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Components of Organic Chemistry

Reactions: synthesis

ReactivityStructure

Organic
compounds

bonding, conformation,
analysis, stereochem.

interaction with other 
molecules: mechanism, 
dynamic stereochem.
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“그저익숙하도록읽는것뿐이다. 글을읽는사람이, 비록

글의 뜻은 알았으나, 만약 익숙하지 못하면 읽자마자 곧 잊

어버리게되어, 마음에간직할수없을것은틀림없다. 

이미읽고난뒤에, 또거기에자세하고 익숙해질 공부를

더한 뒤라야 비로소 마음에간직할 수 있으며, 또 흐뭇한맛

도있을것이다.” - 퇴계 이황 (금장태著)
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Valence Bond Theory: hybridization & resonance

bonding electron pairs are localized between two atoms

simple & effective but over-simplified & many exceptions

Molecular Orbital Theory: Schrödinger equation

bonding electrons are distributed over the entire molecule

more accurate & close to the real structure but difficult to 
calculate & many assumptions in calculation

Chapter 1. Bonding & Structure
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Valence Bond Theory (I)

Lewis in 1916 & Heitler-London in 1927 (H2: H–H)
chemical bonding results from sharing of the electrons 
between the two atoms: localized bonding electron pairs 

Hybridization: complex molecules (CH4)
directed valence: Pauling in 1931; 4 bot. & 5

4 bonds rather than 2 & more effective overlap due to 
the highly directional 4 sp3 orbitals: σ bonds

H2C=CH2 3 sp2 & 1 2p or 4 sp3, trigonal; HC≡CH 2 sp
& 2 2p or 4 sp3, digonal: 5 (H2C=C=CH2 ?)

– π bonds from 2 sp3: bent bonds
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Valence Bond Theory (II)

Hybridization of strained molecules: 3-ring
more p for C-C (17%, sp5)& more s for C-H (33%, sp2)

bent bonds: less overlap; 7 Fig. 1.5 & 5 Fig. 1.4

electronegativity change: more electronegative (s
character) C in strained molecules; 7 Fig. 1.6

propellanes: 8 Fig. 1.7; [4.4.4] sp3; [2.2.2] sp2; [1.1.1] 
inverted carbon – reactive: 8 middle & bottom
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Valence Bond Theory (III)

Resonance theory: more than one Lewis structure 
possible for complex molecule

Rule of thumb: 9 middle (a – d); acrolein
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Valence Bond Theory (IV)

Application of resonance theory to acrolein
a. Acrolein has properties of 5 resonance structures

The real structure is their resonance hybrid

b. All resonance structures satisfy the octet rule

c. More stable resonance structures resemble more closely 
the real structure (major contributors): maximum No. of 
covalent bonds (I), minimum separation of unlike charges (I), 
negative charge on the more electronegative atom (IV/V)

d. Usually, delocalization of electrons enhances stability 
relatively to a single localized structure: an energy barrier to
rotation; 10 top (allyl cation) & 11 top (amide)
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Valence Bond Theory (V)

Experimental proof for the resonance hybrid
the weaker C=O bond: 1690 vs 1730 cm-1 (IR)

the deshielded β-carbon in 1H & 13C NMR:

the chemical reactivity: 1,2-/1,4-addition of nucleophiles
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Structural Properties of Chemical Bonds (I)

Bond length: 13 Table 1.2
nearly constant for a hybridization type of carbon

Bond energy: variable; 14 Table 1.3 (homolytic)
Heterolytic ΔEdis: more sensitive; 15 Table 1.4 

Heat of formation: isomers; 16 Table 1.5 
stable: branched alkane & more substituted tans-alkene

Polarity: different electronegativity; 17 Table 1.6
dipole moment = Σ bond dipoles; 17 Table 1.7

Mulliken electronegativity (χ) = (I + A) / 2; 18
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Structural Properties of Chemical Bonds (II)

Polarity of hydrocarbons: 18 Scheme 1.1
electronegativity of C: sp > sp2 > sp3; C–H for normal sp3

Polarity transmission: polar effect; reactivity
inductive effect: successive polarization through bonds

field effect: through-space interactions of the electric dipoles

substituent effect on reactivity: 19 Table 1.8

Polarizability: ∝ size; 21-23 Table 1.9 & Fig. 1.8
response of electrons to nearby charges: HSAB principle

hardness: difficult distortion, softness: easy distortion

δ+δ−
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Field Effect: Through-space Electrostatic 
Interaction

H
H Cl
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Molecular Orbital (MO) Theory: Overview (I)

