Introduction to Nuclear Fusion

Prof. Dr. Yong-Su Na

Force balance in a tokamak

The Grad-Shafranov Equation

What kind of forces does a plasma have regarding equilibrium?

Basic Forces Acting on Tokamak Plasmas

pressure

- Radial force balance

Magnetic pressure, Tension force

- Toroidal force balance: Tire tube force

J.P. Freidberg, "Ideal Magneto-Hydro-Dynamics", lecture note

Basic Forces Acting on Tokamak Plasmas

- Toroidal force balance: Hoop force

 $\phi_{I} = \phi_{II}$ $B_{I} > B_{II}, \quad A_{I} < A_{II}$ $B_{I}^{2}A_{I} > B_{II}^{2}A_{II}$

- Toroidal force balance: 1/R force

5

Basic Forces Acting on Tokamak Plasmas

- External coils required to provide the force balance

$$F_{v} = BIL = 2\pi R_0 I_p B_v$$

How about vertical movement?

 $B_{\phi} > B_{\theta} > B_{v}$

Plasma transport in a Tokamak

Energy Confinement Time

Energy Confinement Time

- τ_E is a measure of how fast the plasma loses its energy.
- The loss rate is smallest, τ_E largest
 - if the fusion plasma is big and well insulated.

• Transport Coefficients

$$\Gamma = -D\nabla n$$
 : Fick's law D :

$$P = \frac{(\Delta x)^2}{2\tau}$$
 : diffusion coefficient (m²/s)

 $q = -\kappa \nabla T$: Fourier's law

Thermal diffusivity

$$\chi \equiv \frac{\kappa}{n} \approx D \approx \frac{(\Delta x)^2}{\tau} \approx \frac{a^2}{\tau_E} \rightarrow \tau_E \approx \frac{a^2}{\chi}$$

- Particle transport in fully ionised plasmas with magnetic field

$$D_{\perp} = \frac{\eta_{\perp} n \sum kT}{B^2}$$

- Classical Transport
- Classical thermal conductivity (expectation): $\chi_i \sim 40 \chi_e$
- Typical numbers expected: $\sim 10^{-4} \text{ m}^2/\text{s}$
- Experimentally found: ~1 m²/s, $\chi_i \sim \chi_e$

Bohm diffusion (1946):
$$D_{\perp} = \frac{1}{16} \frac{kT_e}{eB}$$

WIKIPEDIA The Free Encyclopedia

Classical Transport

 $\frac{1}{16} \frac{kT_e}{eB}$ Bohm diffusion: 100 ALKALI PLASMA (DATA NORMALIZED TO 12.3 KG, 5.0 cm RADIUS) **RESISTIVE MICROWAVE** CONFINEMENT TIME τ (msec) HEATING 10 ELECTRON CYCLOTRON 0 **RESONANCE HEATING** COHMIC HEATING: **AFTERGLOW** 1.0 BOHM DIFFUSION - $\alpha \propto B/KT_e$ OHMIC HEATING ION CYCLOTRON **RESONANCE HEATING** 1 1 1 1 1 1 1 1 0.1 0.1 10 1.0 100

KT_e/B (arb. units)

 au_E in various types of discharges in the Model C Stellarator

F. F. Chen, "Introduction to Plasma Physics and Controlled Fusion" (2006)

Neoclassical Transport

- Major changes arise from toroidal effects characterised by inverse aspect ratio, $\varepsilon = a/R_0$

Particle Trapping

Particle Trapping

ΖĮ

 Δx_{pass}

trapped particles

Ro

passing particles

$$\mathbf{v}_{D,\nabla B} = \pm \frac{1}{2} v_{\perp} r_L \frac{\mathbf{B} \times \nabla B}{B^2}$$

 $\mathbf{v}_{D,R} = \frac{m v_{\parallel}^2}{q B_0^2} \frac{\mathbf{R}_0 \times \mathbf{B}_0}{R^2}$

₹d

R

Particle Trapping

Neoclassical Bootstrap current

Tim Hender, "Neoclassical Tearing Modes in Tokamaks", KPS/DPP, Daejun, Korea, 24 April 2009

Neoclassical Bootstrap current

- This is transferred to a helical bootstrap current via collisions.

Tim Hender, "Neoclassical Tearing Modes in Tokamaks", KPS/DPP, Daejun, Korea, 24 April 2009

18

Particle Trapping

- Collisional excursion across flux surfaces untrapped particles: $2r_q (2r_{Li})$

Particle Trapping

- Collisional excursion across flux surfaces untrapped particles: $2r_q (2r_{Li})$

Particle Trapping

- Collisional excursion across flux surfaces
 - untrapped particles: $2r_g (2r_{Li})$ trapped particles: $\Delta r_{trap} >> 2r_g$ – enhanced radial diffusion across the confining magnetic field

- If the fraction of trapped particle is large, this leakage enhancement constitutes a substantial problem in tokamak confinement.

Particle Trapping

- Collisional excursion across flux surfaces

untrapped particles: $2r_g (2r_{Li})$ trapped particles: $\Delta r_{trap} >> 2r_g$ – enhanced radial diffusion across the confining magnetic field

- If the fraction of trapped particle is large, this leakage enhancement constitutes a substantial problem in tokamak confinement.

Neoclassical Transports

- May increase D, χ up to two orders of magnitude:
 - χ_i 'only' wrong by factor 3-5
 - $D_{i} \chi_{e}$ still wrong by up to two orders of magnitude!

