Chapter 10 Synthetic Uses of Substitution and Elimination Reactions

How to use these reactions $(S_N 1, S_N 2, E1, and E2)$ to make organic compounds?

10.1 Substitution Reactioins

- $S_N 2$ is more commonly used than $S_N 1$ for the preparation of organic compounds
 - \Rightarrow **Disadvantages of S_N1;** Loss of stereochemistry and or Rearrangement because carbocation in involved in the rxn
 - ⇒S_N2 can also accompanied by elimination reactions; To decrease the elimination, minimize the steric hindrance and/or decrease the basicity of Nü.

The effect of substrate;

- 1. Primary carbon; only $S_N 2$ is possible
- Secondary carbon; S_N2 is possible when Nü is weak base, while with strong base E2 can be accompanied
 ⇒ use S_N1
- 3. Tertiary carbon; no S_N^2 , use S_N^1 for any rate

10.2 Preparation of alcohols

1. From S_N2 using hydroxide ion (a strong Nu and a strong base)

R-L = 1° alkyl halides

R-L = activated 2° alkyl halides (allylic, benzylic, or adjacent to a carbonyl group)

However ⁻OH is seldom used for unactivated 2° alkyl halides and never used 3° alkyl halides due to the elimination. Therefore

2. From S_N1 using water (weak base) with heating; solvolysis reaction or hydrolysis reaction.

ex)

Preparation of alcohols

1. $S_N 2$; strong basicity of Nü elimination is accompanied 2. $S_N 1$; yield is not high

3. Use synthetic equivalent, acetate, instead of hydroxide

lower basicity (due to resonance), still reasonable Nü. Then elimination can be minimized ($S_N 2 > E2$)

10.3 Preparation of Ethers

1. Williamson synthesis; alkoxide with alkyl halide

Strong base; similar to hydroxide, therefore the same rules are applied.

- 1. 1° alkyl halides and activated 2° alkyl halides are OK.
- unactivated 2° alkyl halides are seldom used and 3° alkyl halides are never used due to the elimination

Preparation of alkoxides

1. alcohols (alkyl); use sodium metal (very strong base)

2. phenols; use hydroxides or carbonate (weaker base than sodium metal. Because phenols are nore acidic than alkanols

Examples of Williamson ether synthesis

Preparation of asymmetrical ethers ⇒ Use two different Williamson ether syntheses Example

elimination can be accompanied.

better strategy

+ more sterically hindered

2. Ether preparation for 2° alkyl halides or 3° alkyl halides using alcohols not alkoxide

(1) ethanolysis; S_N1

(2) using strong acids and alcohols; $S_N 2$

Mechanism

3. preparation of cyclic ethers

(1) Possible by intermolecular rxn.

- (2) 3-, 5-, 6- membered rings can be prepared
- (3) Both $S_N 1$ and $S_N 2$ mechanisms can be used

Examples

mechanism

10.4 Preparation of esters

⇒ Using carboxylate salts with 1° or 2° substrate. ⇒ As carboxylate salts are only weakly basic, Eliminations are not problem.

Examples

10.5 Preparation of alkyl halides

1. Using alcohols with 1° or 2° substrate. As –OH is a poor leaving group, it must be converted into a <u>better leaving group</u>

Conversion of -OH to -OH₂⁺ thorough protonation

- ⇒ Halogen acids protonate the –OH and provide nucleophile.
- \Rightarrow Favor S_N1, while S_N2 is possible for 1° substrates unless a resonance-stabilized carbocation is formed.
- \Rightarrow Stronger acids, HBr and HI work alone
- \Rightarrow weaker acid, HCI, are used together with a Lewis acid such as $ZnCI_2$

Examples

Conversion of the alcohol (OH) into a sulfonate ester (OTs or OMs).

 \Rightarrow Requires two steps

Example

2. Using alcohols with SOCl₂, PBr₃, or Pl₃; one step reaction.

⇒ Using sulfonyl chloride (SOCl₂); generally via $S_N 1$ mechanism for 2°and 3° substrates or $S_N 2$ mechanism for 1° substrates.

Examples

mechanism

 \Rightarrow Using PBr₃ and Pl₃; rxn mechanism is similar to that using thionyl chloride.

Examples

3. S_N^2 reaction using one halogen as the leaving group and different halide ion as the nucleophile

⇒ It is a equilibrium reaction. We need a driving force to shift the equilibrium.

Example

⇒ Nal is soluble in aceton, while NaBr and NaCl is insoluble.

