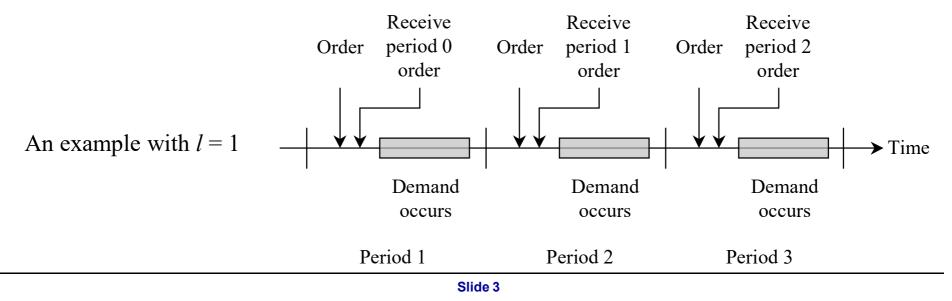
Chapter 16. Service Levels and Lead Times in Supply Chains: The Order-up-to Inventory Model

Medtronic's InSync pacemaker supply chain and objectives

- Supply chain:
 - One distribution center (DC) in Mounds View, MN.
 - About 500 sales territories throughout the country.
 - Consider Susan Magnotto's territory in Madison, Wisconsin.
- Objective:
 - Because the gross margins are high, develop a system to minimize inventory investment while maintaining a very high service target, a 99.9% in-stock probability.

Timing in the order up-to model

- Time is divided into periods of equal length, e.g., one hour, one month.
- During a period the following sequence of events occurs:
 - A replenishment order can be submitted.
 - Inventory is received.
 - Random demand occurs.
- Lead times:
 - An order is received after a fixed number of periods, called the lead time.
 - Let *l* represent the length of the lead time.



Order up-to model vs. newsvendor model

Both models have uncertain future demand, but there are differences...

	Newsvendor	Order up-to	
Inventory obsolescence	After one period	Never	
Number of replenishments	One (maybe two or three with some reactive capacity)	Unlimited	
Demand occurs during replenishment	No	Yes	

 Newsvendor applies to short life cycle products with uncertain demand and the order up-to applies to long life cycle products with uncertain, but stable demand.

16.2 The Order Up-To Model:

Model design and implementation

Order up-to model definitions

- On-order inventory / pipeline inventory = number of units that have been ordered but have not been received.
- On-hand inventory = number of units physically in inventory ready to serve demand.
- **Backorder** = total amount of demand that has not been satisfied:
 - All backordered demand is eventually filled, i.e., there are no lost sales.
- *Inventory level* = On-hand inventory Backorder.
- *Inventory position* = On-order inventory + Inventory level.
- Order up-to level, S
 - maximum inventory position we allow.
 - sometimes called the **base stock level**.

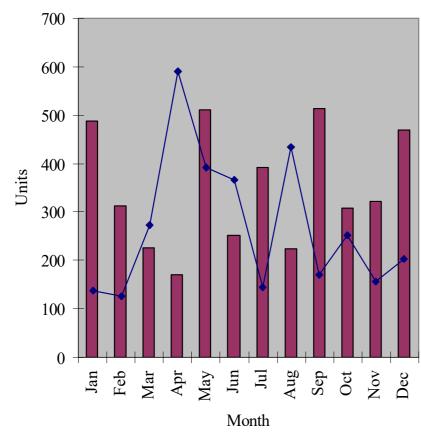
Order up-to model implementation

- *Each period's order quantity* = S *Inventory position*
 - Suppose S = 4.
 - If a period begins with an inventory position = -3, how many units will be ordered?
 - If demand were 10 in period 1, then how many units are ordered at the start of period 2?
- A period's order quantity = the previous period's demand:
 - The order up-to model is a *pull system* because inventory is ordered in response to demand.
 - The order up-to model is sometimes referred to as a 1-for-1 ordering policy.

