
Note 3

Types

Yunheung Paek

Associate Professor

Software Optimizations and Restructuring Lab.

Seoul National University

Programming Methodologies2

Topics

� Definition of a type

� Kinds of types

� Issues on types

� Type checking

� Type conversion

Programming Methodologies3

Components of a data type

� a set of data objects that model a collection of abstract

objects in real world

ex: in C language

• int ↔↔↔↔ integers, student id, exam scores, ...

• char[] ↔↔↔↔ letters, names, ...

� a set of operations that can be applied to the objects
ex: + - * / ↔↔↔↔ add, subtract, multiply, divide for integers

Type

Data Operations

Programming Methodologies4

Using types ...

� improves readability and writability.
– ex: char* student_name;

struct employee_records {
char* name;
int salary;
. . .

}

� reduces programming errors.

– ex: student_name / 5

� makes memory allocation and data access efficient.

– ex: struct {

int i;

char* c;

} // 8 bytes � Sizes are statically known.

� useful for the compiler to optimize memory

allocation (e.g., use stack in stead of heap)

Programming Methodologies5

Hierarchies of types

� Most imperative languages (C/C++, Ada, …)

data types

primitive/simple pointer composite

character numeric boolean struct/record array string

integer enum floating-point fixed-point

C/C++ � char, int/long, float/double, struct/class, array, string(?)

Java � … boolean
no clear distinction between char and int, no special op for char/string

Programming Methodologies6

Hierarchies of types

� Functional languages (Scheme, LISP, ML, …)

data types

atom
composite procedure

symbol numeric character pair vector string

integer rational real complex

list

boolean

More atomic data types to support symbolic computations (e.g., rational, complex)

Programming Methodologies7

Selection of data types

� “What kinds of types should be included in a language” is

very important for programming language design.

� Primitive/simple types are supported in almost all existing

programming languages

� Composite types being supported differ from language to

language based on what is the purpose of the language.

� Several issues related to the selection of types

– fixed-point vs. floating-point real numbers

– array bounds

– structure of composite types

– pointer types

– subtypes

Cobol for string type ?

class type for OO languages

Programming Methodologies8

Fixed-point vs. Floating-point

� fixed-point

– Precision and scale are fixed.

� a fixed radix point for all real numbers of the same type

– ex: salary amount of graduate assistants

� 6 digits for precision and 2 digits for scale

� 1234.56, 2000.00

� floating-point

– radix points are floating

– ex: 21.32, 9213.1, 4.203e+9

� COBOL, PL/1 and Ada support the fixed-point real type, but

most of other languages (Fortran, C, ...) don't.

– Ada: type salary is delta 0.01 range 0.0..3000.0

– C++: float salary;

Programming Methodologies9

Fixed-point vs. Floating-point

� Problem with fixed-point

– possible loss of information after some operations at run-time

• ex: double the salary of EE students!

� Problem with floating-point

– Large numbers may be machine-dependent.

• ex: port a C-program to 32-bit and 64-bit machines!

– Less secure

• ex: double the salary illegally

Programming Methodologies10

Determination of array bounds

� static arrays (C, Fortran, Pascal)

– array bounds determined at compile time and static storage

allocation. � efficient

– ex: int a[10], b[5];

� stack-dynamic (Ada)

– array bounds determined at run time but static storage allocation

– ex: read size;
call foo(size);

. . .
subroutine foo(int size)
int a[size], b[size*2];

� dynamic (C, Fortran90)

– array bounds determined at run time and dynamic storage allocation
– ex: int *a, *b;

a = b = new int[10]
. . .

delete [] a;
b = new int[20]

Programming Methodologies11

� Pascal includes array bounds as a data type, which implies

1. All arrays in Pascal are static.

2. Errors in illegal array assignments and parameter passing can be

detected at compile time.
ex: var x, y : array of [1..30] of real;

var z : array of [1..30] of real;
function foo(w : array of [1..20] of real): integer;

. . .
begin

i := foo(x) + 10; // illegal
x := z; // illegal
x := y; // legal

� Most other languages do not include array bounds as a type

– needs more complex memory managements and error-prone
ex: real x(1:10)

x(i) = 5.1 � What if i > 10 ?

– but more flexible � consider the function foo in the Pascal code

Array bounds as a data type

type vector30 = array of [1..30] of real;
var x, y: vector30;
var z: vector30;

. . .
x := z; // legal

Programming Methodologies12

Structure of composite types

� Is this assignment legal?

