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Force balance in a tokamak
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▽p:
plasma load 

on a magnetic 
flux surface

JpxBΦ:
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Tokamak Equilibrium
• The Grad-Shafranov Equation

What kind of forces does a plasma have regarding equilibrium?
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• Basic Forces Acting on Tokamak Plasmas
- Radial force balance

- Toroidal force balance: Tire tube force

)(~ IIIRNET pApAeF −−

Tokamak Equilibrium

J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note
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Jt x Bp

Magnetic pressure,
Tension force
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- Toroidal force balance: 1/R force

- Toroidal force balance: Hoop force
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Tokamak Equilibrium
• Basic Forces Acting on Tokamak Plasmas

J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note
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• Basic Forces Acting on Tokamak Plasmas

Tokamak Equilibrium

- External coils required to provide the force balance

How about vertical movement?
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Plasma transport in a Tokamak



Time

Temperature
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Energy Confinement Time



τE

• τE is a measure of how fast the plasma loses its energy.
• The loss rate is smallest, τE largest

if the fusion plasma is big and well insulated.
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Time

Temperature
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Energy Confinement Time
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nD∇−=Γ : Fick’s law

: Fourier’s law

Thermal diffusivity
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• Transport Coefficients

Tokamak Transport

: diffusion coefficient (m2/s)
( )
τ2

2xD ∆
=

Tq ∇−= κ

2B
kTn

D ∑⊥
⊥ =

η- Particle transport in fully ionised plasmas
with magnetic field
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• Classical Transport

- Classical thermal conductivity (expectation): χi ~ 40χe

- Typical numbers expected: ~10-4 m2/s
- Experimentally found: ~1 m2/s, χi ~ χe

Bohm diffusion (1946):
eB
kTD e
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David Bohm
(1917-1992)

Tokamak Transport

http://en.wikipedia.org/wiki/File:David_Bohm.jpg
http://en.wikipedia.org/wiki/File:David_Bohm.jpg
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Bohm diffusion:
eB
kTD e
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F. F. Chen, “Introduction to Plasma 
Physics and Controlled Fusion” (2006)

τE in various types of 
discharges in the Model C 

Stellarator

• Classical Transport
Tokamak Transport
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• Neoclassical Transport

- Major changes arise from toroidal effects characterised by 
inverse aspect ratio, ε = a/R0

Tokamak Transport
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• Particle Trapping

- Trapped fraction:

for a typical tokamak, ε ~ 1/3 → ftrap ~ 70%

- Particle trapping by magnetic mirrors
trapped particles with banana orbits
untrapped particles with circular orbits
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Tokamak Transport

θHW. Derive this.

Discuss the particle motion
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• Particle Trapping

trapped particles passing particles

Tokamak Transport 2, 2
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• Particle Trapping

Tokamak Transport
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Toroidal direction

Ion gyro-motion

Poloidal
direction

Projection of poloidally
trapped ion trajectory

R

B

http://tfy.tkk.fi/fusion/research/

• Neoclassical Bootstrap current

Tokamak Transport

Tim Hender, “Neoclassical Tearing Modes in Tokamaks”, KPS/DPP, Daejun, Korea, 24 April 2009
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- More & faster particles on orbits nearer the core (green .vs. blue) 
lead to a net “banana current”.

- This is transferred to a helical bootstrap current via collisions.

Currents due to 
neighbouring 
bananas 
largely 
cancel

orbits tighter 
where field 

stronger

pJ BS ∇∝
• Neoclassical Bootstrap current

Tokamak Transport

http://tfy.tkk.fi/fusion/research/Tim Hender, “Neoclassical Tearing Modes in Tokamaks”, KPS/DPP, Daejun, Korea, 24 April 2009
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- Collisional excursion across flux surfaces
untrapped particles: 2rg (2rLi)

• Particle Trapping

Tokamak Transport

Magnetic field lines

Magnetic flux surfaces
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- Collisional excursion across flux surfaces
untrapped particles: 2rg (2rLi)

• Particle Trapping

Tokamak Transport

Magnetic field lines

Magnetic flux surfaces
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- Collisional excursion across flux surfaces
untrapped particles: 2rg (2rLi)
trapped particles: Δrtrap >> 2rg – enhanced radial diffusion 

across the confining magnetic field

- If the fraction of trapped particle is large, this leakage enhancement 
constitutes a substantial problem in tokamak confinement.

• Particle Trapping

Tokamak Transport
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- Collisional excursion across flux surfaces
untrapped particles: 2rg (2rLi)
trapped particles: Δrtrap >> 2rg – enhanced radial diffusion 

across the confining magnetic field

- If the fraction of trapped particle is large, this leakage enhancement 
constitutes a substantial problem in tokamak confinement.

