CHAPTER 4

THE ACID-BASE REACTION

Contents: Acid and Base Acid-base equilibrium Acidity and Basicity

4.1 Definitions

 \Rightarrow Bronsted-Lowry definition

acid -- proton (H⁺) donor; base -- proton acceptor

H-A -- an acid (eg HX, H_2O , ROH, RNH_2 , RCH_3)

B: -- a base (eg RNH₂, ROH, H₂O (amphoteric), RNH⁻⁾

Lewis definition

acid -- e⁻ pair acceptor base -- e⁻ pair donor

4.2 The Acid-Base Equilbrium

Acidity constant is in the range of $10^{10} \sim 10^{-50}$, too large or small to be understood. Therefore logarithmic scale p K_a is used and defined as

$$pK_a = -logK_a$$

Then pK_a is from -10~ 50, much easier to be understood.

Using K_a or pK_a value, acidity could be expected.

General acid-base reaction

Ex)
$$H-Br + H_2O \longrightarrow Br^{\ominus} + H_3O^{+}$$

HBr; $K_a = 10^9$, $pK_a = -9 + H_3O^{+}$; $K_a = 55$, $pK_a = -1.74$
 $K = 1.8 \times 10^7$ (right side is favored)
 H_3O^+ is a weaker acid and Br⁻ is aweaker base.

Scale showing some acid and base strength

Free Energies of Reactant and Products

4.3 Rate of Acid-Base Reaction

Reaction rate depends on

1) Stereoelectronic requirement for the collision of the two molecules

ex) $NH_3 + HO_2C-CH_3$

Stereoelectronic requirement; The orientation required for the orbitals of the reactants

Including this, most of the acid-base reactions satisfy the **Stereoelectronic requirement**

Reaction rate depends on

2) Activation energyex) HBr + H₂O

Including this, most of the acid-base reactions have very small activation energies.

Therefore most acid-base reactions are very fast. RDS for most organic reaction is not the acid-base reaction

4.4 Effect of atoms bonded to H on Acidity

N is More electronegative; NH₃ is more acidic

>In the same period

- Why? stability of A: (::CH₃ < ::NH₂ < HO: < F:) ↑
 bacisity of conj base ↓

In the same group (column)

1. Acidity of HA \uparrow from top to bottom

2. Why? size of A **↑** (loosely bound); overweigh E

4.5 Inductive Effect

Ex)

Less stable than acetic acid

more stable than acetic acid

See Fig 4.6 in p 117

electron-withdrawing group

- pulls more electron density than hydrogen does
- $-CH_{3}COOH < CICH_{2}COOH < CI_{3}CCOOH$
- destabilize an electron-poor site (make acid stronger)
- stabilize an electron-rich site (make conj base weaker)

inductive electron-withdrawing groups \longrightarrow Increase the acidity

inductive electron-donating groups

decrease the acidity

When acidic hydrogen is intramolecularly H-bonded, the acidity decreases.

4.7 hybridization

*sp*³ (25% s orbital) *sp*² (33% s orbital) *sp* (50% s orbital)
 ≻The more s character

•the lower energy orbital (see Fig 4.8 p. 120)

•the more electronegative carbon

the more stable conjugate base (stronger acid)

 $CH_3CH_2^- < CH_2 = CH^- < CH \equiv C^-$

4.8 Resonance

1) delocalize and stabilize conjugate base

2) make an acid stronger

Resonance + electron withdrawing (CO) effect

Examples

Ethanol vs Phenol vs benzyl alcohol

CH₂ group acts as insulator of the resonance

Examples

Phenols with nitro groups

Electron withdrawing +resonance stabilization

More electron withdrawing (closer) + less resonance stabilization More electron withdrawing (closer), + similar resonance stabilization + H-bonding

Examples

Conjugate acids of aniline derivatives

Acidity of C-H

4.9 Tables of Acids and Bases

> See table 4.2, 4.3, and 4.4

4.10 Acidity and Basicity of Functional Groups and Solvents

$$\begin{array}{c} O \\ \parallel \\ RCOH + Na^+OH^- \longrightarrow \begin{array}{c} O \\ \parallel \\ RCO^- Na^+ + H_2O \end{array}$$

 $pK_a = 5$ Water insoluble

$$pK_{a} = 16$$

Water soluble

© 2006 Brooks/Cole - Thomson

+
$$K^+ HCO_3^- \longrightarrow ?$$

Potassium bicarbonate H_2CO_3 p*K*_a = 6.35

Carbonic acid

 \Rightarrow Insoluble amine + HCI = soluble salt

 \Rightarrow Separation & isolation of

Both are water in soluble

 \Rightarrow Reaction solvents: the leveling effect