16.4 The Order Up-To Model:

Choosing demand distributions

InSync demand and inventory at the DC

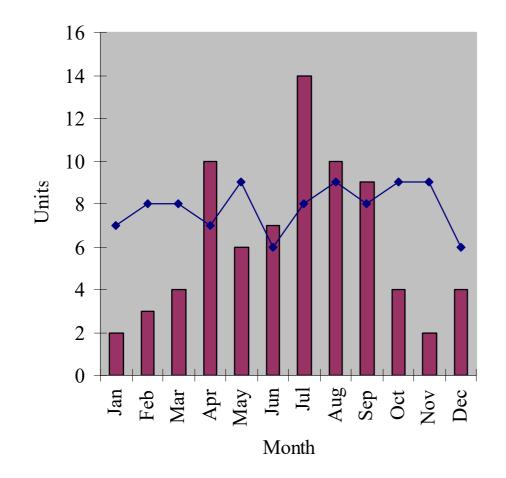


Monthly implants (columns) and end of month inventory (line)

Average monthly demand = 349 units

Standard deviation of monthly demand = 122.4

InSync demand and inventory in Susan's territory



Monthly implants (columns) and end of month inventory (line)

Total annual demand = 75 units

Average daily demand = 0.29 units (75/260), assuming 5 days per week.

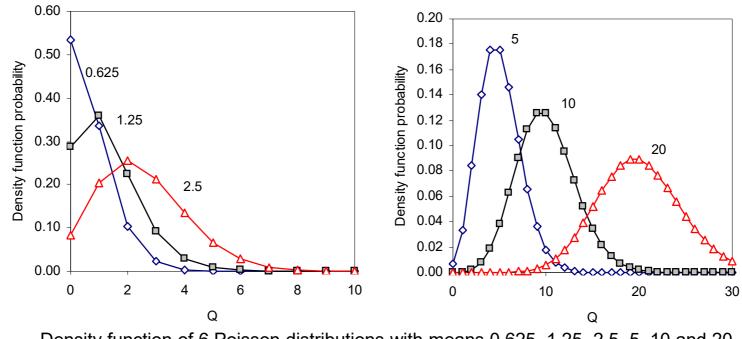
The Poisson demand distribution works better for slow moving items.

Poisson distribution

- The outcome of a random variable with a Poisson distribution is *discrete* (0,1,2,3,...) and *positive* (i.e., no negative outcomes).
- The Poisson is characterized by a *single parameter*, its mean:
 - Recall, the Normal distribution is defined by two parameters, the mean and standard deviation.
- The standard deviation of a Poisson distribution is equal to the square root of its mean.
- The Poisson is related to the exponential distribution:
 - If the inter-arrival times of customers are exponentially distributed, then the number of customers that arrive in a fixed interval of time is Poisson distributed.
- The Poisson is ideal for describing the demand of *slow moving products*, e.g., products that have average sales of 20 or fewer units over a particular period of time.

The shape of the Poisson

- The Poisson's density function takes on different shapes, depending on its mean
 - With a large mean (more than 10) the Poisson takes on a "bell shape"
 - With a small mean (less than 5) the Poisson takes on different shapes that slowly change in the direction of a bell curve.



Density function of 6 Poisson distributions with means 0.625, 1.25, 2.5, 5, 10 and 20

Poisson's Distribution and Loss Functions

- There is no equivalent of the "z-statistic" for the Poisson like there is for the Normal distribution.
 - Hence, you need a distribution and loss function table for each Poisson distribution.
- Consider the density function, f(Q), distribution function, F(Q), and the loss function, L(Q) of the Poisson with mean 1.25 in the table to the right:
 - What is the probability that demand is exactly 2?
 - What is the probability that demand is no more than 3?
 - If you have 2 units to sell, then what is the expected lost sales?

