Shells

* Ritz Analysis

> Just consider bending in general,

$$
\begin{aligned}
& u_{0}=\sum_{i=1}^{n_{u}} \varphi_{u_{i}}(x, y) q_{u_{i}}(t) \\
& v_{0}=\sum \varphi_{v_{i}}(x, y) q_{v_{i}}(t) \\
& w_{0}=\sum \varphi_{w_{i}}(x, y) q_{w_{i}}(t) \\
& {[B]=0}
\end{aligned}
$$

- Shell

Assume the following

$$
\begin{aligned}
& u=u_{0}\left(\alpha_{1}, \alpha_{2}\right)+z \beta_{1}\left(\alpha_{1}, \alpha_{2}\right) \\
& v=v_{0}\left(\alpha_{1}, \alpha_{2}\right)+z \beta_{2}\left(\alpha_{1}, \alpha_{2}\right) \\
& w=w_{0}\left(\alpha_{1}, \alpha_{2}\right)
\end{aligned}
$$

Plug into expression for

$$
S_{5}, S_{4}, \text { etc }=0
$$

Shells

- to solve for β_{1}, β_{2}

$$
\begin{aligned}
& \beta_{1}=\frac{u_{0}}{R_{1}}-\frac{1}{A_{1}} \frac{\partial w_{0}}{\partial \alpha_{1}} \\
& \beta_{2}=\frac{v_{0}}{R_{1}}-\frac{1}{A_{2}} \frac{\partial w_{0}}{\partial \alpha_{2}} \\
& {\left[\begin{array}{l}
S_{1} \\
S_{2} \\
S_{6}
\end{array}\right]=\Delta_{1}\left[\begin{array}{l}
S_{1}^{0} \\
S_{2}^{0} \\
S_{12}^{0} \\
S_{21}^{0}
\end{array}\right]+z \Delta_{1}\left[\begin{array}{l}
\kappa_{1} \\
\kappa_{2} \\
\kappa_{12} \\
\kappa_{21}
\end{array}\right] \quad \Delta_{1}=\left[\begin{array}{llll}
\frac{1}{\varphi_{1}} & & \\
& \frac{1}{\varphi_{2}} & & \\
& & & \\
& & \frac{1}{\varphi_{1}} & \frac{1}{\varphi_{2}}
\end{array}\right]} \\
& S_{3} \approx 0 \\
& S_{4}=S_{5}=0 \\
& S_{1}^{0}=\frac{1}{A_{1}} \frac{\partial u_{0}}{\partial \alpha_{1}}+\frac{v_{0}}{A_{1} A_{2}} \frac{\partial A_{1}}{\partial \alpha_{2}}+\frac{w_{0}}{R_{1}} \\
& S_{2}^{0}=\frac{1}{A_{2}} \frac{\partial v_{0}}{\partial \alpha_{2}}+\frac{u_{0}}{A_{1} A_{2}} \frac{\partial A_{2}}{\partial \alpha_{1}}+\frac{w_{0}}{R_{2}}
\end{aligned}
$$

Shells

$$
\begin{aligned}
& S_{12}^{0}=\frac{1}{A_{1}} \frac{\partial v_{0}}{\partial \alpha_{1}}-\frac{u_{0}}{A_{1} A_{2}} \frac{\partial A_{1}}{\partial \alpha_{2}} \\
& S_{21}^{0}=\frac{1}{A_{1}} \frac{\partial v_{0}}{\partial \alpha_{1}}-\frac{v_{0}}{A_{1} A_{2}} \frac{\partial A_{2}}{\partial \alpha_{1}} \\
& S_{6}^{0}=S_{12}^{0}+S_{21}^{0} \\
& S_{6}=\frac{1}{\varphi_{1} \varphi_{2}}\left[\left(1-\frac{z^{2}}{R_{1} R_{2}}\right) S_{6}^{0}+z\left(1+\frac{z}{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)\right) \kappa_{6}^{0}\right] \\
& \kappa_{6}^{0}=2\left(\kappa_{12}^{0}+\frac{S_{21}^{0}}{R_{1}}\right)=2\left(\kappa_{21}^{0}+\frac{S_{12}^{0}}{R_{2}}\right) \\
& \kappa_{1}^{0}=\frac{1}{A_{1}} \frac{\partial \beta_{1}}{\partial \alpha_{1}}+\frac{\beta_{2}}{A_{1} A_{2}} \frac{\partial A_{1}}{\partial \alpha_{2}} \\
& \kappa_{2}^{0}=\frac{1}{A_{2}} \frac{\partial \beta_{2}}{\partial \alpha_{2}}+\frac{\beta_{1}}{A_{1} A_{2}} \frac{\partial A_{2}}{\partial \alpha_{1}} \\
& \kappa_{12}^{0}=\frac{1}{A_{1}} \frac{\partial \beta_{2}}{\partial \alpha_{1}}-\frac{\beta_{1}}{A_{1} A_{2}} \frac{\partial A_{1}}{\partial \alpha_{2}} \\
& \kappa_{21}^{0}=\frac{1}{A_{2}} \frac{\partial \beta_{1}}{\partial \alpha_{2}}-\frac{\beta_{2}}{A_{1} A_{2}} \frac{\partial A_{1}}{\partial \alpha_{1}}
\end{aligned}
$$