Hψ = Eψ : accuracy vs amount of computation
LCAO approximation: ψ = c1φ1+ c2φ2+ •••• + cnφn

minimum basis set: combination of AO chosen

2s, 2px, 2py, 2pz for C, N, O and 1s for H

semiempirical calculations: use of experimentally determined 
parameters [EHT, CNDO, MINDO-3, MNDO, AM1, MM2, 
PM3]; faster, simpler but limited applications

ab initio calculations: absence of adjustable parameters 
(fewer assumptions) using SCF [STO-3G, 4-31G, 6-31G]; 
more reliable, accurate but more complex, time-consuming

comparison between the two calculations: 29 Table 1.12
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MO Theory: Overview (II)

Results obtainable from MO calculations
the energy of each MO & charge distributions

total electronic energy of the molecule relative to the atoms

the calculated molecular energy → relative stabilities of 
isomeric molecules → conformational effects (the total 
energy as a function of molecular geometry)

the minimum energy: the most favorable molecular structure

the coefficients of the AOs contributing each MO

applicable to the situation in the gas phase (on a single 
molecule)
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MO Theory: Applications (I)

Charge distribution of a molecule
the electron density (q) at each atom r : CH3

+; 27 Table 1.10

qr = ∑njcjr
2, n=No. of e-, cj=coefficient at jth MO

7 MOs from 3 H 1s & C 2s, 2px, 2py, 2pz

3 occupied MOs with 2 e- for each

qC=3.565 e-, qH=0.812 e-: total charge = (+0.435) [(4-3.565)] 
+ 3(+0.188) [3(1-0.812)] = +1.000

LUMO: pz (localized purely on the carbon atom)

– cf.: 3 sp2 & 1 pz from VB theory

j
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MO Theory: Applications (II)

Heat of reaction: ΔHf = ∑ΔHreactant - ∑ΔHproduct

isodesmic reactions: test of reliability; 28-9 Table 1.11-12

the same No. of formal bonds of each type on each side

Structure & energy: CH3
+, CH3•, CH3

-; 4-31G basis set

Fig. 1.9, 29: CH3
+ & CH3•, planar; CH3

-, non-planar

Substituent effects: π-donor vs inductive effects
X-CH2

+ vs H-CH2
+ : 29 middle & 30 Table 1.13

X-CH2
- vs H-CH2

- : 31 Table 1.14

vinyl: rotational barrier of an allyl cation & anion
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Hückel Molecular Orbital (HMO) Theory (I)

Simple but useful for the conjugated compounds
assumption: the π-system can be treated independently of the σ 
framework in conjugated planar molecules (orthogonality) & 
mainly determines the chemical and spectroscopic properties

Energy levels for each MO
E=α+mjβ, mj =2cos[jπ/(n+1)]: linear polyenes; 32 Table 1.15

α: Coulomb integral, a constant for all carbon atoms

β: resonance integral, 0 for nuclei of nonbonding distance

DE = ∑Epolyene-∑Eethylene = (6α+6.988β) - (6α+6β) = 0.988β, β≈18 
kcal/mol; [2(α+1.802β)+2(α+1.247β)+2(α+0.445β)]
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Hückel Molecular Orbital (HMO) Theory (II)

Coefficients of 2p AO of atom r for each MO: 32 bot.
a node between different signs: antibonding; 34 Fig. 1.10

bonding between the similar size in concerted reactions

Hückel’s rule: planar monocyclic conjugated polyenes
aromatic: [4n+2] e- in the π system; antiaromatic: [4n] e-

benzene-aromatic vs cyclobutadiene-antiaromatic

E=α+mjβ, mj =2cos(2jπ/n): 35 Fig. 1.11 (annulenes)

DEbenz = 2β vs DEcybu = 0; (aromatic) vs (antiaromatic)

Frost’s circle: a mnemonic; 35 Fig. 1.12

Charged C3H3 & C5H5 systems: 36 Fig. 1.13
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Calculation of Total Electron Energy E

Cyclobutadiene: Ecybu = 4α + 4β

j=0, m0 = 2cos(0/4) = 2; j =±1, m±1 = 2cos(±2π/4) = 0; j=+2, m+2 = 
2cos(4π/4) = -2; E1 = α + 2β, E2 = E3 = α, E4 = α - 2β (empty)

DEcybu = ∑Ecybu – ∑Eethylene= [2(α+2β)+1α+1α] – (4α+4β) = 0

Benzene: Ebenz = 6α + 8β

j=0, m0 = 2; j =±1, m±1 = 2cos(±2π/6) = 1; j=±2, m±2 = 2cos(±4π/6) 
= -1; j=+3, m+3 = 2cos(+6π/6) = -2; E1 = α + 2β, E2 = E3 = α + β, 
E4 = E5 = α - β (empty), E6 = α - 2β (empty)

