superblock

• Each file system contains a single copy of its superblock

▪ Low performance

• Performance started off bad and got worse over time, to the

point where delivering only 2% of overall disk bandwidth

• Accessing a file requires reading the inode and the file data

• Inode is allocated far away from its data

• No attempt to group related inodes (files in the same directory)

– Example: ls -l

▪ Suboptimal disk allocation

• After heavy use, the order of blocks in the free block list is

completely random

VI. Evolution of Unix File Systems

71

1. S5FS (5)

❖ Drawbacks (cont’d)

▪ Limitations on functionality

• Max 14 characters for file names

• Max 65535 inodes per file system

▪ Reason for the poor performance

• Treated disk like a random-access memory

– Data was spread all over the place without regard to the fact that the

medium holding the data was a disk

– Thus, had real and expensive positioning costs

VI. Evolution of Unix File Systems

72

2. FFS (1)

❖ Background

▪ Developed by a group at U. C. Berkeley in 1984

• To overcome the limitations of FS

▪ Key idea

• Disk awareness

– Design the file system structures and allocation policies

considering that the underlying storage device is a disk drive

VI. Evolution of Unix File Systems

73

2. FFS (2)

❖ On-disk organization

▪ A formatted partition holds a self-contained file system

▪ FFS divides the partition into one or more “cylinder groups”

▪ Superblock is divided into two structures

• FFS superblock

– No., sizes and locations of cylinder groups

– Block size, total no of blocks and inodes

– Never change unless the file system is rebuilt

• Per-cylinder group superblock

VI. Evolution of Unix File Systems

Boot

Area

Cylinder

Group
Superblock

Cylinder

Group

Cylinder

Group

74

2. FFS (3)

❖ On-disk organization (cont’d)

▪ Cylinder group

• Contains a small set of consecutive cylinders

– Allows FFS to store related files in the same cylinder group,

thus minimizing disk head movements

• Has the following formatted structure

• “Keeps related stuff together!” – How to find related stuff?

– Allocates the data blocks and inode of a file in the same group

– Places all files in a directory along with the directory itself

in the cylinder group

VI. Evolution of Unix File Systems

Super

block
Inodes Data Blocks

Inode

Bitmap

Data

Bitmap

75

2. FFS (4)

❖ On-disk organization (cont’d)

▪ Cylinder group (cont’d)

• Per-cylinder group superblock

– Data structure for the particular cylinder group

– Duplicate copy of the superblock

• FFS maintains these duplicates at different offsets in each cylinder

group in such a way that no single track, cylinder, or platter

contains all copies of the superblock

VI. Evolution of Unix File Systems

76

2. FFS (5)

❖ On-disk organization (cont’d)

▪ FFS used 4 KB blocks

• Many files were small in size, smaller than 2 KB

– Could incur internal fragmentation

▪ Blocks were subdivided into sub-blocks called “fragments”

▪ Fragments

• Blocks can be broken optionally into 2, 4, 8 fragments

• Lower bound on the fragment size is the disk sector size

• Addressable

• Unit of allocation and allocated in a contiguous manner

• If a block is fragmented, the fragments of the block can be

allocated to different files

VI. Evolution of Unix File Systems

77

2. FFS (6)

❖ On-disk organization (cont’d)