Shells

$$
\begin{aligned}
& {\left[\begin{array}{l}
S_{1} \\
S_{2} \\
S_{6}
\end{array}\right]=\Delta_{1}^{\prime}\left[\begin{array}{l}
S_{1}^{0} \\
S_{2}^{0} \\
S_{6}^{0}
\end{array}\right]+z \Delta_{1}^{\prime \prime}\left[\begin{array}{l}
\kappa_{1}^{0} \\
\kappa_{2}^{0} \\
\kappa_{6}^{0}
\end{array}\right]} \\
& \Delta_{1}^{\prime}=\left[\begin{array}{ccc}
\frac{1}{\varphi_{1}} & 0 & 0 \\
0 & \frac{1}{\varphi_{2}} & 0 \\
0 & 0 & \frac{1}{\varphi_{1} \varphi_{2}}\left(1-\frac{z^{2}}{R_{1} R_{2}}\right)
\end{array}\right], \quad\left[\begin{array}{ccc}
\frac{1}{\varphi_{1}} & 0 & 0 \\
0 & \frac{1}{\varphi_{2}} & 0 \\
0 & 0 & \frac{1}{\varphi_{1} \varphi_{2}}\left(1+\frac{z}{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)\right.
\end{array}\right]
\end{aligned}
$$

- Introducing the stress-strain relations for a lamina (plane stress)

$$
\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{6}
\end{array}\right]=\left[\begin{array}{lll}
c_{11}^{E} & c_{12}^{E} & c_{16}^{E} \\
c_{12}^{E} & c_{22}^{E} & c_{26}^{E} \\
c_{16}^{E} & c_{26}^{E} & c_{66}^{E}
\end{array}\right]\left[\begin{array}{l}
S_{1} \\
S_{2} \\
S_{6}
\end{array}\right]-\left[\begin{array}{l}
e_{13} \\
e_{23} \\
e_{33}
\end{array}\right] E_{3}
$$

\rightarrow in force aligned with $\left(\overrightarrow{\alpha_{1}}, \overrightarrow{\alpha_{2}}, \vec{n}\right)$
\rightarrow plane stress properties

$$
\left[\begin{array}{l}
T_{1}^{E} \\
T_{2}^{E} \\
T_{6}^{E}
\end{array}\right]
$$

Shells

$$
\begin{aligned}
& {\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{6}
\end{array}\right]=[c]\left[\Delta_{1}\right]\left[\begin{array}{c}
S_{1}^{0} \\
S_{2}^{0} \\
S_{12}^{0} \\
S_{21}^{0}
\end{array}\right]+Z[c] \Delta_{1}\left[\begin{array}{c}
K_{2} \\
K_{12} \\
K_{12} \\
K_{21}
\end{array}\right]-\left[\begin{array}{c}
K_{1} \\
T_{2}^{E} \\
T_{6}^{E}
\end{array}\right]} \\
& {[T]=[c]\left[\Delta_{1} \quad 2 \Delta_{1}\right]\left[\begin{array}{l}
S_{0} \\
K
\end{array}\right]-\left[T^{E}\right]}
\end{aligned}
$$

