* XML Filtering Technologies

Introduction

Data exchange between applications:
= use XML Messages
= processed by an XML Message Broker
= Examples
= Publish/subscribe systems [Altinel ‘00]
= XML message routing [Snoeren ‘01]
= Web services
= Sensor networks

= Challenge in XML Message brokers: scale

XML Message Broker:
i The Dispatch Function

[} //'
— _—

<quote>
<symbol>

\

</quote>

¥ /quote [symbol = “ "
/quote [symbol = * " [price = *7/"]
3 /quote [price = “7 "]

i XPath Query as a Filter

XML Document

/—' P, /quote [symbol = *

@ P,> TRUE

Gmog) (price) €angd P, /quote [price =]
P,> FALSE
@y (220 G20

;L The Problem

= Given
= A set of XPath queries
= Incoming stream of XML messages

= Compute
= For each XML message, set of XPath queries it
matches

= A Hard Problem
= Number of XPath queries is large
= XPath queries are complex
= Need high throughput of XML messages

;L Existing Approaches

= XScan - evaluates XPath queries using a DFA

= XFilter, YFilter, XTrie — shared matching of structure
= LazyDFA - complete sharing of structure

= NiagaraCQ - shares the most selective predicate

= Hoffmann and O’'Donnell, 1982 - pattern is pre-
processed into an exponential size structure

= XPush Machine - shared matching of structure and
predicates

Existing Approaches

= In the structure navigation part
= XFilter - shares tags - [Altinel, Franklin: VLDB'00]

= XTrie - shares sequences of tags - [Chen, DeWitt, Naughton:
ICDE'02]

= YFilter - shares prefixes - [Diao, Fischer, Franklin, To: ACM
TODS'03]

= LazyDFA - shares everything
= XPush Machine - [Gupta, Suciu: SIGMOD'03]
= In the predicate evaluation part

= NiagaraCQ (most selective predicates only) — [Chen, DeWitt, Tian,
Wang: SIGMOD'00]

= YFilter - shares prefixes - [Diao, Fischer, Franklin, To: ACM
TODS'03]

= XPush Machine - [Gupta, Suciu: SIGMOD'03]

i Central Dogma of Filtering

= In a traditional database system, a
large set of data is stored persistently.
, coming one at a time, search
the data for results.

= In a filtering system, a large set of
gueries is persistently stored.
, coming one at a time, drive
the matching of the queries.

Selective Dissemination of
Information (SDI)

i Exploits

= The shared nature of profiles, or
standing queries.

= Evaluate Queries simultaneously.

= Perform single evaluations of common
structural prefix hierarchies.

= Apply fundamental data structures and
methodologies.

i Terminology

= Path expression — Query or profile

= Profile — Standing Query

= FSM- Finite State Machine

= NFA — Non Deterministic Finite Automata
= XPath — A query language

= XParser — An event driven parser

= Document Type Definition — general set of
rules for a document’s elements and
attributes.

* X-Filter System

[Altinel, Franklin: VLDB'00]

X-Filter: Internal Query
i Representation

m Profiles constitute better half of a
filtering system.

= Each XPath query is disassembled into a
set of path nodes by the XParser.

= Path nodes represent the States of the
FSM for the query.

= Path nodes are NOT generated for “*”
wildcard nodes.

i Path Node Contents

= Query ID - unique identifier for the query,
arbitrarily assigned by XPath Parser.

= Position — A sequence number, relative to
the other nodes in a query.

= RelativePos — distance in levels between
current node and previous path node.

= Level — Level in the XML document where
current path node should be checked.

= NextPathNodeSet — Pointer to next path
node of the query to be evaluated.

ath Nodes

a) Example Queries and

Query Id & Position Corresponding Path Nodes

are trivial \
Cruery Id
S

Position ——8=
Relative Pas ——" =
Leval —"

b) Query Index
Element Hash Table

_L*' Q11031 (951 i
WL Z
Ll
]/
b

RelativePos o iL,.
-1, if node Qz=
follows /' / U
o)
0, if Not and o
first node in) ::'
path Q4=b/d/ec ﬁn
CL
else (4] c R Z
1+ number = LY Tuafqss] /]
Wwildcards (%) i B —
WL: Wait List
’
ath Nodes (cont’d)
a) Example Queries and b} Query Index