▪ Suppose you create a small file of 1 KB in size

• The file occupies two fragments of 512 bytes

• As the file grows, FFS continues allocating fragments to it

until it acquires a full 4-KB of data

• FFS finds a 4-KB block, copies the fragments into it

and free the fragments for future use

VI. Evolution of Unix File Systems

78

2. FFS (7)

❖ Heuristics for allocating ordinary files

▪ Attempts to place the inodes of all files of a single directory

in the same cylinder group

▪ Creates each new directory in a different cylinder group from

its parent, so as to distribute data uniformly over the disk

▪ Tries to place the data blocks of a file in the same cylinder

group as the inode

VI. Evolution of Unix File Systems

79

2. FFS (8)

❖ Heuristics for allocating large files

▪ Without an exception to the basic FFS heuristics,

• A large file would entirely fill the first cylinder group

– Undesirable, as it prevents subsequent “related” files from being

placed within the cylinder group

▪ Allocates some number of blocks into the first cylinder group

• E.g., 12 blocks, or the number of direct pointers within an inode

▪ Places the next “large” chunk in another cylinder group

• E.g., those pointed to by the first indirect block

– Perhaps chosen for its low utilization

▪ Places the next chunk in yet another different cylinder group

VI. Evolution of Unix File Systems

80

2. FFS (9)

❖ Heuristics for allocating large files (cont’d)

▪ Changes the cylinder group when the file size reaches 48

KB and again at every megabyte

• The 48 KB mark was chosen because the inode’s direct block

entries describe the first 48 KB (12×4 KB blocks)

VI. Evolution of Unix File Systems

file2

file1file1

file3C
y
lin

d
e
r

G
ro

u
p

C
y
lin

d
e
r

G
ro

u
p

C
y
lin

d
e
r

G
ro

u
p

file1

file2

file3

81

2. FFS (10)

❖ Allocate sequential blocks of a file at rotationally

optimal position

▪ The rotdelay factor or disk’s interleave

• The time it takes for the kernel to issue the next read and

computes the number of sectors the disk head passes over in

that time

▪ Blocks are interleaved on disk such that consecutive logical
blocks are separated by rotdelay blocks on that track

VI. Evolution of Unix File Systems

05

3

6

14

7

28 sectors/track

rotdelay = 2

82

2. FFS (11)

❖ Functionality enhancements

▪ Long file names

• The max size of the filename is 256 characters

▪ Symbolic links

▪ Disk quota

• Applies to both inodes and disk blocks

• Have both a soft limit and a hard limit

VI. Evolution of Unix File Systems

83

2. FFS (12)

❖ Comparison with S5FS

▪ Performance gain

• Read throughput:

– 29 KB/s (1 KB blocks in S5FS) vs.

221 KB/s (4 KB blocks and 1 KB fragments in FFS)

• Write throughput

– 48 KB/s vs. 142 KB/s

▪ Disk space wastage

• With free space reserve of 5%, the percentage of waste in

S5FS with 1 KB blocks approximately equals that in FFS with 4

KB blocks and 512 B fragments

VI. Evolution of Unix File Systems

84

2. FFS (13)

❖ Limitations

▪ Performance

• Problem in sequential reads

• Predominance of writes

▪ Slow crash recovery

• “fsck” causes unacceptable crash recovery time

▪ Limited security policies and mechanisms

▪ Size restrictions

VI. Evolution of Unix File Systems

85

3. LFS (1)

❖ Background

▪ Developed by John Ousterhout and Mendel Rosenblum

at U. C. Berkeley in 1991

• To address the new trends in computer systems

– Memory sizes were growing

– A large and growing gap between random I/O performance and

sequential I/O performance

– Existing file systems perform poorly on many common workloads

▪ Key idea

• First buffers all updates in an in-memory segment

• Writes the segment to disk in one, long, sequential transfer to

an unused part of the disk when the segment is full

– Never overwrites existing data, but rather writes segments to free

locations

VI. Evolution of Unix File Systems

86

3. LFS (2)

❖ Basic concepts

▪ Record all file system changes in an append-only log file

▪ The log is written sequentially, in large chunks at a time

• Results in efficient disk utilization and high performance

– Making all writes sequential writes

• After a crash, only the tail of the log needs to be examined

• Results in quick recovery and high reliability

VI. Evolution of Unix File Systems

87

3. LFS (3)

❖ Design considerations

▪ What to log

• Operations or values

▪ Redo and undo logs

▪ Garbage collection

▪ Group commit

▪ Retrieval

VI. Evolution of Unix File Systems

VII. Disk Scheduling

89

File System inside the Kernel

❖ Recall the file system structure

VII. Disk Scheduling

Virtual File System (VFS) Layer

File I/O File I/O
User Space

Kernel Space

Individual File Systems (ext3, ext4, JFFS2, ReiserFS, VFAT, …)

