
1

XML Filtering Technologies

Introduction
Data exchange between applications:

use XML Messages
processed by an XML Message Broker

Examples
Publish/subscribe systems [Altinel ‘00]
XML message routing [Snoeren ‘01]
Web services
Sensor networks

Challenge in XML Message brokers: scale

2

<quote>
<symbol>

...
</quote>

<quote>
<symbol>

...
</quote>

XML Message Broker:
The Dispatch Function

/quote [symbol = “AMZN”]
/quote [symbol = “YHOO”] [price = “24”]
/quote [price = “22”]

/quote [symbol = “AMZN”]
/quote [symbol = “YHOO”] [price = “24”]
/quote [price = “22”]

Incoming
XML stream

Outgoing
XML streams

XPath Query as a Filter

P1 TRUE

P1 /quote [symbol = “AMZN”]

P2 /quote [price = “24”]

P2 FALSE
AMZN

quote

price changesymbol

22 +2%

XML Document

3

The Problem

Given
A set of XPath queries
Incoming stream of XML messages

Compute
For each XML message, set of XPath queries it
matches

A Hard Problem
Number of XPath queries is large
XPath queries are complex
Need high throughput of XML messages

Existing Approaches
XScan - evaluates XPath queries using a DFA
XFilter, YFilter, XTrie – shared matching of structure
LazyDFA – complete sharing of structure
NiagaraCQ – shares the most selective predicate
Hoffmann and O’Donnell, 1982 - pattern is pre-
processed into an exponential size structure
XPush Machine – shared matching of structure and
predicates

4

Existing Approaches
In the structure navigation part

XFilter – shares tags – [Altinel, Franklin: VLDB’00]
XTrie – shares sequences of tags – [Chen, DeWitt, Naughton:
ICDE’02]
YFilter – shares prefixes – [Diao, Fischer, Franklin, To: ACM
TODS’03]
LazyDFA – shares everything
XPush Machine - [Gupta, Suciu: SIGMOD’03]

In the predicate evaluation part
NiagaraCQ (most selective predicates only) – [Chen, DeWitt, Tian,
Wang: SIGMOD’00]
YFilter – shares prefixes – [Diao, Fischer, Franklin, To: ACM
TODS’03]
XPush Machine - [Gupta, Suciu: SIGMOD’03]

Central Dogma of Filtering

In a traditional database system, a
large set of data is stored persistently.
Queries, coming one at a time, search
the data for results.
In a filtering system, a large set of
queries is persistently stored.
Documents, coming one at a time, drive
the matching of the queries.

5

Selective Dissemination of
Information (SDI)

Exploits

The shared nature of profiles, or
standing queries.
Evaluate Queries simultaneously.
Perform single evaluations of common
structural prefix hierarchies.
Apply fundamental data structures and
methodologies.

6

Terminology

Path expression – Query or profile
Profile – Standing Query
FSM- Finite State Machine
NFA – Non Deterministic Finite Automata
XPath – A query language
XParser – An event driven parser
Document Type Definition – general set of
rules for a document’s elements and
attributes.

[Altinel, Franklin: VLDB’00]

X-Filter System

7

X-Filter: Internal Query
Representation

Profiles constitute better half of a
filtering system.
Each XPath query is disassembled into a
set of path nodes by the XParser.
Path nodes represent the States of the
FSM for the query.
Path nodes are NOT generated for “*”
wildcard nodes.

Path Node Contents
Query ID - unique identifier for the query,
arbitrarily assigned by XPath Parser.
Position – A sequence number, relative to
the other nodes in a query.
RelativePos – distance in levels between
current node and previous path node.
Level – Level in the XML document where
current path node should be checked.
NextPathNodeSet – Pointer to next path
node of the query to be evaluated.

8

Path Nodes

Query Id & Position
are trivial

RelativePos
-1, if node
follows ‘//’

0, if Not and
first node in
path

else
1 + number
Wildcards (*)

Path Nodes (cont’d)

Level
-1, if RelativePos is

If node is first in
query and
specifies
abs(distance)
from root,
1+distance

0 otherwise

9

Path Node Conversion

XPath Expressions get converted into
path nodes by the XPath parser.
These nodes are then added to the
Query Index.
Query Index organized as a hash table
based on the element names that
appear in XPath expressions.
Each unique element has a Candidate
and Waiting List.

Index Membership

Candidate Lists- correspond to the
states of that the FSM is currently
attempting to match

Waiting Lists- nodes subsequent to
the candidate nodes.

10

Index Construction

Performance empirically shown to be
dependent on initial distribution of path
nodes.
Naïve approach, initial states are placed into
candidate list, rest in waiting
Problem 1- Poor selectivity due to lack of
depth in document, possible element names
smaller.
Problem 2- Candidate Lists become highly
skewed, reduction of queries considered lost.

List Balance Approach

11

List Balance Algorithm

a

b

c

d

e

Q1-1

Q1-3

Q1-2

Q1 = / a / b // c

Q2 = // b / * / c / d

Select a ‘pivot’
for the query.