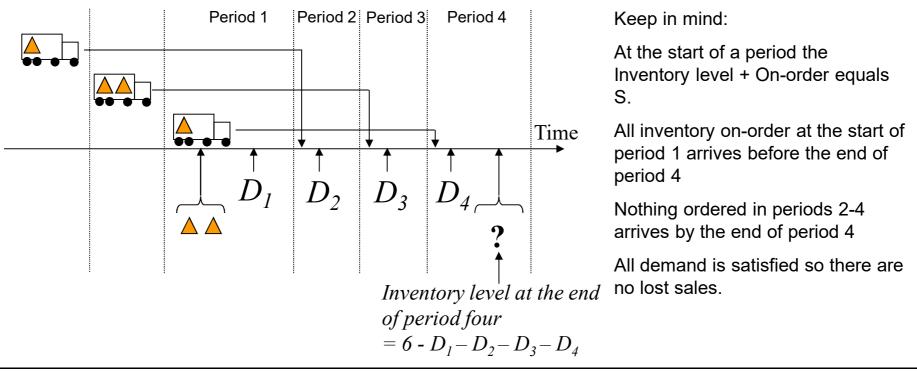
Q	f(Q)	F(Q)	L(Q)
0	0.286505	0.286505	1.25000
1	0.358131	0.644636	0.53650
2	0.223832	0.868468	0.18114
3	0.093263	0.961731	0.04961
4	0.029145	0.990876	0.01134
5	0.007286	0.998162	0.00221
6	0.001518	0.999680	0.00038
7	0.000271	0.999951	0.00006
8	0.000042	0.999993	0.00001
9	0.000006	0.999999	0.00000
10	0.000001	1.000000	0.00000

16.5 The Order Up-To Model:

Performance measures

What determines the inventory level?

- Short answer:
 - *Inventory level* at the end of a period = S minus demand over *l* +1 periods.
- Explanation via an example with S = 6, l = 3, and 2 units on-hand at the start of period 1



Stockout and in-stock probabilities and on-order inventory

 The stockout probability is the probability at least one unit is backordered in a period:

> Stockout probability = $Prob\{Demand over (l + 1) periods > S\}$ = $1 - Prob\{Demand over (l + 1) periods \le S\}$

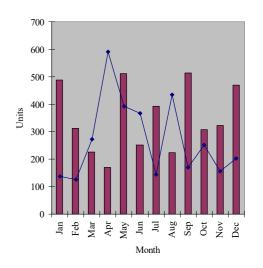
• The **in-stock probability** is the probability all demand is filled in a period:

$$In - stock \ probability = l - Stockout \ probability \\ = Prob\{Demand \ over (l+1) \ periods \le S\}$$

- Expected on-order inventory = Expected demand over one period x lead time
 - This comes from Little's Law. Note that it equals the expected demand over *l* periods, not *l* +1 periods.

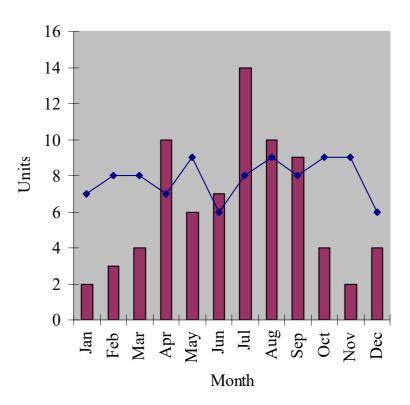
Demand over l + 1 periods at the DC

- The period length is 1 week and the DC's lead time is 3 weeks
- Monthly demand is normally distributed with...
 - Mean = 349
 - Standard deviation = 122.4
- Weekly demand is normally distributed with ...
 - Mean = 349 / 4.33 = 80.6
 - Standard deviation = 122.4 / sqrt(4.33) = 58.8
- *l* +1 demand is normally distributed with ...
 - Mean = $80.6 \times (3 + 1) = 322.4$
 - Standard deviation = $58.8 \times \text{sqrt}(3 + 1) = 117.6$



