Chapter 6 Carbanions & Other Carbon Nu:

- Very useful in synthesis for C-C bond formation
 - stability/reactivity: hybridization & substituents of carbanions

Acidity of hydrocarbons: too weak to be measured

- weakly acidic polar solvents for equilibrium measurements: dissociation of ion pairs & clusters; DMSO, C₆H₁₁NH₂
- ♦ basicity constant, *H*: solvent-base pairs; □ 580 <u>Table 6.1</u>
 ○pH of strongly basic solutions: the larger, the greater basicity
- □ Thermodynamic acidity: acidity in equilibrium state
 - ♦ $pK_{RH} = H_{-} + \log[RH]/[R^{-}]; RH + B^{-} \iff R^{-} + BH; \square 580 mid$ o indicators when similar UV-Vis spectra between RH & R⁻

Kinetic Acidity of Hydrocarbons with $pK_a > \sim 35$

□ Different rate of deprotonation in S-D: □ 581 top

- \blacklozenge often, rate of deprotonation \propto stability of carbanions
- rate of isotope incorporation into the hydrocarbons
 suitable for very weak acids: not requiring a measurable concentration of the carbanion at any time

 $O k_{\text{RH}}$: $k_{\text{R'H}} \propto k_{\text{RH}}(\text{D})$: $k_{\text{R'H}}(\text{D}) \propto pK_{\text{RH}}$: $pK_{\text{R'H}}$

problem: internal return of the ion pairs; <u>\$\$1 middle</u>

Ono exchange with the solvent deuterons: no satisfactory linear relationship between exchange rates & equilibrium acidity

 \odot factors on ion pairing: polarity of solvents (least in polar aprotic; DMSO & C₆H₁₁NH₂), cation (less chelating; Cs⁺)

Acidity of Hydrocarbons

□ Relative acidities of hydrocarbons: □ 583 Table 6.2

- stabilization by Ph & aromatic stabilization: No. 1-4 & 5-6
- ♦ allyl stabilization: $pK_{propene} = 43$, $pK_{cyclohexene,cycloheptene} \cong 45$
- ♦ Ph-H \cong 45, CH₂=CH-H \cong 46 (electrochemical methods)
- ♦ saturated hydrocarbons: too slow deuterium exchange ○ electrochemical methods: $R^{\bullet} + e^{-} \rightarrow R^{-}$; □ 584 Table 6.3
- ♦phenylacetylene: 26.5 (DMSO), 23.2 (C₆H₁₁NH₂), ~20 (H₂O) othe more *s* character, the more acidic: cyclopropane
- ♦ carbanions in gas phase: similar trends; □ 585 Table 6.4
- ♦ geometry: pyramidal (4-31G); \angle HCH_{CH3}- = 97-100°, more s character at the e^{-} pair (better stabilized than that with sp^{2})

Stereochemistry of Carbanions

□ Stereochemistry in H-exchange: <u>□ 587 top</u>

♦ the mechanisms of electrophilic substitution reactions (<u>S</u>)
 ○ retention in nonpolar solvents: 93% with KO^tBu in PhH; a short lifetime of a tight ion pair [S_E2(front) or S_Ei]

 inversion in polar protic solvents: 48% with KOH in ethylene glycol; fast H⁺ transfer to an unsymmetrical ion pair [S_E2(back)]

 oracemization in polar aprotic: KO^tBu in DMSO; enough lifetime of the carbanion for symmetric solvation; S_E1

H-D exchange at the chiral carbon: <u>587 bottom</u>
 retention with KO^tBu in DO^tBu: S_Ei-like mechanism
 racemization with KO^tBu in DMSO: long lifetime of carbanions

Stereochemistry of Carbanions: S_E

Carbanions of Organometallics

Preparation: metal-halogen exchange; <u>588 top</u> significant covalent character of the carbon-metal bond \Box Relative basicity: MeLi < BuLi < ^tBuLi; p $K_a \cong 50-62$ Aggregates of RLi in solution: unreactive \bullet BuLi in THF: tetramer \rightleftharpoons dimer; the major being tetramer ○X-ray structure of BuLi in solvent: □ 590 Fig. 6.2 THF/TMEDA reactive with chelating agents TMEDA: dimer; <u>589 top</u> some energy required to break up the C-Li bond osluggish reaction as a base & preference as a nucleophile: addition to carbonyls rather than enolate formation

Stabilized Carbanions (I)

□ Carbanion-stabilizing groups: □ 595 <u>Table 6.6</u>

- ◆relative order: $NO_2 > C=O > CO_2R \sim SO_2 \sim CN > CONR_2$ ○ resonance ($NO_2/C=O$)& polar effects (SO_2): <u>□ 592 middle</u>
- ♦other pK data: Part B & □ 593 Table 6.7 (Meldrum's acid)
 - obases used: Li(Na)NH₂, LDA, NaH, L(Na/K)HMDS, Na(K)OR
- \bullet rate of enolate formation: $CH_3 > CH_2R > CHR_2$
 - osteric hindrance to base and solvation: □ 594 Table 6.8
 - by isotopic exchange or halogenation: <u>593-4</u>
 - o closed vs open TS: *E* vs *Z*-enolate; <u>□ 596 middle & Table</u>
 - \odot acceleration of enolate formation with Et₃N: dimer; <u> \square 595 top</u>

Stabilized Carbanions (II)