DEbenz = ∑Ebenz – ∑Eethylene= [2(α+2β)+4(α+β)] – (6α+6β) = 2β
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MO Energy Level of Acyclic Polyenes

Allyl cation: E = 2α + 2.83β; anion: E = 4α + 2.83β

Ψ1  [E = α + 1.414β], Ψ2  [E = α], Ψ3  [E = α – 1.414β]

Butadiene: E = 4α + 4.47β
Ψ1  [E = α + 1.618β], Ψ2  [E = α + 0.618β]

Ψ3  [E = α - 0.618β], Ψ4  [E = α - 1.618β]

Pentadienyl cation: E = 4α + 5.46β
Pentadienyl anion: E = 6α + 5.46β

Ψ1  [E = α + 1.732β], Ψ2  [E = α + 1.000β], Ψ3  [E = α]

Ψ4  [E = α - 1.000β], Ψ5  [E = α – 1.732β]
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Qualitative Application of MO Theory(I)

Rules for construction of MO energy level diagram
total No. of MOs = ∑ No. of AOs; aufbau principle

the symmetry of MOs = the symmetry of the molecule

symmetric: the same sign, antisymmetric: opposite sign

orthogonal orbitals do not interact: px, py, pz

the energy of more electronegative atoms is lower

the more the No. of nodes, the higher the energy

Diatomic molecules with 1s AO: 37 Fig. 1.14
H2

+, H2, He2
+, He2, HHe+: 61, 103, 60, (0), 43 kcal/mol
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Qualitative Application of MO Theory(II)

Energy level diagram of CO: 38 Fig. 1.15
total No. of MOs = 10 (C & O: 1s, 2s, 2px, 2py, 2pz; 14 e-)

the MOs 1s e-: negligible due to the large energy gap

10 e- in 5 MOs from 8 MOs: 4 bonding & 1 antibonding

MO energy diagram of CH4: 40 Fig. 1.18
ab initio calculation results: no 4 equivalent MOs

qualitative analysis of energy diagram

frame of reference: a cube; 37 Fig. 1.14

3 C2 axes (x, y, z): symmetrical or antisymmetrical
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Application of MO Theory to Reactivity (I)

Perturbation MO (PMO) theory for new MOs
change of the MO pattern with a change in structure

the changes are small & the new MO pattern would be 
similar to known MOs of the similar system

strongest interactions between MOs with close energy

FMO theory: important interactions between HOMO of 
one reactant & LUMO of the other; relative energy

only MOs of matching symmetry can interact

Reactivity difference between CH2=CH2 & CH2=O
ethylene with E+ & formaldehyde with Nu: 48 Fig. 1.25
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Application of MO Theory to Reactivity (II)

Substituent effects on the reactivity of double bonds
ethylene with a π-donor: reactive to E+; 49 top figure

allyl anion: reactive site at the terminal atoms; β-C & N

ethylene with a π-acceptor: reactive to Nu; 49 middle

butadiene: larger coefficient at the β-C of LUMO

prediction with VB theory: resonance; 49 bottom

Concerted reactions & symmetry: 53 bottom
allyl cation & ethylene: forbidden; 51 Fig. 1.27

allyl cation & butadiene: allowed; 52 Fig. 1.28
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Application of MO Theory to Reactivity (III)

Hyperconjugation of allylic systems
interaction between σ & π bonds: σ bonds not on the nodal 
plane of π-system; 54 middle

eclipsed conformation favored: 1.5-2.0 kcal/mol 

repulsive & attractive interactions: 55 top & Fig. 1.30

slightly longer C3-H & C1=C2 but shorter C3-C2

prediction with VB theory: ‘no-bond’ resonance; 55

Rotational barrier: 3 kcal/mol, ethane; 55 middle
hindered rotation due to π character of some MOs: 56 
Fig. 1.31
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Other Quantitative Methods

Molecular graphs & critical points: 58 Fig. 1.32
Partial structures from MO quantitative calculations

partition of total electron density among atoms

applications: 59-62 Table 1.17 & Figs. 1.33-5

Density functional theory (DFT): the B3LYP method 
simpler calculation & rather accurate: 63 Tables 1.18-9

electronegativity: V = n / r : 61 top & 64 Table 1.20

n: No. of valence-shell e-, r : effective atomic radius

hardness & V: acidity & stability; 64 & 22 Table 1.21 & 9

Quantitative VBT: localized MOs & delocalization
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