Demand over *l* +1 periods in Susan's Territory

- The period length is one day, and Susan's replenishment lead time is one day, *l* =1
- Daily demand is Poisson with ...
 Mean = 0.29
- *l* +1 demand is Poisson with ...
 - Mean = $(1+1) \times 0.29 = 0.58$



DC's *Expected backorder* assuming *S* = 625

- Expected backorder is analogous to the Expected lost sales in the Newsvendor model:
 - Suppose S = 625 at the DC
 - Normalize the order up-to level:

$$z = \frac{S - \mu}{\sigma} = \frac{625 - 322.4}{117.6} = 2.57$$

- Lookup L(z) in the Standard Normal Loss Function Table: L(2.57)=0.0016
- Convert expected lost sales, L(z), for the standard normal into the expected backorder with the actual normal distribution that represents demand over *l*+1 periods:

Expected backorder =
$$\sigma \times L(z) = 117.6 \times 0.0016 = 0.19$$

- Therefore, if S = 625, then on average there are 0.19 backorders at the end of any period at the DC.

Other DC performance measures with S = 625

 Expected on-hand inventory is analogous to Expected left-over inventory in the Newsvendor model:

$$z = \frac{S - \mu}{\sigma} = \frac{625 - 322.4}{117.6} = 2.57$$

• Lookup *I*(*z*) in the Standard Normal Inventory Function Table: *I*(2.57)=2.5716

Expected on-hand inventory= $\sigma I(z) = 117.6 \times 2.5716 = 302.4$

- So on average there are 302.4 units on-hand at the end of a period.
- Due to Little's Law, expected on-order inventory does not depend on demand variability:

Expected on-order inventory = *Expected demand in one period* × *Lead time*

$$= 80.6 \times 3 = 241.8.$$

• So there are 241.8 units on-order at any given time.

Performance measures in Susan's territory

	Mean demand $= 0.29$				Mean demand $= 0.58$		
S	F(S)	L(S)	S	7	F(S)	L(S)	
0	0.74826	0.29000	()	0.55990	0.58000	
1	0.96526	0.03826		1	0.88464	0.13990	
2	0.99672	0.00352	~	2	0.97881	0.02454	
3	0.99977	0.00025		3	0.99702	0.00335	
4	0.99999	0.00001	2	4	0.99966	0.00037	
5	1.00000	0.00000		5	0.99997	0.00004	

 $F(S) = Prob \{Demand is less than or equal to S\}$

L(S) = loss function = expected backorder = expectedamount demand exceeds S

- Suppose Susan operates with S = 3:
 - What is the expected backorder?
 - What is the in-stock probability?
 - What is expected on-order inventory?
 - What is expected on-hand inventory? 2.42335

(Appendix B. Poisson Inventory Function Table)

16.6 The Order Up-To Model:

Choosing an order up-to level, *S*, to meet a service target

Choose S to hit a target in-stock with normally distributed demand

- Suppose the target in-stock probability at the DC is 99.9%:
 - From the Standard Normal Distribution Function Table (p461), $\Phi(3.08)=0.9990$
 - So we choose z = 3.08

- To convert *z* into an order up-to level:

$$S = \mu + z \times \sigma = 322.4 + 3.08 \times 117.6$$

 $= 685$

- Note that μ and σ are the parameters of the normal distribution that describes demand over l + 1 periods.

Choose S to hit a target in-stock with Poisson demand

- What S should Susan choose to yield an in-stock probability of at least 99%?
- What if the target is 99.96%?
- What if the target is 99.99%?