� In Ada and the early Pascal, the answer is “no”.

� name equivalence/compatibility

� In most others like C, the answer is “yes”.

� structure equivalence

� The name equivalence provides

– easy type checking by string comparison � fast compilation

– more secure and less error-prone compilation � Jane = Tom; (unsafe!)

– less flexible programming

• No anonymous type is allowed. � cf: C/C++

• Type must be globally defined. � Why?

struct man { char* name; int age; }
struct woman { char* name; int age; }
man Tom;
woman Jane;

. . .
Jane = Tom;

struct {
char* name;
int age;

} Tom;

Programming Methodologies13

The pointer type

� In PL/1, the pointer has no data type.
declare p pointer;
declare i integer;
declare c, d char;

. . .
p = address of(c);

. . .
p = address of(i);

d = dereference(p); Error won't be detected until run time

– This is more flexible and may save memory, but is error-prone!

� In C, the pointer type is a part of data types
int* p;
int i;
char c, d;

. . .
p = &i;

d = *p; Error can be detected by the compiler

– Most languages include the pointer type.

Programming Methodologies14

Subtypes

� Primitive types provided by languages are not enough. Why?
int day, month;
month = 9; // It's OK...but need more...
day = -11; // Non-sense! Semantic error! may not be caught even at run time

– How can we capture this semantic error with data types?

� Users need to restrict the primitive types.
– enumerated types (C++, Pascal)

• C++ enum day_type {first, second, . . . , thirty_first};
enum month_type {Jan, Feb, . . . , Dec};
day_type day;
month_type month;
month = Sep; // That's better. More readable.
day = -11; // Error detected at compile time!

• Pascal type month_type = (Jan, Feb, . . . , Dec);

– subrange type (Pascal) - in some case, more compact and flexible
subtype day_type is integer range 1..31;

. . .
day := -11; // Error still can be detected.
day := day + 20; // Also it can be used in integer operation.

� The problem is this may be error. But error can be easily detected at run-time.

enum type for 1..99999?

Programming Methodologies15

Monomorphic/polymorphic objects

� A monomorphic object (function, variable, constant, …) has

a single type.

– constants of simple types (character/integer/real): ‘a’, 1, 2.34, …

– variables of simple types: int i; (C), x :real; (Pascal)

– various user-defined functions: int foo(char* c);

� A polymorphic (generic) object has more than one types.
– the constant nil in Pascal and 0(integer,virtual function, pointer)

in C

– the functions for lists in Scheme and Lisp: cons, car, cdr , …

– the basic operators +, —, :=, ==, ^, * (multiply, dereference), …

– subtype objects

• subrange types

• derived class objects in object-oriented languages

Programming Methodologies16

Type expressions

� A type expression describes how the representation for a

monomorphic or polymorphic object is built.

� Examples of type expressions in real languages

– simple types
int, boolean, char*, ^real, ...

– composite types
array [...] of real

char < name>[...]

struct {...}

record < name> is ... end < name> end record;

– functions
float < function name >(...) { ... }

� Type expressions are useful to formally represent

monomorphic and polymorphic objects.

Programming Methodologies17

Type expressions

� The syntax of type expressions for monomorphic and

polymorphic objects

– int, real, list . . . denote basic types.

– α, β, . . . denote type variables.

– the type constructors →, X are used for functions

� Ex: 726 : int

"string" : char*

a : list of real

foo : char* → int

+ : real x real → real

int x int→ int

* : real x real → real

int x int→ int

α* → α

nil : α*

cons : α x list of α → list of α

length : list of α → int?

?

int foo (char* c) {
float a;
…

}

Programming Methodologies18

Type checking

� Recall � data type = set of data objects + set of operators

Examples

• * : int × int → int // type definition of a monomorphic function

• Σ : list α → α // type definition of a polymorphic function Σ

� A data object is compatible with an operator if the objects

can be passed to the operator as the operands.
int i, j;

i * 3 // legal

i * “string” // illegal

Σ(1.3, 3.01, 2.0) // legal

Σ(3.2, j, i) // illegal

– Type error occurs if an operator is applied to incompatible objects.

– A program is type safe if it results in no type error while being

executed.

