Representation and manipulation of curves

Human Centered CAD Lab.

B-Rep Structure - review

Geometry vs. Topology

Types of curve equations

- Parametric equation

$$
\begin{aligned}
& x=x(t), y=y(t), z=z(t) \\
& E x) x=R \cos \theta, y=R \sin \theta, z=0(0 \leq \theta \leq 2 \pi)
\end{aligned}
$$

- Implicit nonparametric
- $x^{2}+y^{2}-R^{2}=0, \quad z=0$
- $F(x, y, z)=0, G(x, y, z)=0$
, Intersection of two surfaces
- Ambiguous independent parameters
- Explicit nonparametric

$$
y= \pm \sqrt{R^{2}-x^{2}}, \quad z=0
$$

- Should choose proper neighboring point during curve generation

Conic curves

- Curves obtained by intersecting a cone with a plane
- Circle (circular arc), ellipse, hyperbola, parabola
- Ex) Circle (circular arc)
- Circle in $x y$-plane with center (x_{c}, y_{c}) and radius R
p $x=R \cos \theta+x_{c}$
b $y=R \sin \theta+y_{c}$
b $z=0$
- Points on the circle are generated by incrementing θ by $\triangle \theta$ from 0 , points are connected by line segments
- Equation of a circle lying on an arbitrary plane can be derived by transformation

Conic curves - cont'

Hermite curves

- Parametric eq. is preferred in CAD systems
- Polynomial form of degree 3 is preferred :
- C2 continuity is guaranteed when two curves are connected

$$
\begin{equation*}
\therefore \mathbf{P}(u)=[x(u) v(u) z(u)]=\mathbf{a}_{0}+\mathbf{a}_{1} u+\mathbf{a}_{2} u^{2}+\mathbf{a}_{3} u^{3} \tag{1}
\end{equation*}
$$

$$
(0 \leq u \leq 1) \text { : algebraiceq. }
$$

- Impossible to predict the shape change from change in coefficients \Rightarrow not intuitive
- Bad for interactive manipulation

Hermite curves - cont'

- Apply Boundary conditions to replace algebraic coefficients

$\mathbf{P}_{(0)}=\mathbf{P}_{0}=\mathbf{a}_{0}$
$\mathbf{P}_{(1)}=\mathbf{P}_{1}=\mathbf{a}_{0}+\mathbf{a}_{1}+\mathbf{a}_{2}+\mathbf{a}_{3}$
$\mathbf{P}_{(0)}^{\prime}=\mathbf{P}_{0}^{\prime}=\mathbf{a}_{1}$
$\mathbf{P}_{(1)}^{\prime}=\mathbf{P}_{1}^{\prime}=\mathbf{a}_{1}+2 \mathbf{a}_{2}+3 \mathbf{a}_{3}$

Hermite curves - cont'

- Solve for $\mathbf{a}_{0}, \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ in Eq (2)

$$
\begin{align*}
& \mathbf{a}_{\mathbf{0}}=\mathbf{P}_{\mathbf{0}} \\
& \mathbf{a}_{1}=\mathbf{P}_{0}^{\prime} \\
& \mathbf{a}_{2}=-3 \mathbf{P}_{0}+3 \mathbf{P}_{1}-2 \mathbf{P}_{0}^{\prime}-\mathbf{P}_{\mathbf{1}}^{\prime} \tag{3}\\
& \mathbf{a}_{3}=2 \mathbf{P}_{\mathbf{0}}-2 \mathbf{P}_{\mathbf{1}}+\mathbf{P}_{\mathbf{0}}^{\prime}-\mathbf{P}_{\mathbf{1}}^{\prime}
\end{align*}
$$

Hermite curves - cont'

- Substitute (3) into (1)

$$
\begin{aligned}
& \Uparrow \\
& \text { Hermite curve equation }
\end{aligned}
$$

- It is possible to predict the curve shape change from the change in $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{0^{\prime}}, \mathrm{P}_{1}{ }^{\prime}$ to some extent

Hermite curves - cont'

Figure 6.2 Effect of $\mathrm{P}_{0}{ }^{\prime}$ and P_{1}^{\prime} on curve shape

Hermite curves - cont'

${ }^{1} 1-3 u^{2}+2 u^{3}, 3 u^{2}-2 u^{3}, u-2 u^{2}+u^{3},-u^{2}+u^{3}$
determine the curve shape by blending the effects of $\mathrm{P}_{\mathrm{o}}, \mathrm{P}_{1}, \mathrm{Po}^{\prime}, \mathrm{P}_{1}^{\prime} \rightarrow$ blending function

Bezier curves

- It is difficult to realize a curve in one's mind by changing size and direction of $\mathrm{P}_{0}{ }^{\prime}, \mathrm{P}_{1}{ }^{\prime}$ in Hermite curves
- Bezier curves
- Invented by Bezier at Renault
- Use polygon that enclose a curve approximately
- control polygon, control point

Bezier curves - cont'

- Passes through $1^{\text {st }}$ and last vertex of control polygon
- Tangent vector at the starting point is in the direction of $1^{\text {st }}$ segment of control polygon
- Tangent vector at the ending point is in the direction of the last segment
- Useful feature for smooth connection of two Bezier curves
- The n -th derivative at starting or ending point is determined by the first or last $(n+1)$ vertices of control polygon
- Bezier curve resides completely inside its convex hull , Useful property for efficient calculation of intersection points

Bezier curves - cont'

(a)

(b)

(c)

Bezier curves - cont'

$$
\mathbf{P}(\mathrm{u})=\sum_{\mathrm{i}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{i}} \mathrm{u}^{\mathrm{i}}(1-\mathrm{u})^{\mathrm{n-i}} \mathbf{P}_{\mathrm{i}} \quad(0 \leq \mathrm{u} \leq 1)
$$

$\mathbf{P}(u)=(1-u) \mathbf{P}_{0}+u \mathbf{P}_{1} \quad:$ Straight line from P 0 to P 1 satisfies the desired qualities including convex hull property
$\mathbf{P}(u)=(1-u)^{2} \mathbf{P}_{0}+2(1-u) u \mathbf{P}_{1}+u^{2} \mathbf{P}_{2}$
$\Rightarrow(1-u)^{2}+2(1-u) u+u^{2}=1$
satisfies the desired qualities

Bezier curves - cont'

- Highest term is u^{n} for the curve defined by $(\mathrm{n}+1)$ control points
- Polynomial of degree n
- Degree of curve is determined by number of control points
- Large number of control points are needed to represent a curve of complex shape \rightarrow high degree is necessary.
- Heavy computation, oscillation
- Better to connect multiple Bezier curves
- Global modification property (not local modification)
- Difficult to result a curve of desired shape by modifying portions

Blending functions in Bezier curve

Bezier curves - cont'

Bezier Curve does NOT have local modification property