Mean demand $= 0.29$				_	Mean demand $= 0.58$		
S	F(S)	L(S)	_	S	F(S)	L(S)	
0	0.74826	0.29000		0	0.55990	0.58000	
1	0.96526	0.03826		1	0.88464	0.13990	
2	0.99672	0.00352		2	0.97881	0.02454	
3	0.99977	0.00025		3	0.99702	0.00335	
4	0.99999	0.00001		4	0.99966	0.00037	
5	1.00000	0.00000		5	0.99997	0.00004	

 $F(S) = Prob \{Demand is less than or equal to S\}$

L(S) = loss function = expected backorder = expectedamount demand exceeds S

16.7 The Order Up-To Model:

Choosing an appropriate service level

What does a 99.9% in-stock target mean?

- Let *x* be the in-stock probability target for a period.
- Let N be the number of periods in an interval of interest (e.g., one week, 365 days, etc).
- The expected number of periods in which an out-of-stock occurs = N x (1- x)
- The expected number of periods before the first out-of-stock occurs = 1 / (1- x)

	Expected time to 1st		Expected number of days out of			
_	day out of stock*		stock per year*			
In-stock	Days	Years	per year	per 3 years	per 5 years	
99.00%	100	0.27	3.7	11.0	18.3	
99.50%	200	0.55	1.8	5.5	9.1	
99.90%	1000	2.74	0.4	1.1	1.8	
99.95%	2000	5.48	0.2	0.5	0.9	
99.99%	10000	27.40	0.0	0.1	0.2	
* one day = one period						

Justifying a service level via cost minimization

- Let *h* equal the holding cost per unit per period
 - e.g. if *p* is the retail price, the gross margin is 75%, the annual holding cost rate is 35% and there are 260 days per year,

then **h** = **p** x (1-0.75) x 0.35 / 260 = 0.000337 x p

- Let *b* equal the penalty per unit backordered
 - e.g., let the penalty equal the 75% gross margin, then $b = 0.75 \times p$
- "Too much-too little" challenge:
 - If S is too high, then there are holding costs, $C_o = h$
 - If S is too low, then there are backorders, $C_u = b$
- Cost minimizing order up-to level satisfies

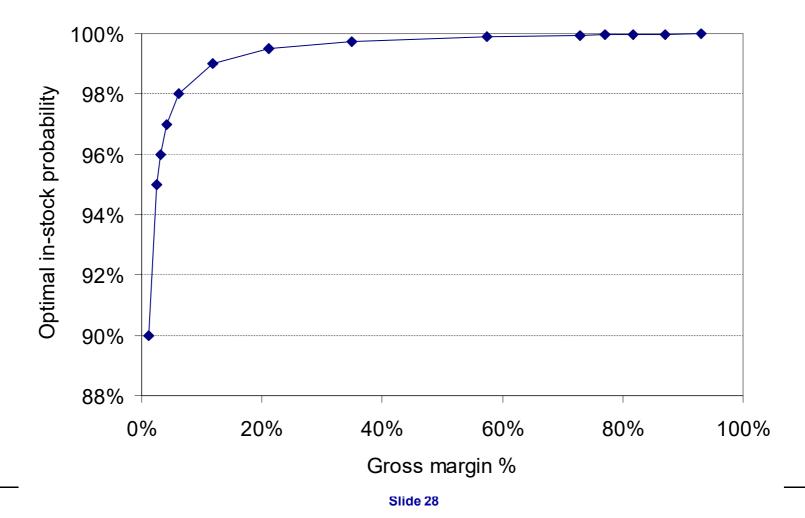
 $Prob \{ Demand \ over \ (l+l) \ periods \le S \} = \frac{C_u}{C_o + C_u} = \frac{b}{h+b} = \frac{(0.75 \times p)}{(0.000337 \times p) + (0.75 \times p)} = 0.9996$

• Optimal in-stock probability is 99.96% because

In - stock probability = $Prob\{Demand over(l+1) periods \le S\} = Critical ratio$

The optimal in-stock probability is usually quite high

 Suppose the annual holding cost rate is 35%, the backorder penalty cost equals the gross margin and inventory is reviewed daily.

