Components of Organic Chemistry

공부하는 방법

"그저 익숙하도록 읽는 것뿐이다. 글을 읽는 사람이, 비록 글의 뜻은 알았으나, 만약 익숙하지 못하면 읽자마자 곧 잊 어버리게 되어, 마음에 간직할 수 없을 것은 틀림없다.
이미 읽고 난 뒤에, 또 거기에 자세하고 익숙해질 공부를 더한 뒤라야 비로소 마음에 간직할 수 있으며, 또 흐뭇한 맛 도 있을 것이다." - 퇴계 이황 (금장태 著)

Chapter 1. Bonding & Structure

Valence Bond Theory: hybridization & resonance

- bonding electron pairs are localized between two atoms
- simple & effective but over-simplified & many exceptions
- □ Molecular Orbital Theory: Schrödinger equation
 - bonding electrons are distributed over the entire molecule
 - more accurate & close to the real structure but difficult to calculate & many assumptions in calculation

Valence Bond Theory (I)

- □ Lewis in 1916 & Heitler-London in 1927 (H₂: H–H)
 - chemical bonding results from sharing of the electrons between the two atoms: localized bonding electron pairs
- \square Hybridization: complex molecules (CH₄)
 - ♦ directed valence: Pauling in 1931; □ 4 bot. & □ 5

 \odot 4 bonds rather than 2 & more effective overlap due to the highly directional 4 *sp*³ orbitals: σ bonds

 $OH_2C=CH_2$ 3 sp² & 1 2p or 4 sp³, trigonal; HC=CH 2 sp & 2 2p or 4 sp³, digonal: \Box 5 (H₂C=C=CH₂?)

 $-\pi$ bonds from 2 *sp*³: bent bonds

✤ Valence Bond Theory (II)

Hybridization of strained molecules: 3-ring
 more *p* for C-C (17%, *sp*⁵)& more *s* for C-H (33%, *sp*²)
 obent bonds: less overlap; 27 Fig. 1.5 & 25 Fig. 1.4
 oelectronegativity change: more electronegative (*s* character) C in strained molecules; 27 Fig. 1.6
 opropellanes: 28 Fig. 1.7; [4.4.4] *sp*³; [2.2.2] *sp*²; [1.1.1] inverted carbon – reactive: 28 middle & bottom

✤ Valence Bond Theory (III)

- Resonance theory: more than one Lewis structure possible for complex molecule
 - ♦ Rule of thumb: □ 9 middle (a d); acrolein

✤ Valence Bond Theory (IV)

- □Application of resonance theory to acrolein
 - a. Acrolein has properties of 5 resonance structures

>The real structure is their resonance hybrid

- b. All resonance structures satisfy the octet rule
- c. More stable resonance structures resemble more closely the real structure (major contributors): <u>maximum No. of</u> <u>covalent bonds (I)</u>, minimum separation of unlike charges (I), <u>negative charge on the more electronegative atom (IV/V)</u>
- d. Usually, delocalization of electrons enhances stability relatively to a single localized structure: an energy barrier to rotation;
 10 top (allyl cation) &
 11 top (amide)

✤ Valence Bond Theory (V)

Experimental proof for the resonance hybrid

♦ the weaker C=O bond: 1690 vs 1730 cm⁻¹ (IR)

♦the deshielded β -carbon in ¹H & ¹³C NMR:

♦ the chemical reactivity: 1,2-/1,4-addition of nucleophiles

Structural Properties of Chemical Bonds (I)

□ Bond length: □ 13 Table 1.2

◆nearly constant for a hybridization type of carbon
 □ Bond energy: variable; □ 14 Table 1.3 (homolytic)
 ◆Heterolytic △E_{dis}: more sensitive; □ 15 Table 1.4

□ Heat of formation: isomers; □ 16 Table 1.5

♦ stable: branched alkane & more substituted *tans*-alkene

□ Polarity: different electronegativity; □ 17 Table 1.6

- dipole moment = Σ bond dipoles; \square 17 Table 1.7
- Mulliken electronegativity (χ) = (*I* + *A*) / 2; \square 18

Structural Properties of Chemical Bonds (II)