□ Structural effects on the rate of enolate formation

- kinetic vs thermodynamic control:
 595 <u>Scheme 6.1</u>

 perpendicular H: stereoelectronic control;
 597-8 Fig. 6.3
- ♦ nitroalkanes & cyano compounds: □ <u>597</u>-8 <u>Tables 6.9</u>
- ◆sulfur & phosphorus compounds: □ 599 <u>Table 6.10</u>
 ○1,3-dithiane: pK 36.5 (Cs+, THF), 2-Ph derivative 30.5
 ○bond dipole effect (minor), delocalization with 3*d* (MO calculation), polarizability of S (experimental)
- R_3 Si < Ar_3 Si: modest stabilization due to polarizability odecrease of p*K* by 1-4 in fluorene & 3-7.5 in sulfones
- ♦ylides X⁺–C⁻ ↔ ylene X=C: polarizability, \square 600-1 \bigcirc Ph₃P⁺CH₃ pK_{DMSO}= 22; Ph₃P⁺CH₂COAr pK= 4-7

Enols & Enamines (I)

Enols: more reactive Nu than alkenes; <u>602 top</u>

- ♦less reactive than enolates: less e⁻ density due to H
- ♦ acid-catalyzed mechanism of enol formation: <u>□ 601 bottom</u> ○ RDS: deprotonation step, $k_{\rm H} / k_{\rm D}$ (α-position) ≈ 5
 - Brönsted catalysis law: α =0.74 [\square 348, Eq. 3.51]
- rates of acid-catalyzed enolization:

 603 <u>Table 6.11</u>
 relative rate differences: much less than those for base-catalyzed enolate formation; *conf.*594 <u>Table 6.8</u>
 more substituted enol favored: 2-butanone, H-3:H-1 = 4.2:1
 product-like TS favored with more stable enol structure
 - bulky substituent (^tBu) makes the enol unstable

Enols & Enamines (II)

- □ Equilibrium concentration of enols: □ 604 Table 6.12
 - monocarbonyls: present mostly as a keto tautomer
 - 1,3-dicarbonyls: stabilized enol by intramolecular H-bonding
 & conjugation of the C=C with the carbonyl; <u>0.605 bottom</u>
 ostructural data: time-averaged structure; <u>0.605-606 top</u>
 oproton transfer barrier between two oxygen atoms: 4-5 kcal
 - solvent-dependent: more enols in nonpolar solvents because the decrease in molecular dipole is favored
- $\square \alpha$ -dicarbonyls: less enol form than β -dicarbonyls
 - ♦ K_{enol} (pyruvic acid) ≈ 10⁻³: <u>□ 606 bottom</u>

Enols & Enamines (III)

□ Characteristics of enols: <u>□ 607 top</u>

- production I: careful hydrolysis of orthoesters with acetate
 t_{1/2} (NMR): several hrs at -20 °C, 10 min at +20 °C
 bases promote isomerization to a keto form (acetaldehyde)
 DMSO/DMF slows the rate by H-bonding, longer lifetime
- ◆production II: protonation of enolates in water; <u>□ 607 mid</u> orate of ketonization depends on pH: acid/base catalysis
- ♦ more acidic enols (p*K* = 10.5) than the α-Hs of the keto form (p*K* = 18.4): acetophenone; <u>□ 607</u> & <u>□ 608 top</u> (acetone)
- □ Enamines: more reactive than enols; <u>□ 608 middle</u>
 - ♦ less substituted isomers preferred: A^{1,3} strain; <u>□ 608 bot</u>
 - ♦less reactive 6-ring enamines than 5-/7-rings: favored exo double bonds for 5-/7-rings; <u>□ 609 top</u> [<u>□ 172 mid (4th ed.)</u>]

Carbanions in S_N2 Reactions (I)

- □ Unstabilized carbanions: □ 610 <u>Scheme 6.2</u>
 - organometallics: soft good nucleophiles; mostly by S_N2
 ocomplications due to the aggregate structure: <u>620 & 611</u>
 oallylic rearrangement with allyl halides: <u>611 middle</u>
 oin practice, <u>transition metal-catalyzed processes</u>: <u>Heck reaction</u>
- □ Enolates: good Nu as stabilized carbanions
 - ◆aggregated structures: ester/ketone; □ 612 & 613 Fig. 6.4
 multiple chelation of the enolate oxygen atom to Li⁺: hindered approach of electrophiles to the oxygen or carbon atom
 faster rate in HMPA, DMSO, DMF: dissociation of the aggregate
 effect of cations on the rate: BrMg⁺ < Li⁺ < Na⁺ < K⁺

Stereochemistry of S_N2 of Carbanions

S_N2 of Allyl Chloride: Allylic Transposition

Transition Metal-Catalyzed Alkylations

Transition Metal-Catalyzed Coupling Reactions

✤ Carbanions in S_N2 Reactions (II)

Enolates: good Nu as stabilized carbanions (cont'd)

- ♦ *C*-alkylation vs *O*-alkylation: □ 615 top Table
 - osoft electrophile vs hard electrophile: leaving group effect
 - ○cyclic TS for halides (soft) vs sulfonates (hard): □ 615 middle
- ◆ stereoelectronic control: perpendicular attack; <u>□ 614 top</u>
 - Ocyclohexanes: axial approach, chair-type TS; <u>616-7</u>
 - \bigcirc acycles: anti to L with an H-eclipsed conformation; $\square 617-9$
- steric control: less hindered side of the enolates
 - equatorial approach of electrophiles favored: <u>□ 616 top</u>
 - O1-decalone: *cis*, [H vs CH₂]; <u>□ 616 bottom</u>, 2-decalone with Me at C-10: *trans*, <u>□ 617 top</u>, cyclopentanone: *cis*, torsional effect,
 <u>□ 617 middle</u> & 618 Fig. 6.5