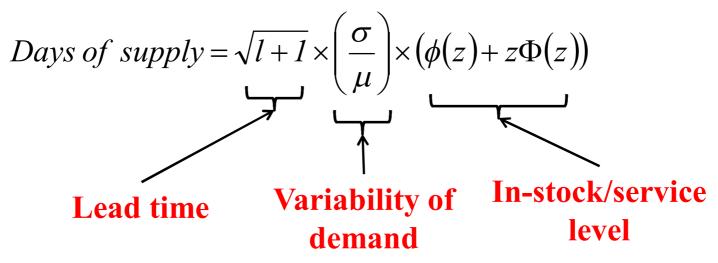


18.9 The Order Up-To Model:

Managerial insights

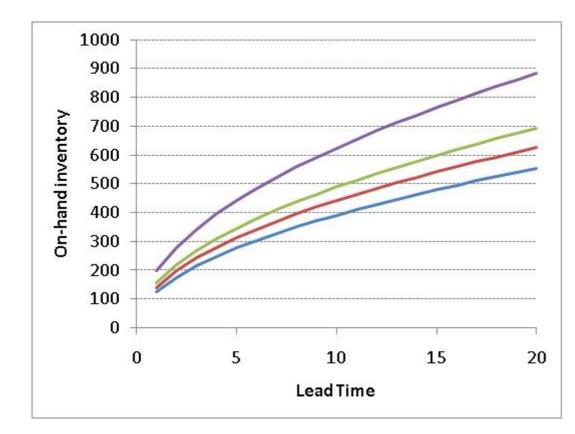
What determines the average inventory level?

 Using the performance metric equations discussed, we can derive an equation for the days of supply of on-hand inventory that has three components:



- -l = lead time
- σ = standard deviation of one period demand
- $-\mu$ = mean of one period demand
- *z* = *z*-statistic
- $-\phi(z), \Phi(z) = normal density and distribution functions$

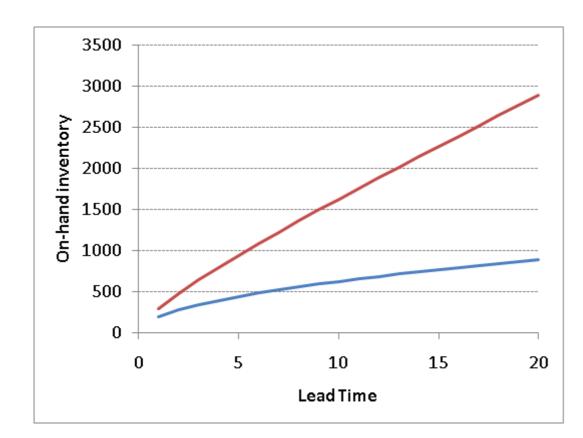
Shorten lead times and you will reduce inventory



 Reducing the lead time reduces expected inventory, especially as the target in-stock increases

The impact of lead time on expected inventory for four in-stock targets, 99.95%, 99.5%, 99.0% and 98%, top curve to bottom curve respectively. Demand in one period is normally distributed with mean 100 and standard deviation 60.