Corresponding Path Nodes

Query[d\‘h_‘_’
Position ————=
Relative Pas ———= 2|

Level —"
LeVel ug?:c,} Q3=/ ai/c j
-1, if RelativePos is o o
3]
]
If node is first in =] [
query and @2 ;s
specifies b d QS=fal*i*iail
abs(distance) L‘J /ZI / j
from root, m []
; 1] - lI]
1+distance enflunflaw] [
ENRER] o] G
oLl Q4 Qi Qsr 0sa

0 otherwise

Element Hash Table

L
Q-1 |31 951 i
WL Z
g A
Q21|04
b /|

WL
= 4-3|Q33

CL: Candidate List
WL Wit List

i Path Node Conversion

= XPath Expressions get converted into
path nodes by the XPath parser.

= These nodes are then added to the
Query Index.

= Query Index organized as a hash table
based on the element names that
appear in XPath expressions.

= Each unique element has a Candidate
and Waiting List.

i Index Membership

b) Query Index

R Candidate Lists- correspond to the
. HH states of that the FSM is currently
—1 attempting to match
e
Pl
a7 . nodes subsequent to
=i the candidate nodes.
d LZ
~-E

i e VA
ve List

-

Index Construction

= Performance empirically shown to be
dependent on initial distribution of path
nodes.

= Naive approach, initial states are placed into
candidate list, rest in

n Poor selectivity due to lack of
depth in document, possible element names
smaller.

n Candidate Lists become highly

skewed, reduction of queries considered lost.

List Balance Approach

a) Example Queries and b) Query Index
E ing Path Node
Corresponding Path Nodes Eleoment Hush Table
—/albil CL,
wory [E
Query 1 a WL
o] =
Position —=["1 | [2
ive Pos —— | 0| [1
R.rlauw?usr/ 5 | CL !
L Q1 QL QI3 b i
RNTE VA
Q=ibi*icid Q3=/*/aigid =
< [>/]
[oz] [Cez] [fez] 3] [RF] e .
I o]]
NN EN
! cL '
@l g o o e —={=1]]
; d WL
e
Wue o [=2[=21
CL,
s
() o)] . [=]
] [z] WL
Prefix [| w2
™ .
[] o CL: Candidate List
Q1 @ WL: Wait List

Figure 5: Path Nodes and the content of the Query Index in
List Balance

10

List Balance Algorithm

CL

'

g1

0
s

8/

ti

0O
2

1

Ql=/albllc
Q2=/b/*/c/d

Select a ‘pivot’
for the query.

is the
first node with
shortest
candidate list.

List Balance Algorithm

a) Example Queries and
Corresponding Path Nodes

Ql=lalpl

CL

'

CL

1

CL

CL

1

CL

1

Ql=/albllc
Q2=/b/*/c/d
Q3=/*/alclid

!ﬁ

11

i List Balance Algorithm

o Ecample Queriand ~Clhioia
a
N Ql=/albllc
) CLBB] o2=/b/r/cid
Q2] o3=/*/a/c/d
R CES I
C oy s
] pciv('i‘"’fa,
% goes on
T e ™
—L.N
R

= FSM of query modified so that its initial
state is the pivot node.

= Represent the portion that precedes the
pivot node as a “prefix”

= Prefix is checked as a pre-condition in
the evaluation of a path node.

= List Balance uses a stack that keeps
track, fast forward execution of the
portion of the FSM.

12

Filter Components

User profiles parsed profiles

(XPath queries) parsed profiless | _
I et -
.
XML Tepresentation
ltor Execution
algorithm

documents

events

(SAX based)

Data
Dissemination

1) XPath Parser

Filtered data

matched profileg

2) Event-based XML parser
3) Filtering Engine
4) Dissemination — via unicast upon a match

NOTE: If a single Query Path (profile) matches any portion of a
document, the entire document gets sent.

Architecture of the X-Filter Engine

User Profiles
Document iXPath Queries)

XML are i
(SAX Basad) ‘
- Sl
s T -
- Filter Engine =, Profile Info
Path Modes
Query Indax Successful
Succesfl Profiles &
Queries Frofile Filterad Data
Element
Events

13

Event Driven X-Filter

i Execution

= Document arrives at the filtering engine.

= Run thorough an XML Parser, which
reports back events that are used in

= Callback handles ‘start’ and ‘end’ for
events passed name and document
level of element for (on in) when event
occurred.

Event-based XML parser:
Sample SAX APl Output

ncy="USD">
p= 310.40 </msrp=

XML File
Parser Output

14

Execution Algorithm

= Start Element Handler — A start element calls
this handler.