– Type checking is the activity of ensuring that a program is type safe.

a function having a single, fixed type

a function having multiple types

Type expressions

Programming Methodologies19

Static vs. dynamic type binding

� static type binding

– A variable …

• is bound to a certain type by a declaration statement, and

• should have only one type during its life time.
float x; // x is of a real type

char* x; // This is an error

– most existing languages such as Fortran, PL/1, C/C++ and ML

� dynamic type binding

– A variable …

• is bound to a type when it is assigned a value during program

execution, and

• can be bound to as many types as possible.
> (define x 4.5) // x is of a real type

> (define x '(a b c)) // now, x is of a list type

– Scheme, LISP, APL, SNOBOL

Programming Methodologies20

Type inference

� implemented in functional programming languages with

static type binding (e.g., ML and Miranda)

� Data types are inferred by the compiler without help from

the user whenever possible.
– ML 5 - 3;

2 : int

– Miranda reverse list = rev list []
rev [] n = n
rev (l:m) n = rev m (l:n)

rev : list ×××× list →→→→ list
reverse : list →→→→ list

� Type inference helps the user to enjoy advantages of

dynamic type binding (� don’t worry about assigning data types

to variables), while the compiler may better optimize code

by statically inferring and binding data types for each

variable.

Programming Methodologies21

Type inference

� Type parameters can be used for polymorphic functions,
– ML fun id(x) = x;

id : α → α

� Error will occur if there is uncertainty that prevents type

inference.

– ML fun add(x,y) = x + y;

error: variable ‘+’ cannot be resolved

� To resolve uncertainty, more information needs to be

provided by the user.

fun add(x,y) : int = x + y;

add : int × int → int

Programming Methodologies22

Static type checking

� type checking performed during compile time

– Pascal, Fortran, C/C++, Ada, ML, …

– The type of an expression is determined by static program analysis.

� To support static type checking in a language, a variable (or

memory location) and a procedure must hold only one type

of values, and this type must be statically bound or inferred.
– Pascal var x : x_type;

w : array of [1..10] of real;
function foo(n : integer): real

. . .
begin

w[9] := foo(5) / w[1]; // OK

w[10] := foo(x) + 3.4; // error

w[11] := w[foo(-2)] * 10.0; // error

– Miranda reverse [a b c] // return a list [c b a]
reverse 8 // error

– C++ #include <stream.h>
main() {

int i = bar(); // error: undefined function bar
. . .

Programming Methodologies23

Dynamic type checking

� type checking performed during program execution

� required by languages that
– perform dynamic type binding, or

• Scheme > (define a 10)
> (car a)
error: wrong arg to primitive car: 10

– check the value of a program variable at run time.
• Pascal subtype day_type is integer range 1..31;

var day : day_type;
i : integer;
. . .
day := i; // Is 1 ≤ i≤ 31?

• Ada type x_type is (x1, x2);
type a_type (x : x_type) is // discriminant

record case x is
when x1 => m : integer;
when x2 => y : float;

end case; end record;
a : a_type;
xn : x_type;

. . .
a = (x => xn, m => 3); // x = x1 ?

Programming Methodologies24

Static vs. dynamic type checking

� STC supports early detection of type errors at compile time.

Thereby ... � shortening program development cycle, and causing no

run time overhead for type checking.

� STC guarantees a program itself is type safe.

� DTC only guarantees a particular execution of a program is

type safe. Therefore, DTC must be repeated although the

same program is executed.

� DTC needs extra space for special bits for each variable

indicating the type of the variable at present.

� In general, STC allows greater efficiency in memory space

and time.

� DTC handles the cases with unknown values that STC

cannot handle.

Programming Methodologies25

Strongly vs. weakly typed languages

� strongly typed (Ada, ML, Miranda, Pascal) if all (or almost

all w/ few exceptions like Pascal) programs are guaranteed

to be type safe by either static or dynamic type checking.

� weakly typed or untyped (Fortran, C/C++, Scheme, LISP)
– Fortran real r

character c
equivalence (r,c)
print*, r; // maybe wrong, but maybe still OK

– C++ float foo(char cc, float x) { cout << cc << x; }
main() {

float y = foo(100.7,'c'); // it runs! ���� output: d 99

– Pascal type x_type = (x1, x2);
a_type = record

case x : x_type of
x1 : (m : integer);
x2 : (y : float);

end case; end record;
var a : a_type;

xn : x_type;
. . .

a.m = 3; // maybe right, maybe wrong

char(100.7) � char(100) � ‘d’

float(‘c’) � 99

Programming Methodologies26

Overloading

� Often it is more convenient to use the same symbol to

denote several values or operations of different types.

– Pascal subtype day_type = 1..31

� The numbers 1 ~ 31 are overloaded because the numeric symbols of

type day are also of type integer in Pascal.