Pivot is the
first node with
shortest
candidate list.

CL

WL
CL

WL

WL

CL
WL

CL
WL

CL

List Balance Algorithm

a

b

c

d

e

Q1-1

Q1-3

Q1-2

Q2 = // b / * / c / dQ2-1

Q2-3

Q2-2

Q1 = / a / b // c

Q3 = / * / a / c // d

CL

WL
CL

WL

WL

CL
WL

CL
WL

CL

12

List Balance Algorithm

a

b

c

d

e

Q1-1

Q1-3

Q1-2

Q2 = // b / * / c / dQ2-1

Q2-3

Q2-2

Q1 = / a / b // c

Q3 = / * / a / c // d

Q3-1

Q3-2

‘c’ is a
pivot. ‘a’
goes on
stack.

CL

WL
CL

WL

WL

CL
WL

CL
WL

CL

Prefix

FSM of query modified so that its initial
state is the pivot node.
Represent the portion that precedes the
pivot node as a “prefix”
Prefix is checked as a pre-condition in
the evaluation of a path node.
List Balance uses a stack that keeps
track, fast forward execution of the
portion of the FSM.

13

Filter Components

1) XPath Parser

2) Event-based XML parser

3) Filtering Engine

4) Dissemination – via unicast upon a match

NOTE: If a single Query Path (profile) matches any portion of a
document, the entire document gets sent.

Architecture of the X-Filter Engine

14

Event Driven X-Filter
Execution

Document arrives at the filtering engine.
Run thorough an XML Parser, which
reports back events that are used in
profile matching.
Callback handles ‘start’ and ‘end’ for
events passed name and document
level of element for (on in) when event
occurred.

Event-based XML parser:
Sample SAX API Output

XML File
Parser Output

15

Execution Algorithm
Start Element Handler – A start element calls
this handler.
Handler looks up element name in Query
Index, and examines all nodes in the
candidate list for that element.
Level is checked, if non-negative, levels must
be identical to each other, otherwise level is
unrestricted, passes anyway:

Match if node is final node in path.
Otherwise promote next node from waiting to
candidate list.
Note: Copy of promoted node remains in the wait
list.

Execution Algorithm (cont’d)

If the RelativePos of the copied node is
not -1, its level must be updated using
current level and Relative Pos, to allow
correct future checks.
End Element Handler – end element tag
encountered, path nodes promoted to
wait list are deleted, restoring those
lists to state they were in before
reading an element.

16

Execution Algorithm Wrap-Up

The restoration process allows for the
“backtracking” capacity necessary to handle
the case where the same element appears
at different levels in the document.
When the same element appears at nested
levels corresponding to a ‘//’ step then
multiple copies of the subsequent path
node can exist in its corresponding
candidate list, reflecting the different levels
where it can be matched

[Diao, Fischer, Franklin, To: ACM
TODS’03]

Y-Filter System

17

Y-Filter

An NFA-based approach that attempts
to exploit the path sharing of profiles.
Why? Because people are inherently
similar, maybe not at an increasing
granularity, but assuredly in a general
way.
Two people read the Times, one reads
the Sports section, the other the Local
News, both read the Fry’s Electronics
add.

NFA Advantages
A relatively small number of machine states
required to represent even large numbers of
path expressions.
The ability to support complicated document
types

Nesting
Multiple ancestor/descendant relation

Incremental Construction & Maintenance,
new queries added to an existing system, as
they come into existence.

18

A Comparison X vs. Y

NFA Construction

Break down the four basic location steps:
“ / a ”
“ // a ”
“ / * ”
“ // * ”

19

NFA Structure

Each state contains a(n):
ID
Type (accepting state, or ‘//-child’
Small Hash Table containing all transitions
For accepting states, a list of relevant
queries Q1, Q2, …Qn

Event Driven Execution

Once again the events raised by the
parser callback the handlers that drive
transition through NFA.
A stack mechanism is used to backtrack
to the “start-of-element” when “end-of-
element” event is raised.
An example…

20

Example NFA Execution

Hybrid Approach

An improved version of X-Filter for path
sharing.
Hybrid decomposes ‘ * ‘ and ‘ // ’ into
strictly ‘ / ‘ operators
Hybrid Path Nodes’ RelativePos here
specifies distance in document from the
previous substring to this substring.

21

Empirical Results: Query Size
Increases

Metric: Multi-Query Processing Time (MQPT) = Wall clock
time from start to finish of parsing documents to the end
of output minus document parsing time.

NITF – News Industry Text Format

Y-Filter Performance Benefits

Remember that the NFA exploits shared
prefix, not identical queries, these are
treated the same as single queries in all
three methods.
The hash based transition table inside
of each state in the Y-Filter makes
transitioning much faster.

Empirically 7.4 times the transitions for X-
Filter over Y-Filter took about 25 times
longer.

