Note 3

Types

Yunheung Paek
Associate Professor
Software Optimizations and Restructuring Lab.
Seoul National University

so&r

Topics

® Definition of a type
® Kinds of types

® [ssues on types

® Type checking

® Type conversion

2 Programming Methodologies SO &1‘

Components of a data type

Type

/\

Data Operations

® a set of data objects that model a collection of abstract
objects in real world
ex: in C language
e int <> integers, student id, exam scores, ...
e char[] < letters, names, ...

® a set of operations that can be applied to the objects
ex: +- */ < add, subtract, multiply, divide for integers

3 Programming Methodologies SO &1‘

Using types ...

® improves readability and writability.

- eX. char* student_name;

struct employee_records {
char* name;
int salary;

}
® reduces programming errors.

- ex: student_name /5

® makes memory allocation and data access efficient.

- €eX: struct {
int i
char* c;
} /1 8 bytes - Sizes are statically known.

—> useful for the compiler to optimize memory
allocation (e.g., use stack in stead of heap)

4 Programming Methodologies SO &1‘

Hierarchies of types

® Most imperative languages (C/C++, Ada, ...)

data types
Charamolean struct/record array string

S

integer enum floating-point fixed-point

C/C++ =2 char, int/long, float/double, struct/class, array, string(?)?

Java > ... boolean no clear distinction between char and int, no special op for char/string

5 Programming Methodologies SO &1‘

Hierarchies of types

® Functional languages (Scheme, LISP, ML, ...)

data types
m :
ato composite procedure
symbol nunlgric character boolean pair vector string
..................................... list
. 4 ! T [N
integer rational real complex

More atomic data types to support symbolic computations (e.g., rational, complex)

6 Programming Methodologies SO &1‘

Selection of data types

® “What kinds of types should be included in a language” is
very important for programming language design.

® Primitive/simple types are supported in almost all existing
programming languages

® Composite types being supported differ from language to
language based on what is the purpose of the language.

® Several issues related to the selection of types
- fixed-point vs. floating-point real numbers

- array bounds Cobol for string type ?
- structure of composite types class type for OO languages
- pointer types

- subtypes

7 Programming Methodologies SO &1‘

Fixed-point vs. Floating-point

® fixed-point
- Precision and scale are fixed.
—> a fixed radix point for all real numbers of the same type
- ex: salary amount of graduate assistants
- 6 digits for precision and 2 digits for scale
- 1234.56, 2000.00

® floating-point

- radix points are floating
- ex: 21.32, 9213.1, 4.203e+9

® COBOL, PL/1 and Ada support the fixed-point real type, but
most of other languages (Fortran, C, ...) don't.
- Ada: type salary is delta 0.01 range 0.0..3000.0

- C++: float salary;

8 Programming Methodologies SO &1‘

Fixed-point vs. Floating-point

® Problem with fixed-point
- possible loss of information after some operations at run-time
e ex: double the salary of EE students!

® Problem with floating-point
- Large numbers may be machine-dependent.
e ex: port a C-program to 32-bit and 64-bit machines!
- Less secure
e ex: double the salary illegally

9 Programming Methodologies

so&r

Determination of array bounds

® static arrays (C, Fortran, Pascal)

- array bounds determined at compile time and static storage
allocation. - efficient

- €X: int a[10], b[5];
® stack-dynamic (Ada)
- array bounds determined at run time but static storage allocation

- ex. read size;
call foo(size);

subroutine f.o'o-(int size)
int a[size], b[size*2];

® dynamic (C, Fortran90)

- array bounds determined at run time and dynamic storage allocation

- eX. int *a, *b;
a =b =new int[10]

delete [] a; .
b = new int[20]

10 Programming Methodologies SO &1‘

Array bounds as a data type

® Pascal includes array bounds as a data type, which implies
1. All arrays in Pascal are static.

2. Errorsinillegal array assignments and parameter passing can be

detected at compile time.

€X. var x,y:array of [1..30] of real;
var z: array of [1..30] of real;
function foo(w : array of [1..20] of real): integer;

begin
i .= foo(x) + 10; // illegal
X =2z // illegal _ _
X =Y, /1 legal type vector30 = array of [1..30] of real;

var X, Yy: vector30;
var z: vector30;

X =2z - /1 legal
® Most other languages do not include array bounds as a type

- needs more complex memory managements and error-prone

ex. real x(1:10)
x(i) = 5.1 - What ifi>10 ?