– C++ int ::operator+(int, int) { . . . }

float ::operator+(float, float) { . . . }

� This built-in symbol + is overload because it is used for the addition for

integer and real types.

� In C++, the users can overload operators with the class

construct.
class complex {

. . .
complex operator+(complex, complex);

}

Programming Methodologies27

Overloading

� Type checking tries to resolve ambiguities in an overloaded

symbol from the context of its appearance.
day_type day;

day = 10; // 10 is of type day

. . . 3 + 4 // integer addition

. . . 4.3 + 2.1 // real addition

� If the ambiguity cannot be resolved, type error occurs.

Programming Methodologies28

Type conversion

� In order to allow 3.46 + 2 instead of 3.46 + 2.0 , one

solution is to create extra two overloaded functions
float ::operator+(float, int) { . . . }

float ::operator+(int, float) { . . . }

� But, this solution is tedious and may cause exponential explosion of

the overloaded functions for each possible combination of types
such as short, int, long, float, double, unsigned , … .

� A better solution: type conversion

� convert the types of operands.

� Two alternatives for type conversion
– explicit: type cast

– implicit: coercion

Programming Methodologies29

Type cast

� Explicit type conversion
– C++ float x = 3.46 + (float) 2;

int *ptr = (int *) 0xffffff;

x = x + (float) *ptr;

– Ada type day_type is new integer range 1..31

day_type day1, day2, day3;

integer d;
. . .

day2 := day3 + 10; // 10 is overloaded

day1 := day2 + day_type(d); // d is type casted

� Drawback of type cast

– Heedless explicit conversion may invoke information loss.

(e.g. truncation)

– A solution? � implicit type conversion!

• Languages provide implicit type conversion (coercion) to coerce

the type of some of the arguments in a direction that has

preferably no information loss.

Programming Methodologies30

Coercion

� In many languages (PL/1, COBOL, Algol68, C), coercions are

the rule. They provide a predefined set of implicit coercion

precedences. � Generally, a type is widened when it is coerced.

– C character →→→→ int
pointer →→→→ int
int →→→→ float
float →→→→ double

. . .

� The generous coercion rules make typing less strict,

thereby possibly

– causing run time overhead (e.g., COBOL),

– making code generation more complicated, and

– in particular, making security that typing provides lost by masking

serious programming errors.

� For the last reason, some strongly typed languages (Ada, Pascal)

has almost no coercion rules.

But, it may still lose information.
ex: 32 bit integer � 32 bit float with 24 bit mantisa)

Programming Methodologies31

Polymorphic functions

1. ad-hoc polymorphic

functions that work on a

finite number of types

– overloaded functions

• built-in � +, *, …

• user-defined
int foo(int i);

float foo(char c);

– functions with parameter

coercion

Ex: convert real + int to

real + real

– After the ambiguity is

resolved, a different piece

of code is used.

code for

integer

addition

code for

real number

addition

int i, j;
float x, y;

…
x = foo(‘t’);

…
y = 3.2 + x …

…
j = foo(i + 3);

int i, j;
float x, y;

…
x = foo (‘t’);

…
y = 3.2 + x …

…
j = foo (i + 3);

int f (int) {

}

…

float f (char) {

}

…

Programming Methodologies32

Polymorphic functions

2. universal polymorphic functions that work on an

unlimited numbers of types

– inclusion polymorphism is the type of polymorphism you’re used

to, where the same function can exist with the same signature in

several child classes and act differently for each class

� subtypes

– parametric polymorphism is when a function accepts a variable

as a parameter that can be of any valid type (e.g. variables in

Scheme)

� * (dereference), length, cons, car, …

Programming Methodologies33

Polymorphic functions

– parametric polymorphism

� * (dereference), length,
cons, car, …

– Typically, the same code is used

regardless of the types of the

parameters, and the functions

exploit a common structure

among different types.

Ex: length assumes its parameters

share a common data structure,

a list

code for length

(lambda (l)
(if (null? l) 0

(+ 1 (length (cdr l)))))

> (define l1 ’(a b c))
> (define l2 ’(“t” 3))
> (define l3 ’(l1 l2))
> (length l1)
3
> (length l2)
2
> (length l3)
2

> (define l1 ’(a b c))
> (define l2 ’(“t” 3))
> (define l3 ’(l1 l2))
> (length l1)
3
> (length l2)
2
> (length l3)
2

? ? ? ? ()

