Chapter 8 Nucleophilic Substitution Reaction

Content $S_N 1 vs S_N 2$ reaction Mechanism and competitions

8.1 Nucleophilic substitution Reaction

8.2 Reaction Mechanism

 \Rightarrow shows how the nuclei and the electrons move and how the bonds change as the rxn proceeds.

Three possible mechanism

- (1) R---L broken, then Nu-R bond formation $(S_N 1)$
- (2) Nu-R-L bond formation, then Nu–R--- L bond broken
- (3) Nu---L broken and Nu-R bond formation happens simultaneously (S_N2)

(2) is impossible because there are five bonds to carbon. (1) and (3) are possible.

8.3 Bimolecular nucleophilic substitution (S_N2)

If the the bond to the leaving group is broken and the bond to the nucleophile is formed simultaneous, then rxn rate is proportional to <u>both reactants</u>! (c) mechanism in the previous page.

 $\Delta G^{\circ} < 0$; exergonic (spontaneous rxn)

∆G° > 0 ; endorgonic (non spontaneous rxn)
∆H; exothermic and endothermic

8.4 Stereochemistry of the S_N2 Rxn

Possible stereochemical outcomes

Transition state

S_N2 always occurs with inversion of configuration 5

8.5 Effect of substituents on the rate of $S_N 2$

1. Steric effect see Fig. 8.4 and 8.5

2. Resonance effect; Resonance-stabilized transition state of Allyl, benzyl, etc, which as a pi bonds adjacent to the reactive side

8.6 Unimolecular nucleophilic substitution (S_N1)

Experimental results show that the rxn rate only depends on the concentration of *t*-butly chloride;

 $S_N 1$ reaction mechanism

Why ? According to the theory made by Hammond.

How?

The structures of both transition states are closer to the carbocation not the reactant and the product.

8.7 Effect of substituents on the rate of the S_N 1 reaction

- 1. Methyl and primary alkyl chloride do not react by $S_N 1$.
- 2. 3° alkyl chloride > 2° alkyl chloride.
- 3. Allyl and phenyl groups increase the rxn rate.
- \Rightarrow The stability of the carbocation determines the rxn rate

Why?

1. Hyperconjugation between sigma MO and *p* AO

2. Resonance stabilization

8.8 Stereochemistry of the S_N **1 reaction** \Rightarrow Racemization (50% inversion +50% retention)

Some S_N shows more inversion than retention.

Why? Ion pair can be involved in the reaction.

When? The life time of carbocation is short (=carbocation is unstable)

Therefore when the carbocation has a long lifetime **Free broands** is obtained on the nucleophile and the solvent

See next page or page 277 Fig 8.9

8.9 Effect of leaving group on $S_N 1$ and $S_N 2$

In both S_N^1 and S_N^2 reactions, the bond to the leaving groups is broken during the RDS. *(see slide 6 & 12)*

Therefore the structures of the leaving groups affect the reaction rate.

General rule; the more stable the leaving group is as a free species, the faster the rxn is.

The more stable it is, the weaker base it is.

.:. Good leaving group = weak base

Ex) –OH is a bad leaving group, -Cl is a good leaving group. –H, –NH2, and –OR do not act as leaving groups.

Cl⁻ < Br⁻ < l⁻ ⇒ l⁻ is weakest base (most stable) and Cl⁻ is least stable (–<u>F; very poor leaving group</u>) ⇒ acidity; HCl < HBr < HI

mesylate and tosylate are very weak base and excellent leaving group because of the resonance stabilization

How alcohols are used in the substitution reactions \Rightarrow -OH is very poor leaving group

1. Reactions in an acidic condition

-OH₂⁺ is a good leaving group because H₂O is a weak base

2. Using mesylate or tosylate

Methanesulfonyl chloride

Toluenesulfonyl chloride

8.10 Nucleophiles

-Nucleophilicity is only important in $S_N 2$. In $S_N 1$ nucleophiles are not involved in in RDS.

-Nucleophilicity \uparrow as basicity \uparrow , but not always.

General Rules

The smaller (the higher basicity), the stroner the Hbonding with H₂O or alcohol

8.11 Effect of solvent

The roles of Solvents

- dissolves the reactants; they can contact each other
- no reaction with the reactants, intermediates, and product + no decomposition of them
- be chosen considering polarity; affect the stability or reactivity of the polar molecules

Polar solvents can stabilize ions.

If the transition state is more polar than the reactants, polar solvents will stabilize the transition state and increase the reaction rate.

If the reactants is more polar than the transition state, polar solvents will decrease the reaction rate.

Effect of polarity on $S_N 1$

Polar solvents can stabilize ions the transition states including the carbocation.

Effect polarity on S_N2 reaction

Polar solvents decrease the rxn rate because the transition state is less polar (charges are dispersed).

Polar solvents increase the rxn rate because the transition state is more polar.

Protic solvents and aprotic solvents

Protic solvent; has an ability to form H-bonds to the nucleophile

 \Rightarrow makes nucleophile less reactive

Aprotic solvent; no H-bonding

Million times faster in dimethylformamide(DMF) than in methanol

In DMF (aprotic solvent), nucleophilicity; Cl⁻ > Br⁻ > l⁻

In alcohol (protic solvent), nucleophilicity; Cl⁻ < Br⁻ < l⁻

288 Table 8.4; common solvents for substitution rxn

8.12 Competition between $S_N 1$ and $S_N 2$

S_N1 pathway is favored when

- 1. carbocation is stabilized; 3° >2°, 1° carbocation is not formed
- 2. only poor nucleophiles are present.
- 3. the solvent is polar

S_N2 favored when

1. electrophilic carbon is not sterically hindered;

methyl > 1°> 2°

- 2. strong nucleophiles are present
- 3. the solvent is aprotic (to make the nucleophile more reactive)

8.13 Intramolecular Substitution Rxn

intermolecular vs intramolecular

4- membered rings are not easily formed.3-, 5-, 6- membered rings can be formed.Larger rings are less easily formed.

8.14 Competing Reactions

Elimination(chap. 9 & 10) and $S_N 2$ ($S_N 1$) are competing when the nucleophile is basic.

 S_N 1 is also possible because the electrophile is 2° alkyl halide.

Competition between $S_N 1$ and elimination rxn

Carbocation Rearrangements

hydride shift

alkyl shift

Allylic rearrangement

Reactions involving carbocation rearrangements