화합물 반도체 (II-4) Heterostructure Growth

2007 / 가을 학기

Reduced Dislocation Densities with SiH₄ Treatment

Etched surface with SiH₄ treatment at 1100°C for 300s

TD densities ~ $1x10^8$ cm⁻² (without SiH₄ treatment, ~ $1x10^9$ cm⁻²)

Ref.: K. Pakula, et al., Journal of Crystal Growth 267, pp. 1–7, 2004

Bulk GaN Growth

- Bulk GaN growth with pressures of 15,000 atm and temperatures of 1600°C → 10 mm in diameter with TD densities of 100 cm⁻² (commercialized by Topgan for research)
- 1~2 inch bulk AlN growth with sublimation recondensation process → appropriate for Al-rich AlGaN growth for DUV laser diodes (commercialized by Crystal IS)

Ref. : Compound Semiconductor Magazine, Juy, Oct. 2004

Stress Reduction with Low-Temperature AlN Interlayer

Average tensile stress of 1.3µm thick GaN layer grown on 12nm thick AlN buffer

- Relaxed AlN buffer at low temp growth

Sample	T _{AlN} [°C]	Curvature radius [m]	Total stress [GPa]	a-AlGaN [Å]	a-GaN [Å]
А	630	14.7	-0.01	3.1653	3.1899
В	900	7.9	0.46	3.1665	3.1923
С	1145	2.9	1.13	3.1923	3.1923

Ref.: J. Blasing, et al., Appl. Phys. Lett., pp. 2722–2724, 7 October 2002

AlGaN Grown on GaN with Various Interlayers

AlGaN µm AlGaN LT-Al m GaN LT-Al C-A	:Si 2μm 1 100nm N 20nm 1.4μm N 20nm M ₂ O ₃ b)	AlGaN:Si 2 μ m AlGaN 20nm GaN 1.4 μ m LT-AIN 20nm C-Al ₂ O ₃ (c)	Ten period AlN 4nm/AlGaN 36nm Superlattices (Al _{0.2} GaN)		
Surface	FWHM in (0002) ω scan (arcmin)	F <u>W</u> HM in (2024)ω scan (arcmin)	Density of etch pits (cm ⁻²)	Mobility (cm ² /V s) and concentration (cm ⁻³)	
Crack network Several cracks Crack free Crack free	9.5 12.4 12.1 6.4	14.6 18.2 16.9 11.8	6×10^{9} 4×10^{9} 2×10^{9} 7×10^{9}	Mob.: 87, Con.: 3.0×10 ¹⁸ Mob.: 161, Con.: 2.5×10 ¹⁸	
	μm nm nm LT-Al GaN LT-Al GaN LT-Al C-A (Surface Crack network Several cracks Crack free Crack free Crack free Crack free Crack free	AlGaN:Si 2 μ m AlGaN 100nm AlGaN 100nm LT-AIN 20nm GaN 1.4 μ m LT-AIN 20nm C-Al ₂ O ₃ (b) FWHM in (0002) ω scan Surface (arcmin) Crack network 9.5 Several cracks 12.4 Crack free 12.1 Crack free 6.4 Crack free 6.4 Crack free 14.6	AlGaN:Si 2µm AlGaN:Si 2µm AlGaN 100nm LT-AIN 20nm GaN 1.4µm LT-AIN 20nm C-Al ₂ O ₃ (b) (c) $\frac{FWHM in}{(0002) \omega scan} \frac{FWHM}{in (2024) \omega scan}$ Surface (arcmin) Crack network 9.5 14.6 Several cracks 12.4 18.2 Crack free 6.4 11.8 Crack free 6.4 11.8 Crack free 14.6 23.3	AlGaN:Si 2µm AlGaN 100nm m AlGaN 100nm C-Al ₂ O ₃ AlGaN 20nm GaN 1.4µm LT-AIN 20nm C-Al ₂ O ₃ (b) (c) FWHM in FWHM (AlGaN 20nm C-Al ₂ O ₃ (c) FWHM in FWHM in (2024) ω scan (arcmin) (c) Crack network 9.5 14.6 Several cracks 12.4 18.2 6 × 10 ⁹ Crack free 12.1 16.9 4 × 10 ⁹ Crack free 6.4 11.8 2 × 10 ⁹ Crack free 14.6	