- Note you also have

$$
\left[\begin{array}{c}
S_{0} \\
\kappa
\end{array}\right]=\underbrace{[\Omega][\theta]}_{\underbrace{\swarrow}}\left[\begin{array}{c}
u^{0} \\
v^{0} \\
w^{0}
\end{array}\right] \quad \begin{gathered}
\text { Refer to } \\
\text { "Jiferential } \\
\text { operator for shell theory }
\end{gathered}
$$

Shells

- Stress resultants concisely

$$
\begin{aligned}
& {\left[\begin{array}{ll}
N_{1} & M_{1}
\end{array}\right]=\int_{-h / 2}^{h / 2} T_{1} \varphi_{2}\left[\begin{array}{ll}
1 & z
\end{array}\right] d z} \\
& {\left[\begin{array}{ll}
N_{2} & M_{2}
\end{array}\right]=\int T_{2} \varphi_{1}\left[\begin{array}{ll}
1 & z
\end{array}\right] d z} \\
& {\left[\begin{array}{ll}
N_{12} & M_{12}
\end{array}\right]=\int T_{6}\left[\begin{array}{ll}
1 & z
\end{array}\right] \varphi_{2} d z} \\
& {\left[\begin{array}{ll}
N_{21} & M_{21}
\end{array}\right]=\int T_{6}\left[\begin{array}{ll}
1 & z
\end{array}\right] \varphi_{1} d z} \\
& {\left[\begin{array}{l}
N \\
M
\end{array}\right]=\int\left[\begin{array}{c}
\Delta_{2} \\
z \Delta_{2}
\end{array}\right]\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{6}
\end{array}\right] d z,}
\end{aligned} \Delta_{2}=\left[\begin{array}{lll}
\varphi_{2} & \\
& \varphi_{1} & \\
& & \varphi_{2} \\
& \varphi_{1}
\end{array}\right] \quad \begin{aligned}
& \Delta_{2} \neq \Delta_{1}^{T} \\
& \Delta_{2}=\varphi_{1} \varphi_{2} \Delta_{1}^{T}
\end{aligned}
$$

Shells

in contracted notation

$$
\begin{aligned}
& N_{6}=\frac{1}{2}\left(N_{12}-\frac{M_{21}}{R_{2}}+N_{21}-\frac{M_{12}}{R_{1}}\right) \\
& M_{6}=\frac{1}{2}\left(M_{12}+M_{21}\right) \\
& {\left[\begin{array}{c}
N^{\prime} \\
M^{\prime}
\end{array}\right]=\int\left[\begin{array}{c}
\Delta_{2}^{\prime} \\
z \Delta_{2}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{6}
\end{array}\right] d z} \\
& \Delta_{2}^{\prime}=\left[\begin{array}{ccc}
\varphi_{2} & 0 & 0 \\
0 & \varphi_{1} & 0 \\
0 & 0 & \frac{\varphi_{2}+\varphi_{1}}{2}-\frac{1}{2}\left(\frac{\varphi_{1}}{R_{1}}+\frac{\varphi_{2}}{R_{2}}\right)
\end{array}\right] \\
& \Delta_{2}^{\prime \prime}=\left[\begin{array}{ccc}
\varphi_{1} & 0 & 0 \\
0 & \varphi_{1} & 0 \\
0 & 0 & \frac{\varphi_{2}+\varphi_{1}}{2}
\end{array}\right]
\end{aligned}
$$

Shells

Equivalent Electrically induced stress resultants

$$
\begin{aligned}
& {\left[\begin{array}{c}
N^{E} \\
M^{E}
\end{array}\right]=\int\left[\begin{array}{c}
\Delta_{2} \\
z \Delta_{2}
\end{array}\right]\left[\begin{array}{l}
T_{1}^{E} \\
T_{2}^{E} \\
T_{6}^{E}
\end{array}\right] d z} \\
& {\left[\begin{array}{l}
N^{E^{\prime}} \\
M^{E^{\prime}}
\end{array}\right]=\int\left[\begin{array}{c}
\Delta_{2}^{\prime} \\
z \Delta_{2}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
T_{1}^{E} \\
T_{2}^{E} \\
T_{6}^{E}
\end{array}\right] d z}
\end{aligned}
$$