Polarity of hydrocarbons: 18 Scheme 1.1 •electronegativity of C: $sp > sp^2 > sp^3$; C–H for normal sp^3 Polarity transmission: polar effect; reactivity inductive effect: successive polarization through bonds field effect: through-space interactions of the electric dipoles osubstituent effect on reactivity: 📖 19 Table 1.8 \square Polarizability: \propto size; \square 21-23 Table 1.9 & Fig. 1.8 response of electrons to nearby charges: HSAB principle ohardness: difficult distortion, softness: easy distortion

Field Effect: Through-space Electrostatic Interaction

Molecular Orbital (MO) Theory: Overview (I)

 $\Box H\psi = E\psi$: accuracy vs amount of computation

•LCAO approximation: $\psi = c_1 \phi_1 + c_2 \phi_2 + \cdots + c_n \phi_n$

minimum basis set: combination of AO chosen

 $\odot 2s$, $2p_x$, $2p_y$, $2p_z$ for C, N, O and 1s for H

- semiempirical calculations: use of experimentally determined parameters [EHT, CNDO, MINDO-3, MNDO, AM1, MM2, PM3]; faster, simpler but limited applications
- ab initio calculations: absence of adjustable parameters (fewer assumptions) using SCF [STO-3G, 4-31G, 6-31G]; more reliable, accurate but more complex, time-consuming
- ♦ comparison between the two calculations: □ 29 Table 1.12

✤ MO Theory: Overview (II)

Results obtainable from MO calculations

- the energy of each MO & charge distributions
- ♦total electronic energy of the molecule relative to the atoms

othe calculated molecular energy \rightarrow relative stabilities of isomeric molecules \rightarrow conformational effects (the total energy as a function of molecular geometry)

- the minimum energy: the most favorable molecular structure
- the coefficients of the AOs contributing each MO
- applicable to the situation in the gas phase (on a single molecule)

MO Theory: Applications (I)

□ Charge distribution of a molecule

 \bullet the electron density (q) at each atom r: CH₃+; \square 27 Table 1.10 $\circ q_r = \sum_i n_j c_{jr}^2$, n=No. of e⁻, c_j=coefficient at *j*th MO \odot 7 MOs from 3 H 1s & C 2s, 2p_x, 2p_y, 2p_z \odot 3 occupied MOs with 2 e⁻ for each $\bigcirc q_{\rm C} = 3.565 \text{ e}^{-}, q_{\rm H} = 0.812 \text{ e}^{-}$: total charge = (+0.435) [(4-3.565)] + 3(+0.188) [3(1-0.812)] = +1.000 \circ LUMO: p_{z} (localized purely on the carbon atom) $-cf.: 3 sp^2 \& 1 p_7$ from VB theory

✤ MO Theory: Applications (II)

 \Box Heat of reaction: $\Delta H_f = \sum \Delta H_{reactant} - \sum \Delta H_{product}$ ◆isodesmic reactions: test of reliability; □ 28-9 Table 1.11-12 • the same No. of formal bonds of each type on each side \Box Structure & energy: CH₃⁺, CH₃[•], CH₃⁻; 4-31G basis set \bullet Fig. 1.9, \square 29: CH₃+ & CH₃•, planar; CH₃⁻, non-planar \Box Substituent effects: π -donor vs inductive effects • X-CH₂⁺ vs H-CH₂⁺ : \square 29 middle & \square 30 Table 1.13 ◆X-CH₂⁻ vs H-CH₂⁻ : □ 31 Table 1.14 • vinyl: rotational barrier of an allyl cation & anion

Hückel Molecular Orbital (HMO) Theory (I)

□ Simple but useful for the conjugated compounds

- assumption: the π-system can be treated independently of the σ framework in conjugated planar molecules (orthogonality) & mainly determines the chemical and spectroscopic properties
- □ Energy levels for each MO
 - ♦ $E=\alpha+m_j\beta$, $m_j=2cos[j\pi/(n+1)]$: linear polyenes; □ 32 Table 1.15

 $\circ \alpha$: Coulomb integral, a constant for all carbon atoms

 $\circ\beta$: resonance integral, 0 for nuclei of nonbonding distance

◆ $DE = \sum E_{\text{polyene}} - \sum E_{\text{ethylene}} = (6\alpha + 6.988\beta) - (6\alpha + 6\beta) = 0.988\beta$, β≈18 kcal/mol; [2(α+1.802β)+2(α+1.247β)+2(α+0.445β)]