Transport in fusion plasmas is 'anomalous'

- Normal (water) flow: Hydrodynamic equations can develop nonlinear turbulent solutions (Reynolds, 1883)

$$\operatorname{Re} = \frac{\operatorname{inertial forces}}{\operatorname{viscous forces}} = \frac{\rho v L}{\mu} = \frac{v L}{v}$$

- ρ : density of the fluid (kg/m³)
- v: mean velocity of the object relative to the fluid (m/s)
- L: a characteristic linear dimension, (travelled length of the fluid; hydraulic diameter when dealing with river systems) (m)
 μ: dynamic viscosity of the fluid
- (Pa·s or N·s/m² or kg/(m·s))
- *v*: kinematic viscosity (μ/ρ) (m²/s)

A vortex street around a cylinder. This occurs around cylinders, for any fluid, cylinder size and fluid speed, provided that there is a Reynolds number of between \sim 40 and 103

Transport in fusion plasmas is 'anomalous'

- Normal (water) flow: Hydrodynamic equations can develop nonlinear turbulent solutions (Reynolds, 1883)
- Transport mainly governed by turbulence: radial extent of turbulent eddy: 1 - 2 cm typical lifetime of turbulent eddy: 0.5 - 1 ms

- Anomalous transport coefficients are of the order 1 m^2/s

$$D \sim \frac{(\Delta x)^2}{\tau}$$
 : diffusion coefficient (m²/s)

Microinstabilities

 often associated with non-Maxwellian velocity distributions: deviation from thermodynamic equilibrium (nonuniformity, anisotropy of distributions) → free energy source which can drive instabilities

- kinetic approach required: limited MHD approach

Two-stream or beam-plasma instability

- Particle bunching \rightarrow **E** perturbation \rightarrow bunching $\uparrow \rightarrow$ unstable

• Drift (or Universal) instability

- driven by ∇p (or ∇n) in magnetic field
- excited by drift waves with a phase velocity of v_{De} with a very short wavelength
- most unstable, dominant for anomalous transport

Trapped particle modes

- Preferably when the perturbation frequency < bounce frequency
- drift instability enhanced by trapped particle effects
- Trapped Electron Mode (TEM), Trapped Ion Mode (TIM)

Profile consistency (or profile resilience or stiffness)

How to reduce plasma transport?

Suppression of Anomalous Transport: H-mode

- 1982 IAEA FEC, F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge

Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak

F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W. Engelhardt, G. Fussmann,
O. Gehre, J. Gernhardt, G. v. Gierke, G. Haas, M. Huang,^(a) F. Karger, M. Keilhacker,
O. Klüber, M. Kornherr, K. Lackner, G. Lisitano, G. G. Lister, H. M. Mayer,
D. Meisel, E. R. Müller, H. Murmann, H. Niedermeyer, W. Poschenrieder,
H. Rapp, H. Röhr, F. Schneider, G. Siller, E. Speth, A. Stäbler,
K. H. Steuer, G. Venus, O. Vollmer, and Z. Yü^(a)
Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-8046 Garching, München, Germany
(Received 6 August 1982; revised manuscript received 1 October 1982)
A new operational regime has been observed in neutral-injection-heated ASDEX divertor

A new operational regime has been observed in neutral-injection-heated ASDEX divertor discharges. This regime is characterized by high β_p values comparable to the aspect ratio A ($\beta_p \leq 0.65A$) and by confinement times close to those of Ohmic discharges. The high- β_p regime develops at an injection power ≥ 1.9 MW, a mean density $\overline{n}_e \geq 3 \times 10^{13}$ cm⁻³, and a q(a) value ≥ 2.6 . Beyond these limits or in discharges with material limiter, low β_p values and reduced particle and energy confinement times are obtained compared to the Ohmic heating phase.

PACS numbers: 52.55.Gb, 52.50.Gj

• Suppression of Anomalous Transport: H-mode

- 1982 IAEA FEC, F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge

• Suppression of Anomalous Transport: H-mode

- 1982 IAEA FEC, F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge

pp

• Suppression of Anomalous Transport: H-mode

- 1982 IAEA FEC, F. Wagner et al. (ASDEX, Germany)
- Transition to H-mode: state with reduced turbulence at the plasma edge
- Formation of an edge transport barrier: steep pressure gradient at the edge

1.72

L-H transition threshold power

• First H-mode Transition in KSTAR (November 8, 2010)

• First H-mode Transition in KSTAR (November 8, 2010)

Shot	number	• : 4	202	2010/11	L⁄08	001		0:00:00	00	
KSTAL	8 TU1_1	(t.=-1	00ms)							
		1	oons,							

• Suppression of Anomalous Transport: ITBs

H-mode

Reversed shear mode

• Suppression of Anomalous Transport

Improved confinement suitable for the steady-state operation

Non-monotonic current profile

Non-inductive current drive

Pulsed Operation

Steady-State Operation

Turbulence Simulations

- XGC1 simulation

Energy Confinement Time

$$\tau_E = \frac{W}{P_{in} - \frac{\partial W}{\partial t}} \approx \frac{W}{P_{in}} = \frac{\text{stored energy}}{\text{applied heating power}}$$

In steady conditions, neglecting radiation loss, Ohmic heating replaced by total input power

- Since tokamak transport is anomalous, empirical scaling laws for energy confinement are necessary.
- To predict the performance of future devices, the energy confinement time is one of the most important parameter.
- Empirical scaling laws: regression analysis from available experimental database.

$$\tau_{th,E}^{fit} = CI^{\alpha I} B^{\alpha B} P^{\alpha P} n^{\alpha n} M^{\alpha M} R^{\alpha R} \varepsilon^{\alpha \varepsilon} \kappa^{\alpha \kappa}$$

in engineering variables

Energy Confinement Time

H-mode confinement scaling