= Handler looks up element name in Query
Index, and examines all nodes in the
candidate list for that element.

= Level is checked, if non-negative, levels must
be identical to each other, otherwise level is
unrestricted, passes anyway:
= Match if node is final node in path.

= Otherwise promote next node from to
candidate list.

= Note: Copy of promoted node remains in the

i Execution Algorithm (cont'd)

= If the of the copied node is
not -1, its level must be updated using
current level and , to allow

correct future checks.

= End Element Handler — end element tag
encountered, path nodes promoted to
wait list are deleted, restoring those
lists to state they were in before
reading an element.

15

i Execution Algorithm Wrap-Up

= The restoration process allows for the
“backtracking” capacity necessary to handle
the case where the same element appears
at different levels in the document.

= When the same element appears at nested
levels corresponding to a ‘//’ step then
multiple copies of the subsequent path
node can exist in its corresponding
candidate list, reflecting the different levels
where it can be matched

* Y-Filter System

[Diao, Fischer, Franklin, To: ACM
TODS'03]

16

:.L Y-Filter

= An NFA-based approach that attempts
to exploit the path sharing of profiles.

= Why? Because people are inherently
similar, maybe not at an increasing
granularity, but assuredly in a general
way.

= Two people read the 7/mes, one reads
the Sports section, the other the Local
News, both read the Frys Electronics
add.

i NFA Advantages

= A relatively small number of machine states
required to represent even large numbers of
path expressions.

= The ability to support complicated document
types
= Nesting
= Multiple ancestor/descendant relation

= Incremental Construction & Maintenance,

new queries added to an existing system, as
they come into existence.

17

i A Comparison X vs. Y

©

Qs=ialwe

:/ir/&//

Query ID \-;-
Position —
Relative Pos — %

Le\'el/"’
Q51 Q52

Q6=/alic QT=/ai%%c Q8=/aib/c

um Q&2 Q71 Q2 Q81 Q&2 Q83

(c) Path nodes of the queries and the Index (XFilter)

NFA Construction

= Break down the four basic location steps:

[1] / a ”
“/la”
[1] / * "

fa: : O
e="e
. OE;%*EO

NFEA fragments

0%0 O30 oee@‘eo o820

o—>o O—>O o—>O ot LNG

.
Kgo<go<&o . ﬂbo

d)

Figure 9: Combining NFA Fragments

18

;L NFA Structure

= Each state contains a(n):
« ID
= Type (accepting state, or ‘//-child’
= Small Hash Table containing all transitions

= For accepting states, a list of relevant
queries Q1, Q2, ...Qn

i Event Driven Execution

= Once again the events raised by the
parser callback the Aandlers that drive
transition through NFA.

= A stack mechanism is used to backtrack
to the “start-of-element” when “end-of-
element” event is raised.

= An example...

19

i Example NFA Execution

L si012
Runtime Stack 1976 E116

| 2 | 2 3976
IO I e g
— p

:.L Hybrid Approach

= An improved version of X-Filter for path
sharing.

= Hybrid decomposes * * “and ‘ // ' into
strictly * / * operators

= Hybrid Path Nodes’ Re/ativePos here

specifies distance in document from the
previous substring to this substring.

20

+

Empirical Results: Query Size
Increases

4
w
=
3

—a— xfittar(lo)

00 —&— hybrid
= —a— yfilter E 200 4
S w =
2 5
= = 100 4

200

0 T T T T
o 0 100 200 200 400 500
Number of Queries (x1000) Number of random queriss (x 1000}
Figure 11: Varying number of distinct queries Figure 12: Varying number of queries (with
(NITF, D=6, W=0.2, D5=0.2) duplicates) (NITF, D=6, W=0.2, DS=0.2)

Metric.: Multi-Query Processing Time (MQPT) = Wall clock
time from start to finish of parsing documents to the end
of output minus document parsing time.

NITF — News Industry Text Format

i Y-Filter Performance Benefits

= Remember that the NFA exploits shared

prefix, not identical queries, these are

treated the same as single queries in all

three methods.

= The hash based transition table inside
of each state in the Y-Filter makes
transitioning much faster.

21

:.L Maintaining the NFA

= Modification of queries are treated as
insert/delete operations of the old
guery and replacement query
respectively.

= Inserting obviously gets to be less labor
intensive as the number of queries
increases and less chance for
unigueness.