22

Maintaining the NFA

Modification of queries are treated as
insert/delete operations of the old
query and replacement query
respectively.
Inserting obviously gets to be less labor
intensive as the number of queries
increases and less chance for
uniqueness.

X-Filter v.s. Y-Filter

X-Filter began the process of evaluating
queries in an expedited fashion by
evaluating queries in parallel.
Y-Filter exploited the shared path
nature of query processing for
structural matching.
Partial document retrieval and more
refined delivery mechanisms are surely
on their way, to better hit define and
strike their targets.

23

Value-Based Predicate Evaluation

Inline - Extend the information stored at each
state of the NFA to include predicates that
are associated with that state.
While conceptually simple, two caveats
1) The predicate failure at a state does not
necessarily stop processing, i.e. ‘//’ prior to
predicate. Query could stay active.
2) Recursively nested ‘a’

<a a1 = v1><a a2 = v2>

Value-Based Selection Postponed

Effort spent evaluating predicates with
Inline will be wasted if structural based
aspects of a query are NOT satisfied.
SP delays predicate processing until
after the structure matching is complete.
Predicates are stored with each Query
in tables.

24

Selection Postponed (SP)

Now need some way of preserving the path, in the run-time
stack. This ‘backward chaining’, a technique similar to
PathStack and TwigStack is used.

Index the
predicates
stored

In a
particular
query

Differences between SP and
Inline

Structure v. Value Matching
Inline performs early predicate
matching before structure matched,
does Not prune future work.
SP performs structure matching to
prune set of queries for which predicate
evaluation needs to be performed.

25

Differences between SP and
Inline

Conjunctive predicates in a query
Inline, evaluation of predicates in the
same query happen independently at
different states.
SP, a failure at any states stops the
evaluation of all subsequent predicates.

Differences between SP and
Inline

Bookkeeping – Inline requires
information bookkeeping information
for the final evaluation of the query
Includes setting information and
undoing it during backtracking.
Memory runs out at 400,000 Q. Does
not scale.

26

[Gupta, Suciu: SIGMOD 2003]

Stream Processing of XPath
Queries with Predicates

Approach
XML message = list of tokens (a.k.a. SAX events)

Normally, one token affects several queries
Our goal: for each token perform a single
action !

This eliminates all shared computations in queries
Need to build a deterministic machine

With a stack
With ability to handle predicates

XPush Machine = a modified pushdown automata

27

Approach (continued)
XPath fragment:

XML tokens:
beginElement, endElement, value

child / /quote

descendant-or-self // //symbol

qualifiers [] /quote [change]

Predicates
(path opRel “const”)

/quote [symbol = “YHOO” AND
price = “24”]

wildcard * /quote/*

Matching One XPath Query
/quote [symbol = “AMZN” AND price = “22”]

AMZN

quote

price changesymbol

22 +2%

s1

s3 s5

s4 s6

s2

symbol

= 22= AMZN

ε ε
AND

quote

price

Tokens

Stack

{}{}

{}{}

{}{s4}

{s3}{s3}

{}{s6}

{s3, s5}

{}

{s3, s5}{s3, s5, s2}

{s1}
<quote><symbol>“AMZN”</symbol><price>“22”</price><change>“+2%”</change></quote>

XML Data

28

<a> <c> 4 </c> <a> <c> 3 </c> 1

More than one XPath Query
/a [c = “4” AND b = “1”]
/a /c = “4”

a
s1

s3 s5

s4 s6

s2

c

= 1= 4

ε ε
AND

b

s8

s9

s7

= 4

c

a
{}

{}

{}

{}

{}{s4, s9}

{s3, s8}

The XPush Machine
A Modified Pushdown Automata

On a beginElement push (hashtable
lookup)
On an endElement pop (hashtable lookup)
On a value “predicate index” lookup

Deterministic: a single action on each token
Space

Exponential (in worst case)
XPush state = a (large?) set of XPath nodes

Compute the XPush Machine lazily:
fill push/pop/predicate tables on a by-need basis
run-time penalty

29

Matching One XPath Query
/quote [symbol = “AMZN” AND price = “22”]

AMZN

quote

price changesymbol

22 +2%

s1

s3 s5

s4 s6

s2

symbol

= 22= AMZN

ε ε
AND

quote

price

Tokens

Stack

{}{}

{}{}

{}{s4}

{s3}{s3}

{}{s6}

{s3, s5}

{}

{s3, s5}{s3, s5, s2}

{s1}
<quote><symbol>“AMZN”</symbol><price>“22”</price><change>“+2%”</change></quote>

q1
AMZN,ε/ε

q2
/symbol,q0/ε

price,ε/q2

q3

22,ε/ε

q4
/price,q2/ε

change,ε/q4

/change,q4/ε

q5
/quote,q0/ε

q0

*,ε/q0

q0 Φ
q1 s4
q2 s3

q3 s6
q4 s3,s5
q5 s1

Questions & Comments