10.6 Preparation of amines

1. Ammonia and unhindered amines are good nucleophile, therefore $S_N 2$ mechanism is possible with alkyl halides or sulfonate esters

\Rightarrow Disadvantage; multiple alkylation

Example

⇒ nucleophilicity; ammonia < 1° amine < 2° amine while 3° amine is not a strong nucleophile because of steric effect

2. Gabriel synthesis; better method to prepare primary amines

⇒ Using a phthalimide; not very basic or nucleophilic

Example

not basic or nucleophilic because of the resonance structure

 \Rightarrow KOH is used to remove –H (pk_a value of phthalimide is 9.7)

mechanism

10.7 Preparation of Hydrocarbon

- \Rightarrow S_N2 mechanism (reactions with only 1° and 2° carbon) using a hydride ion (H⁻)
- ⇒ Source of the hydride ion; lithium aluminium hydride and sodium borohydride

General rxn

Examples

10.8 Formation of C-C bonds

- \Rightarrow Larger compounds can be made.
- \Rightarrow S_N2 mechanism using a carbanion (carbon anion)

General rxn

- 1. Using cyanide ion;
 - \Rightarrow High yields for 1° substrate.
 - ⇒ For 2° substrate, yields are lower due to competing elimination

Examples

2. Using acetylide anion

⇒ Generated by treating 1-akyne with a very strong base

$$pK_a = 25$$
 very strong base

less strong base

- ⇒ acetylide anoins still strong bases and strong nucleophiles.
- \Rightarrow High yields for 1° substrate.
- \Rightarrow For 2° substrate, major rxn is elimination

10.9 Phosphorus and Sulfur Nü

- ⇒ S and P comp'ds are weaker bases but better Nü's compared with O and N compunds. (S and P are larger than O and N)
- \Rightarrow Excellent yields from S_N2 mechanism
- ⇒ Both 1° and 2° substrate can be employed in the substitution reaction without elimination.

10.10 Ring opening of Epoxides

- ⇒ ⁻OH and ⁻OR are both strongly basic, therefore they are very poor leaving groups.
- ⇒ Generation of a leaving group from them; through protonation. See chap 8 for alcohols.

This rxn requires more vigorous condition than that for the alcohol.

Therefore not commonly used.

Epoxide (cyclic ether) can be used for the substitution rxn because it is unstable due to a ring strain.

Under basic or neutral conditions $\Rightarrow S_N 2$ mechanism

Why $S_N 2$?

- **1.** two reactants are involved.
- 2. nucleophile reacts at less hindered carbon.
- **3.** inversion of configuration.

2. Under acidic conditions

\Rightarrow mechanism between $S_{N}1$ and $S_{N}2$

Why?

- 1. Stereochemistry; S_N2
- ⇒ The nucleophile attacks the side opposite the leaving group, then a phase inversion happens.
- 2. Regiochemistry; $S_N 1$
- \Rightarrow The rxn occurs at the more hindered carbon.

mechanism between $S_N 1$ and $S_N 2$

Possible transition state

More stable; pheny group stabilize the positive charge of the carbon

10.11 Elimination of Hydrogen Halides

(dehydrohalogenation)

- ⇒ Preparation of Alkene; rxns of alkyl halides with strong bases or of sulfonate esters with strong bases.
- ⇒ strong bases; NaOH, KOH, NaOEt, KOMe, *tert*-butoxide (*t*-BuO- for less hindered substrate if not S_N^2) etc.

Examples

10.12 Preparation of alkynes

- \Rightarrow by elimination of two molecules of HX.
- ⇒ very strongly basic codntions are employed; KOH at high temperatures or using sodium amide (very strong base).

Examples

One step

р*К*_а ~ 38

р*К*_а ~ 25

More basic than acetylide anoin

Two step

 \Rightarrow using vinyl chloride at very basic conditions.

Examples

10.13 Dehydration

- ⇒ rxn of an alcohol with a <u>catalytic amount</u> of sulfuric or phosphoric acid.
- ⇒ generally the rxns follows E1 mechanism; 3° alcohols are more reactive then 2° alcohols.
- ⇒ One of the few cases in which E1 is favored over S_N^1 ; because there are no good Nü in the rxns (HSO₄⁻ and H₂PO₄⁻ are not very nucleophilic)

Examples

mechanism

The acid is regenerated. Therefore only catalytic amount of acid is needed.

The limitation of dehydration \Rightarrow carbocation rearrangements.

Zaitsev's isomeric mixtures

10.14 Elimination to form C=O bonds; oxidation

- 1. Oxidation; a loss of electrons or an increase in oxygen content
- 2. Reduction; a gain in electrons or an decrease in oxygen content.

Oxidation of alcohols

 \Rightarrow To oxidize alcohols, the hydrogen on the oxygen should be replaced by some leaving groups

- ⇒ leaving groups; metals in high oxidation state such as chronium in the +6 oxidation state (see table 9.10)
- ⇒ after oxidation the metals are reduced to lower oxidation state.

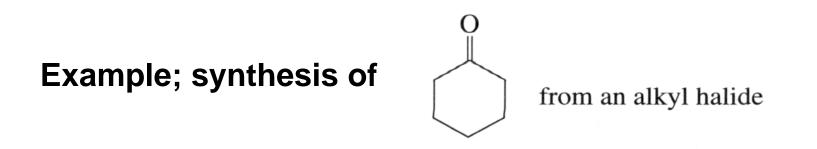
mechanism

Useful oxidizing reagents

10.15 The strategy of organic synthesis

 \Rightarrow retrosynthetic analysis

Example; synthesis of


- \Rightarrow 2° alkyl halide in route A ; elimination is possible with a strong acid.
- \Rightarrow Route B is acceptable.

1. preparation of alkoxide

2. preparation of cyclopentanol

3. preparation of final product

Example; synthesis of $CH_3CH_2-C \equiv C-CH_2CH_2CH_3$ from $H-C \equiv C-H$