Hückel Molecular Orbital (HMO) Theory (II)

- \Box Coefficients of 2*p* AO of atom *r* for each MO: \Box 32 bot.
 - ♦a node between different signs: antibonding; 📖 34 Fig. 1.10
 - bonding between the similar size in concerted reactions
- □ Hückel's rule: planar monocyclic conjugated polyenes
 - •aromatic: [4n+2] e^{-} in the π system; antiaromatic: [4n] e^{-}
 - obenzene-aromatic vs cyclobutadiene-antiaromatic
 - ♦ $E=\alpha+m_{\beta}\beta$, $m_{j}=2cos(2j\pi/n)$: □ 35 Fig. 1.11 (annulenes)
 - $O_{\underline{DE}_{benz}} = 2\beta \text{ vs } \underline{DE}_{cybu} = 0$; (aromatic) vs (antiaromatic)
 - ◆Frost's circle: a mnemonic; □ 35 Fig. 1.12
- \Box Charged C₃H₃ & C₅H₅ systems: \Box 36 Fig. 1.13

Calculation of Total Electron Energy E

□ Cyclobutadiene:
$$E_{cybu} = 4\alpha + 4\beta$$

• j=0, $m_0 = 2\cos(0/4) = 2$; j =±1, $m_{\pm 1} = 2\cos(\pm 2\pi/4) = 0$; j=+2, $m_{\pm 2} = 2\cos(4\pi/4) = -2$; $E_1 = \alpha + 2\beta$, $E_2 = E_3 = \alpha$, $E_4 = \alpha - 2\beta$ (empty)
• $DE_{cybu} = \sum E_{cybu} - \sum E_{ethylene} = [2(\alpha + 2\beta) + 1\alpha + 1\alpha] - (4\alpha + 4\beta) = 0$
□ Benzene: $E_{benz} = 6\alpha + 8\beta$
• j=0, $m_0 = 2$; j =±1, $m_{\pm 1} = 2\cos(\pm 2\pi/6) = 1$; j=±2, $m_{\pm 2} = 2\cos(\pm 4\pi/6)$
 $= -1$; j=+3, $m_{\pm 3} = 2\cos(\pm 6\pi/6) = -2$; $E_1 = \alpha + 2\beta$, $E_2 = E_3 = \alpha + \beta$, $E_4 = E_5 = \alpha - \beta$ (empty), $E_6 = \alpha - 2\beta$ (empty)
• $DE_{benz} = \sum E_{benz} - \sum E_{ethylene} = [2(\alpha + 2\beta) + 4(\alpha + \beta)] - (6\alpha + 6\beta) = 2\beta$

MO Energy Level of Acyclic Polyenes

 \Box Allyl cation: $E = 2\alpha + 2.83\beta$; anion: $E = 4\alpha + 2.83\beta$

 $\Psi_1 \ [E = \alpha + 1.414\beta], \ \Psi_2 \ [E = \alpha], \ \Psi_3 \ [E = \alpha - 1.414\beta]$

Butadiene: $E = 4\alpha + 4.47\beta$

- $\blacklozenge \mathcal{\Psi}_1 \ [E = \alpha + 1.618\beta], \ \mathcal{\Psi}_2 \ [E = \alpha + 0.618\beta]$
- $\blacklozenge \mathcal{\Psi}_3 \ [E = \alpha 0.618\beta], \ \mathcal{\Psi}_4 \ [E = \alpha 1.618\beta]$
- □ Pentadienyl cation: $E = 4\alpha + 5.46\beta$

Pentadienyl anion: $E = 6\alpha + 5.46\beta$

 $\blacklozenge \mathcal{\Psi}_1 \ [E = \alpha + 1.732\beta], \ \mathcal{\Psi}_2 \ [E = \alpha + 1.000\beta], \ \mathcal{\Psi}_3 \ [E = \alpha]$

$$\blacklozenge \mathcal{\Psi}_4 \ [E = \alpha - 1.000\beta], \ \mathcal{\Psi}_5 \ [E = \alpha - 1.732\beta]$$