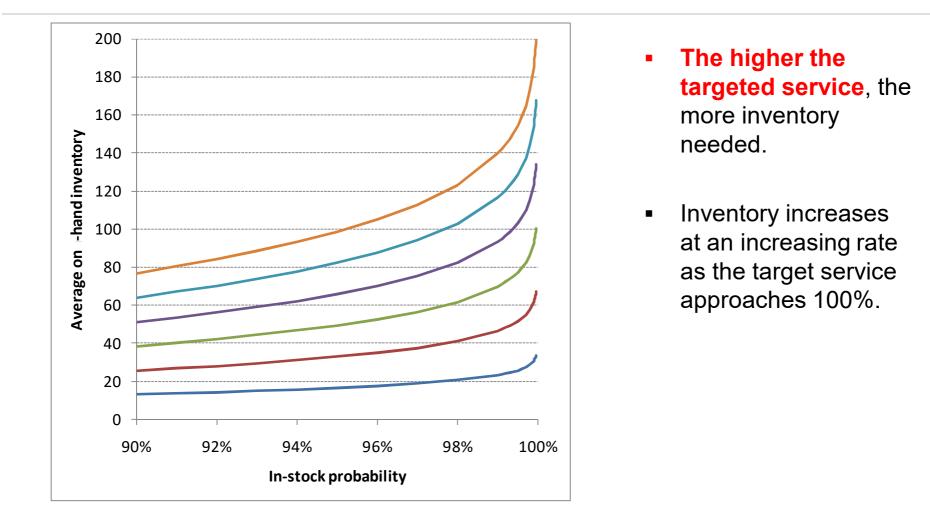
Do not forget about pipeline inventory



- Reducing the lead time reduces expected inventory and pipeline inventory
- The impact on pipeline inventory can be even more dramatic that the impact on on-hand inventory

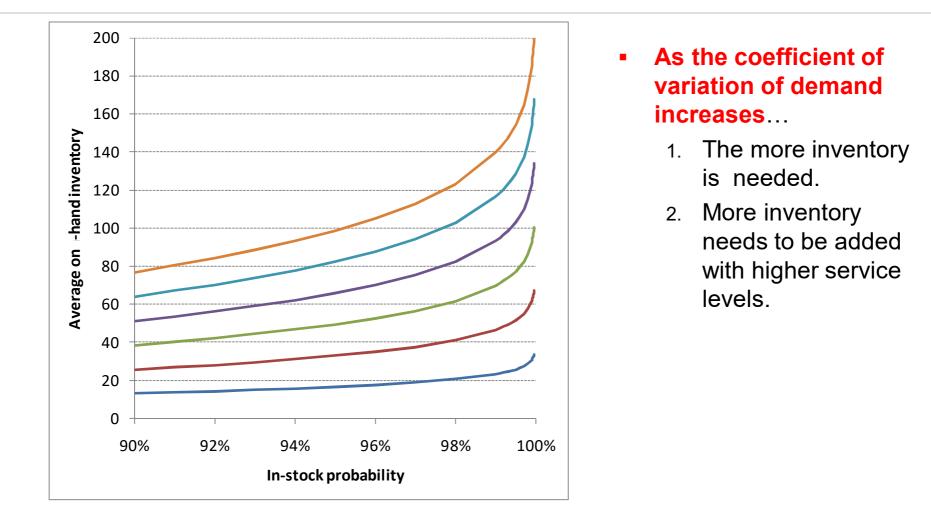
Expected on-hand inventory (blue/lower) and total inventory (red/upper), which is expected on-hand inventory plus pipeline inventory, with a 99.9% in-stock requirement and demand in one period is Normally distributed with mean 100 and standard deviation 60

Increase service and you need to add inventory



The tradeoff between inventory and in-stock probability with Normally distributed demand and a mean of 100 over (l+1) periods. The curves differ in the standard deviation of demand over (l+1) periods: 60,50,40,30,20,10 from top to bottom.

More variability means more inventory



The tradeoff between inventory and in-stock probability with Normally distributed demand and a mean of 100 over (l+1) periods. The curves differ in the standard deviation of demand over (l+1) periods: 60,50,40,30,20,10 from top to bottom.

Order up-to model summary

- The order up-to model is appropriate for products with random demand but many replenishment opportunities.
- Expected inventory and service are controlled via the order up-to level:
 - The higher the order up-to level the greater the expected inventory and the better the in-stock probability.
- The key factors that determine the amount of inventory needed are...
 - The length of the replenishment lead time.
 - The desired in-stock probability.
 - Demand uncertainty.
- When inventory obsolescence is not an issue, the optimal in-stock probability is generally quite high.