• Particle Trapping

Tokamak Transport
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J. Wesson, Tokamaks (2004)

- May increase D, χ up to two orders of magnitude:
- χi 'only' wrong by factor 3-5
- D, χe still wrong by up to two orders of magnitude!
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kTn

D ∑⊥
⊥ =

η

Tokamak Transport
• Neoclassical Transports

Bohm diffusion
eB
kTD e
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- Normal (water) flow: Hydrodynamic equations can develop
nonlinear turbulent solutions (Reynolds, 1883)

ρ: density of the fluid (kg/m³)
v: mean velocity of the object relative 

to the fluid (m/s)
L: a characteristic linear dimension, 

(travelled length of the fluid; 
hydraulic diameter when dealing
with river systems) (m)

μ: dynamic viscosity of the fluid
(Pa·s or N·s/m² or kg/(m·s))

ν: kinematic viscosity (μ/ρ) (m²/s)

νµ
ρ vLvL

===
forces viscous
forces inertialRe

A vortex street around a cylinder. This occurs around cylinders, 
for any fluid, cylinder size and fluid speed, provided that there 
is a Reynolds number of between ~40 and 103

Tokamak Transport
• Transport in fusion plasmas is ‘anomalous’
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- Normal (water) flow: Hydrodynamic equations can develop
nonlinear turbulent solutions (Reynolds, 1883)

- Transport mainly governed by turbulence: 
radial extent of turbulent eddy: 1 - 2 cm
typical lifetime of turbulent eddy: 0.5 - 1 ms

- Anomalous transport coefficients are of the order 1 m2/s

( )
τ

2

~ xD ∆
: diffusion coefficient (m2/s)

Tokamak Transport
• Transport in fusion plasmas is ‘anomalous’

http://scidacreview.org/0801/html/fusion.html
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- often associated with non-Maxwellian velocity distributions: 
deviation from thermodynamic equilibrium (nonuniformity, anisotropy 
of distributions) → free energy source which can drive instabilities

- kinetic approach required: limited MHD approach

• Two-stream or beam-plasma instability
- Particle bunching → E perturbation → bunching↑ → unstable

• Drift (or Universal) instability
- driven by ∇p (or ∇n) in magnetic field
- excited by drift waves with a phase velocity of vDe with a very short wavelength
- most unstable, dominant for anomalous transport

• Trapped particle modes
- Preferably when the perturbation frequency < bounce frequency
- drift instability enhanced by trapped particle effects
- Trapped Electron Mode (TEM), Trapped Ion Mode (TIM)

Tokamak Transport
• Microinstabilities
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NCanomalousNC

NCanomalousNC DDDD
χχχχ >+=

>+=
exp

exp

G. Tardini et al, NF 42 258 (2002)

Tokamak Transport
• Profile consistency (or profile resilience or stiffness) 
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How to reduce plasma transport?



- 1982 IAEA FEC, F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge
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• Suppression of Anomalous Transport: H-mode

Tokamak Transport
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χ
τ

2

 a
E ≈

Tokamak Transport
• Suppression of Anomalous Transport: H-mode

- 1982 IAEA FEC, F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge
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Hoover dam

Tokamak Transport
• Suppression of Anomalous Transport: H-mode

- 1982 IAEA FEC, F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge
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Tokamak Transport
• Suppression of Anomalous Transport: H-mode

- 1982 IAEA FEC, F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge
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Pth = 2.84M-1Bt
0.82n20

0.58R1.0a0.81

L-H transition threshold power
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• First H-mode Transition in KSTAR (November 8, 2010)

- B0 = 2.0 T, Heating = 1.5 MW (NBI : 1.3 MW, ECH : 0.2 MW) 
After Boronisation on November 7, 2010

Tokamak Transport
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• First H-mode Transition in KSTAR (November 8, 2010)
Tokamak Transport



• Suppression of Anomalous Transport: ITBs

36

H-mode Reversed shear mode

Tokamak Transport



• Suppression of Anomalous Transport

37

Tokamak Transport
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Non-monotonic current profile

Turbulence suppression

High pressure gradients

Large bootstrap current

Non-inductive current drive

Improved confinement suitable for 
the steady-state operation



Plasma Current

CS Coil Current
(kA)

(MA)

t (s)

t (s)

Power Supply Limit

Inherent drawback of Tokamak!

Faraday‘s law

SdB
dt
dv

S


⋅−= ∫

Pulsed Operation
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Plasma Current

CS Coil Current
(kA)

(MA)

t (s)

t (s)

30

Steady-state operation
by self-generated and externally driven current

d/dt ~ 0

Steady-State Operation
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- XGC1 simulation

Turbulence Simulations

Courtesy of S. H. Ku (PPPL)



power heating applied
energy stored

=≈

∂
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−
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in

E P
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t
WP

Wτ
In steady conditions, 

neglecting radiation loss, 
Ohmic heating replaced by 

total input power
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ακαεαααααα κετ RMnPBIfit
Eth RMnPBCI=,

in engineering variables

• Since tokamak transport is anomalous, empirical scaling laws   
for energy confinement are necessary.

• To predict the performance of future devices, the energy 
confinement time is one of the most important parameter.

• Empirical scaling laws: regression analysis from available 
experimental database. 

Energy Confinement Time
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78.058.097.119.041.069.015.093.0)2(98 0562.0 aRMnPBIy,IPB
th,E κετ −=

τE in KSTAR and ITER?
Why should ITER be large?

• H-mode confinement scaling

Energy Confinement Time
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