Qualitative Application of MO Theory(I)

Rules for construction of MO energy level diagram

- \bullet total No. of MOs = Σ No. of AOs; aufbau principle
- the symmetry of MOs = the symmetry of the molecule osymmetric: the same sign, antisymmetric: opposite sign
- \diamond orthogonal orbitals do not interact: p_x , p_y , p_z
- the energy of more electronegative atoms is lower
- the more the No. of nodes, the higher the energy
- □ Diatomic molecules with 1s AO: □ 37 Fig. 1.14
 - ♦H₂⁺, H₂, He₂⁺, He₂, HHe⁺: 61, 103, 60, (0), 43 kcal/mol

Qualitative Application of MO Theory(II)

Energy level diagram of CO: <u>38 Fig. 1.15</u> ♦ total No. of MOs = 10 (C & O: 1s, 2s, $2p_x$, $2p_y$, $2p_z$; 14 e⁻) othe MOs 1s e⁻: negligible due to the large energy gap O10 e⁻ in 5 MOs from 8 MOs: 4 bonding & 1 antibonding \square MO energy diagram of CH₄: \square 40 Fig. 1.18 ♦ ab initio calculation results: no 4 equivalent MOs qualitative analysis of energy diagram oframe of reference: a cube; <u>37 Fig. 1.14</u> $\odot 3 C_2$ axes (x, y, z): symmetrical or antisymmetrical

Application of MO Theory to Reactivity (I)

Perturbation MO (PMO) theory for new MOs

Change of the MO pattern with a change in structure

othe changes are small & the new MO pattern would be similar to known MOs of the similar system

strongest interactions between MOs with close energy

 FMO theory: important interactions between HOMO of one reactant & LUMO of the other; relative energy

only MOs of matching symmetry can interact

□ Reactivity difference between CH₂=CH₂ & CH₂=O

♦ ethylene with E⁺ & formaldehyde with Nu: <u>□ 48 Fig. 1.25</u>

Reactivity Difference: CH₂=CH₂ & CH₂=O

Application of MO Theory to Reactivity (II)

- Substituent effects on the reactivity of double bonds
 - ♦ ethylene with a π -donor: reactive to E⁺; □ 49 top figure oallyl anion: reactive site at the terminal atoms; β-C & N
 - \bullet ethylene with a π -acceptor: reactive to Nu; \square 49 middle
 - obutadiene: larger coefficient at the β -C of LUMO
 - ♦prediction with VB theory: resonance; □ 49 bottom
- □ Concerted reactions & symmetry: □ 53 bottom
 - ♦ allyl cation & ethylene: forbidden; <u>□ 51 Fig. 1.27</u>
 - ♦ allyl cation & butadiene: allowed; <u>□ 52 Fig. 1.28</u>

✤ Application of MO Theory to Reactivity (III)

Hyperconjugation of allylic systems

- ♦ interaction between σ & π bonds: σ bonds not on the nodal plane of π-system; <u>□ 54 middle</u>
- eclipsed conformation favored: 1.5-2.0 kcal/mol

orepulsive & attractive interactions: D 55 top & Fig. 1.30

oslightly longer C_3 -H & $C_1=C_2$ but shorter C_3-C_2

- \bullet prediction with VB theory: 'no-bond' resonance; <u> \square 55</u>
- □ Rotational barrier: 3 kcal/mol, ethane; □ 55 middle
 - hindered rotation due to π character of some MOs: <u>III 56</u> Fig. 1.31

Other Quantitative Methods

□ Molecular graphs & critical points: □ 58 Fig. 1.32

Partial structures from MO quantitative calculations
 opartition of total electron density among atoms

♦ applications: □ 59-62 Table 1.17 & Figs. 1.33-5

Density functional theory (DFT): the B3LYP method

♦ simpler calculation & rather accurate: □ 63 Tables 1.18-9

•electronegativity: V = n / r: \square 61 top & 64 Table 1.20

 $\odot n$: No. of valence-shell e⁻, r : effective atomic radius

♦hardness & V: acidity & stability; □ 64 & 22 Table 1.21 & 9

Quantitative VBT: localized MOs & delocalization

