Representation and manipulation of curves

Human Centered CAD Lab.

B-Rep Structure – review

Geometry vs. Topology

Types of curve equations

- Parametric equation
 - ▶ x=x(t), y=y(t), z=z(t)
 - ► Ex) x=Rcos θ , y=Rsin θ , z=0 (0 $\leq \theta \leq 2\pi$)
- Implicit nonparametric
 - $x^2 + y^2 R^2 = 0, \quad z = 0$
 - ► F(x, y, z)=0, G(x, y, z)=0
 - Intersection of two surfaces
 - Ambiguous independent parameters
- Explicit nonparametric

$$y = \pm \sqrt{R^2 - x^2}, \quad z = 0$$

Should choose proper neighboring point during curve generation

Conic curves

- Curves obtained by intersecting a cone with a plane
- Circle (circular arc), ellipse, hyperbola, parabola
 - Ex) Circle (circular arc)
 - Circle in xy-plane with center (x_c, y_c) and radius R
 - $x = R\cos\theta + x_c$
 - $y = Rsin\theta + y_c$
 - ► Z = 0
- Points on the circle are generated by incrementing θ by $\triangle \theta$ from 0, points are connected by line segments
- Equation of a circle lying on an arbitrary plane can be derived by transformation

Conic curves – conť

Hermite curves

Parametric eq. is preferred in CAD systems

- Polynomial form of degree 3 is preferred :
 - C2 continuity is guaranteed when two curves are connected

$$\therefore \mathbf{P}(u) = [x(u) v(u) z(u)] = \mathbf{a}_0 + \mathbf{a}_1 u + \mathbf{a}_2 u^2 + \mathbf{a}_3 u^3 \qquad (1)$$
$$(0 \le u \le 1): \text{ algebraic eq.}$$

- Impossible to predict the shape change from change in coefficients ⇒ not intuitive
 - Bad for interactive manipulation

 Apply Boundary conditions to replace algebraic coefficients

► Use
$$P_{(0)}, P_{(1)}, P'_{(0)}, P'_{(1)} \Rightarrow$$
 Substitute in Eq(1)
 $P_{0}, P_{1}, P'_{0}, P'_{1}$
 $P_{(0)} = P_{0} = a_{0}$
 $P_{(1)} = P_{1} = a_{0} + a_{1} + a_{2} + a_{3}$
 $P'_{(0)} = P'_{0} = a_{1}$
 $P'_{(1)} = P'_{1} = a_{1} + 2a_{2} + 3a_{3}$

$$(2)$$

Solve for \mathbf{a}_{0} , \mathbf{a}_{1} , \mathbf{a}_{2} , \mathbf{a}_{3} in Eq (2)

$$a_0 = P_0$$

$$a_1 = P'_0$$

$$a_2 = -3P_0 + 3P_1 - 2P'_0 - P'_1$$

$$a_3 = 2P_0 - 2P_1 + P'_0 - P'_1$$

Substitute (3) into (1)

It is possible to predict the curve shape change from the change in P₀, P₁, P₀', P₁' to some extent

Hermite curves – cont' $[B] = \boxed{13}$ 13 -13 0 u (5,1) ► U (1,1) ★ X

Figure 6.2 Effect of P_0' and P_1' on curve shape

▶
$$1-3u^2+2u^3$$
, $3u^2-2u^3$, $u-2u^2+u^3$, $-u^2+u^3$

determine the curve shape by blending the effects of P_0 , P_1 , P_0' , $P_1' \rightarrow$ blending function

Bezier curves

- It is difficult to realize a curve in one's mind by changing size and direction of P₀', P₁' in Hermite curves
- Bezier curves
 - Invented by Bezier at Renault
 - Use polygon that enclose a curve approximately
 - control polygon, control point

Bezier curves – conť

- Passes through 1st and last vertex of control polygon
- Tangent vector at the starting point is in the direction of 1st segment of control polygon
- Tangent vector at the ending point is in the direction of the last segment
 - Useful feature for smooth connection of two Bezier curves
- The n-th derivative at starting or ending point is determined by the first or last (n+1) vertices of control polygon
- Bezier curve resides completely inside its convex hull
 - Useful property for efficient calculation of intersection points

Bezier curves – conť

Bezier curves – cont'

$$\mathbf{P}(u) = \sum_{i=0}^{n} {\binom{n}{i}} u^{i} (1-u)^{n-i} \mathbf{P}_{i} \qquad (0 \le u \le 1)$$

$$\uparrow \quad \text{Control Point}$$

$$\mathbf{P}(u) = (1-u)\mathbf{P}_{0} + u\mathbf{P}_{1}$$

: Straight line from P0 to P1 satisfies the desired qualities including convex hull property

$$\mathbf{P}(u) = (1-u)^{2} \mathbf{P}_{0} + 2(1-u)u\mathbf{P}_{1} + u^{2}\mathbf{P}_{2}$$

$$\Rightarrow (1-u)^{2} + 2(1-u)u + u^{2} = 1$$

satisfies the desired qualities

Bezier curves – conť

- Highest term is u^n for the curve defined by (n+1) control points
 - Polynomial of degree n
- Degree of curve is determined by number of control points
- Large number of control points are needed to represent a curve of complex shape → high degree is necessary.
 - Heavy computation, oscillation
 - Better to connect multiple Bezier curves
- Global modification property (not local modification)
 - Difficult to result a curve of desired shape by modifying portions

Blending functions in Bezier curve

Bezier curves – cont'

Bezier Curve does NOT have local modification property