Micro Electro Mechanical Systems for mechanical engineering applications

Lecture 9:

(Bio)MEMS fabrication: Bonding and Packaging techniques

Kahp-Yang Suh

Assistant Professor SNU MAE sky4u@snu.ac.kr

Wafer Bonding

- Direct bonding fabrication
 - Anodic bonding
 - Fusion bonding
- Indirect bonding fabrication
 - Eutectic bonding
 - Epoxy bonding

Wafer Bonding Example

- Combine complex shapes from multiple wafers
- Si-Si wafers
 - Low temp (450°C)
 - Fusion high temp (1000°C)
 - Adhesive epoxy, PR
- Si-Glass wafers
 - Anodic low temp, high voltage (700V)

M. Schmidt, 2000

Anodic Bonding (1)

- Electrostatic bonding or field-assisted (thermal) bonding
- Bonding between Si wafer and glass with lots of Na+
- Merits
 - Good adhesive strength
 - Glass bonding: Optical transparency
 - Vacuum hermetic sealing possible
- Demerits
 - Outgas (H2) emerges at the bonding interface
 - Possibility to destroy circuit devices due to strong electric field which was produced when bonding
 - Sodium ion is incompatible with CMOS

Anodic Bonding (2)

- Principle of Anodic bonding
 - Sodium ions move to the cathode
 - Silicon wafer is positively charged
 - Strong electric field appears at the interface between silicon wafer and glass
 - Chemical reaction at the interface form a strong bonding (covalent bond)

Figure 2: The Anodic Bonding Process between Silicon and Pyrex 7740 glass

Anodic bonding

Fusion Bonding (1)

- Thermally fused
- Flatness and cleaning is very important
- Less thermal mismatch and simpler, easier and cheaper than other bonding
- It is important to make the surface hydrophilic before bonding, and the surface must be polished like mirror

Fusion Bonding (2)

Process of Fusion bonding

- Roughness<10Å
- Cleaning surface form hydrate surface

Fusion Bonding (3)

- Room temp. ~ 300 0C
 - Hydrogen bond and initial bond between two substrates occur
- 300 0C ~ 700 0C
 - H2O molecules go out
 - Hydrogen bond by OH (bonding start)
- 700 0C ~ 1000 0C
 - Oxygen molecules participate in bonding
 - Elasticity of Si substrate increases and bonding starts at the interface which is not combined yet
- Over 1000 0C
 - Viscous flow of oxide film occurs due to oxygen molecules
 - Elements at the interface diffuse into inside and outside and become extinct
 - Very high bonding strength

Eutectic Bonding (1)

- Intermediate layer bonding
- Reactive metal bonding
- Melting point lowers in eutectic alloy state
 - Sn: 231.9 0C, Pb: 327.4 0C, Sn/Pb: 183 0C
 - Si: 1410 0C, Au: 1064.4 0C, Si/Au: 363 0C
 - There exists a thin liquid layer at the interface.
 - Diffuse into another layer over eutectic temperature
- Au/Si Eutectic alloy
 - Gold layer diffuses into silicon over eutectic temperature
 - Eutectic ally: 97.1% Au, 2.84% Si
 - T (eutectic point):363 0C

Eutectic Bonding Au/Si (2)

- Removal of the oxide on the surface of Si
- Gold deposition
 - Bare Si + Au/Si +Au/Si
- Removal of organic compounds
- Temperature: about 363 °C
- Bonding by diffusion of Au into Si

Figure 4: Au/Si eutectic bonding and test for bonding strength.

SiN to SiN Bonding

- Bonding of Silicon nitride to silicon nitride surfaces at 90 ~ 300 °C
- Plasma enhanced LPCVD Silicon nitride
- Wafer flatness and surface roughness is important
- Mechanism
 - Si-N-H + N-H-Si <---> Si-2N-Si + H₂

Other Bonding

- SiN to SiN bonding
- Press bonding
- Thermal compressive metallic bonding
- Welding
- Epoxy bonding

PDMS Bonding (1)

PDMS Bonding (2)

Irreversible Sealing of Polydimethylsiloxane (PDMS)

- PDMS seals to itself, glass, silicon, silicon nitride, LDPE, PS
- PDMS seals after exposure to plasma of air, dry air or oxygen

14/23

Glass Bonding

- Gluing
 - Fast-setting glues
- Thermal diffusion bonding
 - Pressure-assisted thermal bonding at several 100°C for several hours
 - Joining of two polished glass wafers
 - > By diffusion, new chemical bonds form at these temperatures
 - Strong bond after cooling without application of adhesive reagents etc.
- Glass soldering
 - Interesting alternative to thermal bonding
 - Diffusion bonding may not be possible for instance due to high thermal stress on substrates
 - For these structures, vacuum-tight bonds may be accomplished by low-melting point solder deposited via screen printing
 - Glass soldering applicable to glass-glass interfaces as well as to bonding of glass with other materials
- Leakage problems common with glass after assembly!

Packaging (1)

Function of MEMS packaging

Packaging (2)

- Encapsulation
 - Economical way to protect device packages by isolating the active devices from environmental pollutants
 - The protection can be an organic overcoat
 - Inexpensive way of protecting devices, but their protection is not permanent

Packaging (3)

Sealing

- The protection of the devices is permanent by being hermetic
- The cost of this process is high

18/23

Packaging (4)

- A hermetic package is theoretically defined as one that prevents the diffusion of helium (leak rate: 10-8cm3/s)
- Prevent the diffusion of moisture and water vapor through its walls.

Types of MEMS Packaging (1)

- Metal Packages
 - Robust and easy to assemble
 - Use for microwave multichip modules and hybrid circuits
 - Excellent thermal dissipation and excellent electromagnetic shielding.

Metal wall packages (Kyocera Coporation)

Types of MEMS Packaging (2)

- Ceramic Packages
 - Ceramics are hard and brittle materials with high elastic modulus
 - Consist of a base or a header onto which one or many dice are attached by adhesives
 - Low mass and low cost
 - Easily integrate signal distribution lines and feedthroughs

Ceramic wall packages (Kyocera Coporation)

Types of MEMS Packaging (3)

- Plastic Packages
 - Unlike their ceramic or metal packages, plastic packages are not hermetic
 - Widely used by the electronics industry for many years and for almost every application
 - Low manufacturing cost
 - Susceptible to cracking in humid environments

Figure 9-15. Typical plastic package showing the onset of a crack.

Types of MEMS Packaging (4)

- Flip chip
 - Bonding the die top-face-down on a package substrate
 - Electrical contacts are made by means of plated solder bumps between bond pads on the die and metal pads on the package substrate
 - With a small spacing (50~100 um) between the die and the package substrate