Plugging in expression for stresses

$$
\begin{aligned}
& {\left[\begin{array}{c}
N \\
M
\end{array}\right]_{8 \times 1}=\left\{\int\left[\begin{array}{c}
\Delta_{2} \\
z \Delta_{2}
\end{array}\right]\left[\begin{array}{ll}
\left.c]\left[\begin{array}{ll}
\Delta_{1} & z \Delta_{1}
\end{array}\right] d z\right\}\left[\begin{array}{c}
S^{0} \\
\kappa
\end{array}\right]-\left[\begin{array}{c}
N^{E} \\
M^{E}
\end{array}\right] \\
{\left[\begin{array}{c}
N^{\prime} \\
M^{\prime}
\end{array}\right]=\left\{\int\left[\begin{array}{c}
\Delta_{2}^{\prime} \\
z \Delta_{2}^{\prime \prime}
\end{array}\right]\left[\begin{array}{ll}
c
\end{array}\right]\left[\begin{array}{ll}
\Delta_{1}^{\prime} & z \Delta_{1}^{\prime \prime}
\end{array}\right] d z\right\}} \\
6 \times 6
\end{array}\right\}\left[\begin{array}{c}
S^{0} \\
\kappa^{0^{\prime}}
\end{array}\right]-\left[\begin{array}{c}
N^{E^{\prime}} \\
M^{E^{\prime}}
\end{array}\right]\right.}
\end{aligned}
$$

Shells

Shells (continued)

$$
\begin{aligned}
& {\left[\begin{array}{c}
N \\
M
\end{array}\right]=\left\{\int\left[\begin{array}{c}
\Delta_{2} \\
z \Delta_{2}
\end{array}\right]\left[\begin{array}{ll}
c
\end{array}\right]\left[\begin{array}{ll}
\Delta_{1} & z \Delta_{1}
\end{array}\right] d z\right\}\left[\begin{array}{c}
S^{0} \\
\kappa
\end{array}\right]-\left[\begin{array}{c}
N^{E} \\
M^{E}
\end{array}\right]} \\
& \text { Section properties } 8 \times 88 \times 1
\end{aligned}
$$

We can write

$$
\begin{aligned}
& {\left[\begin{array}{c}
N \\
M
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
B & D
\end{array}\right]\left[\begin{array}{l}
S^{0} \\
\kappa
\end{array}\right]-\left[\begin{array}{l}
N^{E} \\
M^{E}
\end{array}\right]} \\
& A=\int \Delta_{2} c \Delta_{1}=A^{T} \\
& B=\int z \Delta_{2} c \Delta_{1} \\
& D=\int z^{2} \Delta_{2} c \Delta_{1} \\
& \Delta_{2}=\varphi_{1} \varphi_{2} \Delta_{1}^{T} \\
& A=\int \Delta_{1}^{T} c \Delta_{1} \varphi_{1} \varphi_{2} d z \\
& B=\int z \Delta_{1}^{T} c \Delta_{1} \varphi_{1} \varphi_{2} d z \\
& D=\int z^{2} \\
& \cdots
\end{aligned} d z
$$

Shells

- Total Potential Energy

$$
\begin{aligned}
& \delta U=\int_{\alpha_{1}} \int_{\alpha_{2}}\left\{\left[\begin{array}{ll}
N & M
\end{array}\right]\left[\begin{array}{c}
\delta S^{0} \\
\delta \kappa
\end{array}\right]\right\} A_{1} A_{2} d \alpha_{1} d \alpha_{2} \\
& \delta U=\int_{\alpha_{1}} \int_{\alpha_{2}}\left\{\left[\begin{array}{ll}
S^{0} & \kappa
\end{array}\right]\left[\begin{array}{ll}
A & B \\
B & D
\end{array}\right]\left[\begin{array}{c}
\delta S^{0} \\
\delta \kappa
\end{array}\right]-\left[\begin{array}{ll}
N^{E} & M^{E}
\end{array}\right]\left[\begin{array}{c}
\delta S^{0} \\
\delta \kappa
\end{array}\right]\right\} A_{1} A_{2} d \alpha_{1} d \alpha_{2}
\end{aligned}
$$