Buffer Cache (Page Cache)

I/O Schedulers

Block Driver
Block Driver

(FTL)

Disk
Flash

Flash

Kernel Space

Storage Media

···

Request Queue Request Queue

90

Why Disk Scheduling? (1)

❖ Block I/O scheduling

▪ Several outstanding disk I/O requests frequently exist

at the same time in time-sharing OS

▪ Gives rise to the “block I/O” or “disk I/O” scheduler

VII. Disk Scheduling

Request Queue

Block I/O
Request Producer

Block Layer

Elevator Layer

I/O Scheduler

Device Driver
(FTL)

Block Device
(Flash Memory)

91

Why Disk Scheduling? (2)

❖ Ordering of disk I/O requests in the queue

affects file system performance

▪ When sector read requests arrive at “1, 5, 2, 4, 3” order

▪ When the requests are reordered as “1, 2, 3, 4, 5”

VII. Disk Scheduling

1 2 3 4 5
①

②

③

④

⑤

Total 10 seeks

1 2 3 4 5
① ② ③ ④ ⑤

Total 4 seeks

92

Why Disk Scheduling? (3)

❖ Disk scheduling algorithms

▪ Goals

• Performance

– Disk response time must be low

– Access throughput must be high

• Fairness

– Must guarantee free of starvation

VII. Disk Scheduling

Source: https://www.geeksforgeeks.org/disk-scheduling-algorithms

93

Scheduling Algorithms (1)

1. First come first served (FCFS, FIFO)

▪ May result in a lot of unnecessary disk arm motion under

heavy loads

2. Shortest seek time first (SSTF)

▪ Handle nearest request first

▪ Can reduce arm movement and result in greater overall disk

efficiency, but some requests may have to wait a long time

• Severe starvation

▪ It is cumbersome to use track number in I/O scheduling;

use block number, instead

• Nearest block first (NBF)

VII. Disk Scheduling

94

Scheduling Algorithms (2)

3. Scan (SCAN)

▪ Moves arm back and forth, handling requests as they are

passed (like an elevator)

▪ Doesn’t get hung up in any place for very long

▪ Works well under heavy load, but not as well in the middle

(about ½ the time it won’t get the shortest seek)

4. Circular scan (C-SCAN)

▪ Consider the both ends of the linear sequence of tracks are

connected, thus forming a circle

▪ Moves arm in one direction in the circle

▪ Attempts to achieve fairness for boundary tracks

VII. Disk Scheduling

95

Scheduling Algorithms (3)

❖ Example

▪ Requested cylinder numbers 0, 53, 14, 27, 2, 31, 85, 30

when head is at 1 initially

▪ FCFS: 0, 53, 14, 27, 2, 31, 85, 30

• Total seek distance: 269

▪ SSTF: 0, 2, 14, 27, 30, 31, 53, 85

• Total seek distance: 86

▪ SCAN: 2, 14, 27, 30, 31, 53, 85, 0

• Total seek distance: 169

▪ C-SCAN: 2, 14, 27, 30, 31, 53, 85, 0

• Total seek distance: 169

VII. Disk Scheduling

96

Scheduling Algorithms (4)

❖ Further issues

▪ Many more possible scheduling algorithms

• LOOK algorithm – a variant of C-SCAN

– Instead of going to the end, goes only to the last request to be

serviced in front of head and then reverses its direction from there

▪ Newer disks require looking at rotational latencies as well

• Shortest positioning time first (SPTF)

AKA shortest access time first (SATF)

▪ Most of the time there are not very many disk requests in the

queue, so this is not a terribly important decision

▪ New storage devices have emerged

• Flash drives need new scheduling strategies very different from

those of disk drives

VII. Disk Scheduling