[@ (x1000) {2 Ja J6 |8 [w0]1wo~50] 6 ~ 500 |
[1000 msertions ms) [77 [57 [30 [24 [0 [6 | =5 |
Table 5: Cost of inserting 1000 queries (ms) (NITF, D=6, W=0.2, DS=0.2)

:.L X-Filter v.s. Y-Filter

= X-Filter began the process of evaluating
gueries in an expedited fashion by
evaluating queries in parallel.

= Y-Filter exploited the shared path
nature of query processing for
structural matching.

= Partial document retrieval and more
refined delivery mechanisms are surely
on their way, to better hit define and
strike their targets.

22

i Value-Based Predicate Evaluation

= /nline - Extend the information stored at each
state of the NFA to include predicates that
are associated with that state.

= While conceptually simple, two caveats

= 1) The predicate failure at a state does not
necessarily stop processing, i.e. ‘//’ prior to
predicate. Query could stay active.

= 2) Recursively nested ‘a’
» <aal =vl><aa2 =v2>

i Value-Based Selection Postponed

= Effort spent evaluating predicates with
Inline will be wasted if structural based
aspects of a query are NOT satisfied.

= SP delays predicate processing until

after the structure matching is complete.

= Predicates are stored with each Query
in tables.

23

Selection Postponed (SP)

Index the T -
predicates O—+0Q--.. DBy 7A@l
Y -
- [
stored O RN b
> O\ O @) @E—;-ga—:-(: RS 8%
Ina Crag Vi
. \\ﬂ Runtime Stack | 5
particular o o -
query ! An XML fragment: L4
S 2 3
<aa =
step number | property | operator ‘value <bz</b= “1*'

| ‘ ‘ | Figure 21: A sample query, its NFA, and
Figure 20: Predicate Storage for SP the NFA execution

Now need some way of preserving the path, in the run-time
stack. This ‘backward chaining’, a technique similar to
PathStack and TwigStack is used.

Differences between SP and

i Inline

= Structure v. Value Matching

= Inline performs early predicate
matching before structure matched,
does Not prune future work.

= SP performs structure matching to
prune set of queries for which predicate
evaluation needs to be performed.

24

Differences between SP and
Inline

+

= Conjunctive predicates in a query

= Inline, evaluation of predicates in the
same query happen independently at
different states.

= SP, a failure at any states stops the

evaluation of all subsequent predicates.

Differences between SP and
Inline

= Bookkeeping — Inline requires
information bookkeeping information
for the final evaluation of the query

= Includes setting information and
undoing it during backtracking.

= Memory runs out at 400,000 Q. Does
not scale.

25

1

Stream Processing of XPath
Queries with Predicates

[Gupta, Suciu: SIGMOD 2003]

i Approach

XML message = list of tokens (a.k.a. SAX events)
= Normally, one token affects several queries

Our goal: for each token perform a single

action !

= This eliminates all shared computations in queries
Need to build a deterministic machine

= With a stack

= With ability to handle predicates

XPush Machine = a modified pushdown automata

26

Approach (continued)

XPath fragment:

child / /quote

descendant-or-self // //symbol

wildcard * /quote/*

qualifiers [1 /quote [change]

Predicates /quote [symbol = * " AND
(path opRel “ ™) price = “24"]

= XML tokens:
= beginElement, endElement, value

i Matching One XPath Query

/quote [symbol = * » AND price =“"""]
XML Data
.
guote _ s | -
\ {531 55, 52}

{

symbol) (price) (change)

O ‘

More than one XPath Query

/a[c=""" AND b=""]

/a/c="1"

b
y o f<a> > </e> /> @

{} @
{s3, g}
o G (G

i The XPush Machine

A Modified Pushdown Automata

= On a beginElement - push (hashtable
lookup)

= On an endElement - pop (hashtable lookup)

= On avalue - “predicate index” lookup
Deterministic: a single action on each token
Space

= Exponential (in worst case)

= XPush state = a (large?) set of XPath nodes
Compute the XPush Machine lazily:

= fill push/pop/predicate tables on a by-need basis
= run-time penalty

28

i Matching One XPath Query

/quote [symbol = “ » AND price =“"""]
Aoy ied> o
quote _— {s} t-—
s . \ ; {83 S5, S} :;;:\;
ymbo rice iﬁf {})
Q . symbol ' price
/symbol,q,/g,

i Questions & Comments

29