- but more flexible = consider the function foo in the Pascal code

11 Programming Methodologies SO&I‘

Structure of composite types

struct man { char* name; int age; }
struct woman { char* name; int age; }

® |s this assignment legal?kman Tom;

woman Jane;
Jane = Tom;

® |nh Ada and the early Pascal, the answer is “no”.
- name equivalence/compatibility

® |In most others like C, the answer is “yes”.
—> structure equivalence

® The name equivalence provides
- easy type checking by string comparison - fast compilation
- more secure and less error-prone compilation = Jane=Tom; (unsafe!)
- less flexible programming

« No anonymous type is allowed. = cf: C/C++ struct {

char* name;
. W - ’
« Type must be globally defined. > Why? }Tomf age

12 Programming Methodologies SO &1‘

The pointer type

® [nh PL/1, the pointer has no data type.

declare p pointer;
declare i integer;
declare c, d char;

p = address of(c);

p= addréss of(i);
d = dereference(p); ————Error won't be detected until run time
- This is more flexible and may save memory, but is error-prone!
® |In C, the pointer type is a part of data types
int* p;
int I;
char c, d;
p=g&i
d=*p; ——Error can be detected by the compiler

- Most languages include the pointer type.

13 Programming Methodologies SO &1‘

Subtypes

® Primitive types provided by languages are not enough. Why?

int day, month;

month = 9; // It's OK...but need more...
day = -11; /1 Non-sense! Semantic error! may not be caught even at run time

- How can we capture this semantic error with data types?

® Users need to restrict the primitive types.
- enumerated types (C++, Pascal)
o C++ enum day_type ({first, second, .. ., thirty _first};

enum month_type {Jan, Feb, ..., Dec};

day type day;

month_type month;

month = Sep; // That's better. More readable.
day = -11,; /1 Error detected at compile time!

e Pascal type month_type = (Jan, Feb, . . ., Dec);
- subrange type (Pascal) - in some case, more compact and flexible

Ssubtype day_.t%/pe IS integer range 1..31; <;:le type for 1..999997
day :=-11; // Error still can be detected.
day := day + 20; // Also it can be used in integer operation.

=» The problem is this may be error. But error can be easily detected at run-time.

14 Programming Methodologies SO &1‘

Monomorphic/polymorphic objects

® A monomorphic object (function, variable, constant, ...) has
a single type.

constants of simple types (character/integer/real): ‘a’, 1, 2.34, ...

- variables of simple types: int i; (C), x :real; (Pascal)
- various user-defined functions: int foo(char* c);

® A polymorphic (generic) object has more than one types.

15

the constant nil in Pascal and O(integer,virtual function, pointer)
inC
the functions for lists in Scheme and Lisp: cons, car, cdr) e
the basic operators +, —, :=, ==,/ * (multiply, dereference), ...
subtype objects

e subrange types

 derived class objects in object-oriented languages

Programming Methodologies SO &1‘

Type expressions

® A type expression describes how the representation for a
monomorphic or polymorphic object is built.

® Examples of type expressions in real languages

- simple types

int, boolean, char*, *real, ...
- composite types

array [...] of real

char < name>|...]

struct {...}
record < name>is...end< name> end record:;

- functions
float< function name >(...){...}

® Type expressions are useful to formally represent
monomorphic and polymorphic objects.

16 Programming Methodologies SO &1‘

Type expressions

® The syntax of type expressions for monomorphic and
polymorphic objects
- int, real, list . . . denote basic types.
- a, B, ... denote type variables.
- the type constructors —, X are used for functions

® Ex: 726 int

"string” : char * int foo (char* c) {
a : list of real float a;
foo : char* —int
+ real x real — real }

{ int x int — int
* real x real — real

{ int x int — int

ar* —>a

nil : ax*
cons : ?
length : ?

17 Programming Methodologies SO &1‘

Type checking

® Recall > data type = set of data objects + set of operators
Examples a function having a single, fixed type%
«* tint Xint - int // type definition of a monomorphic function
e 2:lista - a /| type definition of a polymorphic function %

® A data object is compatible with an operator if the objects
can be passed to the operator as the operands.

Int 1, J; a function having multiple types

I *3 /1 legal
| * “string” /1 illegal
2(1.3,3.01, 2.0 /1 legal
2(3.2,j, 1) /1 illegal

- Type error occurs if an operator is applied to incompatible objects.

- A program is type safe if it results in no type error while being
executed.