Ref.: Q. C. Chen, et al., Appl. Phys. Lett., pp. 4961–4963, 23 December 2002

Effects of Dislocations on Light Emission Efficiency

New Model for Suppression of Nonradiative Recombination

High resolution TEM Near-field micro-PL

- hexagonal V-shaped pits decorating the defects
- narrow sidewall QW
- ⇒ large effective band gap
- ⇒ suppressing nonradiative recombination

Ref) A. Hangleiter, et al., Phys. Rev. Lett. 95, 127402, 2005

InGaN Multi-Quantum Dot LED (I)

- 2.4nm InGaN well/15nm thick GaN barrier

GaN QDs embedded inside an AIN matrix (large stess)
Plasma MBE-grown

(APL 87, 203112 2005)

- interrupted growth to achieve InGaN dots-in-a-well structure
- typically a pyramidal dot with a 3nm height and a 10nm diameter
- QD density : $10^{10} \sim 10^{11} \text{ cm}^{-2}$

InGaN Multi-Quantum Dot LED (II)

- Smaller forward voltage 3.1V in MQD LED
cellar phone applications (?)

- Large EL blueshift in QD reveals that deep localization of excitons (or carriers) originates from QDs.

Ref) L. W. Ji, et al., Phys. Stat. Sol. (c) 1, No. 10, pp. 2405, 2004

High Performance Green LED with Smooth Surface

High Power Green Light Emitting Diode

Effects of Dislocations on LED Performance

Effects of Dislocations on Reverse Leakage Current

Effects of Dislocations on Hall Mobility

Ref. : M. N. Gurusinghe, et al., Physical Review B 67, 235208, 2003

Hetero-Epitaxy with the Defect-Free QD Buffer layer

GaSb epilayer on GaAs sub.

Thin barrier InAs HEMT grown using InAs QD/GaSb Buffer

GaN Nanotube

Ref: J. Goldberger, et al., NATURE, pp. 599-602, APRIL 2003

Nano-rod Formation on Si substrate with no Catalysis

High Brightness InGaN/GaN MQW Nanorod LED

GaAs (InP) 2/ shallow impurities

** elements; large diffusion constant

→ thin epitaxy에 부적합

* Si ; amphoteric impurities (n-& p-type) ; self-compensation

* HBT에서는 very thin, high doped P-base 필요→ MOCVD & C (Kopin)

δ-doping 형성 : 일정한 plane에 doping (planar doping)

- growth 를 중지한 상태에서 donor /acceptor 불순물을 도입.

Modulation Doping (I)

channel electron은 ionized-doner에 의한 impurity-scattering을 겪지 않음

 \rightarrow μ_n \uparrow , V_{drift} \uparrow with modulation doped structure

I.I Scattering Lattice Scattering

MD Structure 의 여러 구조(1)

MD Structure 의 여러 구조(2)

Various Impurities in GaN

Acceptor Ionization Energies (E_A, meV) in wurtzite(wz) and zinc-blende(bz) GaN

	Be	Mg	Ca	Zn	Cd	С	Si	Ge
$E_A(wz)$	187	224	302	364	625	152	224	281
E_{expt}	90	209		328	550		224	
	160	224		340				
	250	250						
$E_A(bz)$	183	220	297	357	620	143	220	276
E_{expt}		213 224	H)	Ref.) H. Wa	ing et al, P	hys. Rev	. B 1252	1 2, 200 1

N-Doping of GaN in MOCVD Growth

Ion Implantation & Annealing for Selective Doping

Ion Implantation – selective area doping – doping profile control

Problems in ion implantation for CS Technology

- 1. Damage Annealing
- 2. Surface Degradation during high temperature annealing
- 3. Furnace Annealing versus RTA

Various Encapsulant during High Temp. Annealing Si₃N₄, SiO₂, AlN, Surface Morphology of GaN after 30s RTA at 1200°C

Main Technology for Si

(even for GaAs & InP)

3 **µ** m

Si Implant and RTA with Si₃N₄ Encapsulant

(Ref.) S. Matsunaga, et al, J. Appl. Phys., pp. 2461-2466, Mar. 2004

Ion Implantation & Anneal Condition

- 150 keV, 1x10¹⁵/cm² Si⁺ Ions implant (Room Temp. Implant)
- Substrate tilted 7° from the incident Si⁺ ion beam to minimize the channeling effect.
- 140-nm-thick Si_3N_4 film as an encapsulant
- RTA with N_2 flowing

Low Dose Si Implantation & Annealing