- Kinetic Energy

$$
\begin{aligned}
& \delta T=\int_{V}\left[\begin{array}{lll}
\dot{u} & \dot{v} & \dot{w}
\end{array}\right] \rho\left[\begin{array}{c}
\delta \dot{u} \\
\delta \dot{v} \\
\delta \dot{w}
\end{array}\right] d V=\int_{V}\left[\begin{array}{lll}
\dot{u}^{0} & \dot{v}^{0} & \dot{w}^{0}
\end{array}\right] \rho\left[\begin{array}{c}
\delta \dot{u}^{0} \\
\delta \dot{v}^{0} \\
\delta \dot{w}^{0}
\end{array}\right] d V \\
& \int_{V}=\iint_{\alpha_{1}} \int_{\alpha_{2}}(\\
&) A_{1} A_{2} \varphi_{1} \varphi_{2} d \alpha_{1} d \alpha_{2} d z
\end{aligned}
$$

If assume $\varphi_{1} \varphi_{2} \simeq 1$

$$
\delta T=\int_{\alpha_{1}} \int_{\alpha_{2}} \rho h\left[\begin{array}{lll}
\dot{u}^{0} & \dot{v}^{0} & \dot{w}^{0}
\end{array}\right]\left[\begin{array}{c}
\delta \dot{u}^{0} \\
\delta \dot{v}^{0} \\
\delta \dot{w}^{0}
\end{array}\right] A_{1} A_{2} d \alpha_{1} d \alpha_{2}
$$

Shells

If assume $\varphi_{1} \varphi_{2} \neq 1$
Let $h=h^{\prime}=\int_{-h / 2}^{h / 2} \rho / \rho_{0} \varphi_{1} \varphi_{2} d z$

- Work term
equivalent forces/area in α_{1}, α_{2}, zdirection called F_{1}, F_{2}, F_{3} then

$$
\delta W=\int_{\alpha_{1}} \int_{\alpha_{1}}\left(F_{1} \delta u^{0}+F_{2} \delta v^{0}+F_{3} \delta w^{0}\right) A_{1} A_{2} d \alpha_{1} d \alpha_{2}
$$

- Approximate solution by Rayleigh-Ritz

$$
\left[\begin{array}{c}
S^{0} \\
\kappa
\end{array}\right]=\underbrace{\Omega\rceil[\theta]}_{\Lambda_{u}}\left[\begin{array}{c}
u^{0} \\
v^{0} \\
w^{0}
\end{array}\right]
$$

Shells

Plugging into Energy,

$$
\begin{aligned}
\delta U=\int_{\alpha_{1}} \int_{\alpha_{2}} & \left\{\begin{array}{lll}
{\left[\begin{array}{lll}
u^{0} & v^{0} & w^{0}
\end{array}\right][\theta]^{T}[\Omega]^{T}\left[\begin{array}{cc}
A & B \\
B & D
\end{array}\right][\Omega][\theta]\left[\begin{array}{c}
\delta u^{0} \\
\delta v^{0} \\
\delta w^{0}
\end{array}\right]} \\
\alpha_{1}, \alpha_{2}, z \\
& \left.-\left[\begin{array}{ll}
N^{E} & M^{E}
\end{array}\right] \Omega \theta\left[\begin{array}{c}
\delta u^{0} \\
\delta v^{0} \\
\delta w^{0}
\end{array}\right]\right\}
\end{array}\right\}\left\{\begin{array}{l}
A_{1} d \alpha_{1} d \alpha_{2}
\end{array}, l\right.
\end{aligned}
$$

Ritz solution

$$
\begin{aligned}
& {\left[\begin{array}{c}
u^{0} \\
v^{0} \\
w^{0}
\end{array}\right]=\psi_{v}\left(\alpha_{1}, \alpha_{2}\right) \vec{r}=\sum_{i=1}^{n} \psi_{u_{i}}\left(\alpha_{1}, \alpha_{2}\right) r_{i}} \\
& \delta u=\underbrace{r^{T}}_{\text {Stiffness matrix }}] \delta r
\end{aligned}
$$