- Type checking is the activity of ensuring that a program is type safe.

18 Programming Methodologies SO &1‘

Static vs. dynamic type binding

® static type binding
- Avariable ...
« is bound to a certain type by a declaration statement, and

« should have only one type during its life time.
float x; /1 x is of a real type
char* x; /1 This is an error

- most existing languages such as Fortran, PL/1, C/C++ and ML
® dynamic type binding
- Avariable ...

e is bound to a type when it is assigned a value during program
execution, and

« can be bound to as many types as possible.
> (define x 4.5) /1 x is of a real type
> (define x '(a b c)) /1 now, X is of a list type

- Scheme, LISP, APL, SNOBOL

19 Programming Methodologies SO &1‘

Type inference

® implemented in functional programming languages with
static type binding (e.g., ML and Miranda)

® Data types are inferred by the compiler without help from
the user whenever possible.

- ML 5- 3
2. int
- Miranda reverse list = rev list []
rev[ln=n
rev (km) n =revm (l:n)
rev : list x list - list
reverse : list - list

® Type inference helps the user to enjoy advantages of
dynamic type binding (= don’t worry about assigning data types
to variables), while the compiler may better optimize code
by statically inferring and binding data types for each
variable.

20 Programming Methodologies SO &1‘

Type inference

® Type parameters can be used for polymorphic functions,
- ML fun id(x) = x;

id : a - a

® Error will occur if there is uncertainty that prevents type
inference.
- ML fun add(x,y) = x +y;
error: variable ‘+' cannot be resolved
® To resolve uncertainty, more information needs to be
provided by the user.

fun add(x,y) :int =x +vy;

add: int xint - int

21 Programming Methodologies SO &1‘

Static type checking

® type checking performed during compile time
- Pascal, Fortran, C/C++, Ada, ML, ...
- The type of an expression is determined by static program analysis.

® To support static type checking in a language, a variable (or
memory location) and a procedure must hold only one type

of values, and this type must be statically bound or inferred.

- Pascal var X :X_type;
w : array of [1..10] of real;
function foo(n : integer): real

begin
w[9] :=foo(5) / w[1]; /1 OK
w[10] := foo(x) + 3.4; /] error
w[11] := w[foo(-2)] * 10.0; /] error
- Miranda reverse [abc] // return a list [c b a]
reverse 8 /] error
- C++ #include <stream.h>
main() {

int i =bar(); /| error: undefined function bar

22 Programming Methodologies SO &1‘

Dynamic type checking

® type checking performed during program execution

® required by languages that

- perform dynamic type binding, or

e Scheme > (define a 10)
> (car a)
error: wrong arg to primitive car: 10

- check the value of a program variable at run time.

e Pascal subtype day_type is integer range 1..31;
var day : day_type;
I : integer;
day := i; /11s 1 <is31?
e Ada type x_type is (x1, x2);
type a_type (X:x_type)is /| discriminant

record case X is
when x1 => m : integer;
when x2 =>y : float;
end case; end record;
a:a type;
XN :X_type;

a=(x=>xn.,'rr-1=>3); /[l x=x1 7

23 Programming Methodologies SO &1‘

Static vs. dynamic type checking

® STC supports early detection of type errors at compile time.

Thereby ... = shortening program development cycle, and causing no
run time overhead for type checking.

® STC guarantees a program itself is type safe.

® DTC only guarantees a particular execution of a program is
type safe. Therefore, DTC must be repeated although the
same program is executed.

® DTC needs extra space for special bits for each variable
indicating the type of the variable at present.

® |n general, STC allows greater efficiency in memory space
and time.

® DTC handles the cases with unknown values that STC
cannot handle.

24 Programming Methodologies SO &1‘

Strongly vs. weakly typed languages

® strongly typed (Ada, ML, Miranda, Pascal) if all (or almost
all w/ few exceptions like Pascal) programs are guaranteed
to be type safe by either static or dynamic type checking.

® weakly typed or untyped (Fortran, C/C++, Scheme, LISP)

- Fortran

- C++

- Pascal

25

real r
character ¢
equivalence (r,c)

print*, r; /1 maybe wrong, but maybe still OK
float foo(char cc, float x) { cout << cc <<x;}
main() {

float y = f00(100.7,'c"); // it runs! =» output: d 99

type x_type = (x1, x2);
a_type =record

x1 : (m : integer); float(*c’) > 99
x2 : (y : float),
end case; end record;

var a:a_type;
Xn :X_type;

am :.3; /1 maybe right, maybe wrong

Programming Methodologies SO &1‘

Overloading

® Often it is more convenient to use the same symbol to
denote several values or operations of different types.
- Pascal subtype day type =1..31

- The numbers 1 ~ 31 are overloaded because the humeric symbols of
type day are also of type integer in Pascal.
- C++ int ::operator+(int, int) { ...}
float ::operator+(float, float) { ...}

—> This built-in symbol + is overload because it is used for the addition for
integer and real types.

® |[nh C++, the users can overload operators with the class
construct.

class complex {

complex operator+(complex, complex);

}

26 Programming Methodologies SO &1‘

Overloading

® Type checking tries to resolve ambiguities in an overloaded

symbol from the context of its appearance.
day type day;

day = 10; // 10 is of type day
...3+4 /1 integer addition
...43+21 /] real addition

- If the ambiguity cannot be resolved, type error occurs.

27 Programming Methodologies SO &1‘

Type conversion

® In order to allow 3.46 + 2 instead of 3.46 + 2.0 , one

solution is to create extra two overloaded functions

float ::operator+(float, int) { ...}
float ::operator+(int, float) { ...}

- But, this solution is tedious and may cause exponential explosion of
the overloaded functions for each possible combination of types
such as short, int, long, float, double, unsigned Ve

® A better solution: type conversion
—> convert the types of operands.

® Two alternatives for type conversion
- explicit: type cast
- implicit: coercion

28 Programming Methodologies SO &1‘

Type cast

® Explicit type conversion

- C++ float x = 3.46 + (float) 2;
int *ptr = (int *) OXFFFfF;
X = X + (float) *ptr;

- Ada type day_type is new integer range 1..31
day type dayl, day2, days3;
integer d;
day2 := day3 + 10; // 10 is overloaded
dayl := day2 + day_type(d); /1 d is type casted

® Drawback of type cast

- Heedless explicit conversion may invoke information loss.
(e.g. truncation)

- A solution? - implicit type conversion!

» Languages provide implicit type conversion (coercion) to coerce
the type of some of the arguments in a direction that has
preferably no information loss.

29 Programming Methodologies SO &1‘

Coercion

® |In many languages (PL/1, COBOL, Algol68, C), coercions are
the rule. They provide a predefined set of implicit coercion
precedences. - Generally, a type is widened when it is coerced.

- C character — int
pointer — int But, it may still lose information.
int — float ex: 32 bit integer = 32 bit float with 24 bit mantisa)

float — double

® The generous coercion rules make typing less strict,
thereby possibly
- causing run time overhead (e.g., COBOL),
- making code generation more complicated, and

- in particular, making security that typing provides lost by masking
serious programming errors.

- For the last reason, some strongly typed languages (Ada, Pascal)
has almost no coercion rules.

30 Programming Methodologies SO &1‘

Polymorphic functions

1. ad-hoc polymorphic
functions that work on a
finite number of types
- overloaded functions J

e built-in 2 +, *, ...
e user-defined

float f (char) {

int i, j;
float X, y;

code for
real number
addition

D

X = .foo (‘t’);/\J
. . =32 .
- functions with parameter yose wx
coercion j= foo (i + 3);
Ex: convert to /f
code for
C el int f (int) { integer
- After the ambiguity is addition
resolved, a different piece }
of code is used.
31 Programming Methodologies SO&I‘

Polymorphic functions

2. universal polymorphic functions that work on an
unlimited numbers of types

- inclusion polymorphism is the type of polymorphism you’re used
to, where the same function can exist with the same signature in
several child classes and act differently for each class

- subtypes

- parametric polymorphism is when a function accepts a variable
as a parameter that can be of any valid type (e.g. variables in
Scheme)

- * (dereference), length, cons, car, ...

32 Programming Methodologies SO &1‘

Polymorphic functions

- parametric polymorphism
- * (dereference), length,
cons, car, ...

- Typically, the same code is used
regardless of the types of the
parameters, and the functions
exploit a common structure
among different types.

Ex: length assumes its parameters

share a common data structure,
a list

> (define 11 ’'(a b ¢))
> (define 12 '(“t” 3))
> (define 13 ’(11 12))
> (length 11)

3

> (length 12)

2

> (length 13)

2

[

code for length

(lambda (1)
(if (null? 1) O
(+ 1 (length (cdr 1)))))

\ 4
v

33 Programming Methodologies so&r

