
Note 4

Variables

Yunheung Paek

Associate Professor

Software Optimizations and Restructuring Lab.

Seoul National University

Programming Methodologies2

Topics

� Name

� Assignment

� l-value and r-value

� Scope

� Binding

Programming Methodologies3

� Components of a variable

1. name : identifier composed of letters

2. memory location : bound to the variable

3. current value : stored in the location

4. data type : static/dynamic binding

5. scope : static/dynamic

6. life time : interval during which a location is bound to the variable

� An assignment changes the contents of some components

of a variable.

Scheme > (set! x 10)

10 //the type is an integer of value 10

> (set! x 4.5)

4.5 //now, the type is a real number of value 4.5

Variables and assignments

Programming Methodologies4

location (l-value) and value (r-value)

� The location of the variable is regarded as a kind of value

owned by the variable.

� so, we call the location the I-value of the variable.

� To make a distinction, the real value of the variable is

called the r-value.
Ex: char z = ‘o’; // the l-value of z is the address of z and the r-value is ‘o’

� A rule of assignments:

“The left-hand side of an assignment should have the l-value,
and its right-hand side should have the r-value.”

C++
float x; // create real variable x with the l-value in which the r-value is undefined
float y = 4.1; // create real variable y with the r-value defined by storing 4.1 to the l-value of y
x = y; // store the r-value of y into the l-value of x
y = y * 3.0; // store the r-value of y times 3.0 into the l-value of y

� When different variables have the same l-value, it is called

aliasing. � Ex: char d;
char & c = d; // c and d share the same location

Programming Methodologies5

Properties of l-values and r-values

� referencing: the operation of getting the l-value of a

variable

Ex: char* p = &c; � note the graphical interpretation!

� dereferencing: the operation of going from a reference to

the r-value it refers

� In C++, the right-hand side is always dereferenced once.

char c, d;

char *p, **q, **r;

c = d; // OK! dereferenced once

q = r; // OK! dereferenced once

d = p; // error! Should be dereferenced twice

p = c; // error! no dereferencing necessary

r = c; // error! no dereferencing sufficient

Programming Methodologies6

Properties of l-values and r-values

� Some expressions, such as id, array reference and

dereference, have both l-values and r-values.

– All other expressions have r-values only.

– Thus, these other expressions can NOT appear on the left-hand side

of assignments.

4.5 = 10.1; // illegal - integers have no l-values

“ jane ” = y; // illegal - strings have no l-values

y + 1 = a[i]; // illegal - arithmetic expressions have no l-values

x = 10.1; // legal - id expressions have l-values

a[i] = y + 1 // legal - array references have l-values

employee.name = “ jane ” // legal

*p = foo(x,y) // legal - dereference expressions have l-values

foo(x,y) = 1.1; // maybe legal, maybe illegal

gnu c++ says error: ‘non-lvalue in assignment’

Programming Methodologies7

Graphical notation for variables

name

Location that can contain an ordinary data value

Location that can contain a reference (address) value

Location that can contain a reference-reference value

Programming Methodologies8

Graphical notation for variables

char c = ’w’;

char d = c;

char& e = d;

char* p = &c;

char** q = &p;

char** r = q;

const char cc = ’w’

p

q

r

cc

c ‘w’

d ‘w’

copy

‘w’

e

copy

Programming Methodologies9

Array variables

� In Pascal, when you declare

x, y : array [1..5] of integer;

the compiler creates not only the storage for 5 integers,

but also a pointer to its beginning address.

When we have an array assignment

y = x;

the whole contents of the array on right-hand side are

copied to the location of the array on the left-hand side.

x

y

copy

3 5 1 8 4

3 5 1 8 4

Programming Methodologies10

Array variables

� In C++, an array is really a pointer. So, arrays and pointers

can be mixed. Thus, after b = a, we should have …

int a[5], b[5];

� In C++, a multi-dimensional array

is simulated with arrays of arrays.

int v[3][2];

int **p = v + 1;

int *t = *p + 1;

a

b

v

p

t

like Pascal

But in practice, this is totally

implementation dependent

SUN C++: illegal

GNU C++: copy

Thus, given int c[5], d[3];

d = c would be illegal with

gnu c++

Programming Methodologies11

Name conflicts

� In languages, a name can be used to mean several different
objects. � Ex) Ford: : a name of a man, a car, or a company …

� Using the same name to represent different objects in

different places causes a name conflict and potentially

ambiguity of the language.

� But, name conflicts are often necessary to improve

naturalness of a language and readability/writability.

Ford drives a car.
They work for the Ford.
She drives a Ford.

� How do we know which Ford means which in each sentence?

Ford1 drives a car.
They work for the Ford2.
She drives a Ford3.

� OK. no more naming conflict! So, the meaning is clearer. But do you like it?

Programming Methodologies12

Scope

� Ambiguity due to naming conflicts can be resolved by

associating names with the environments where each name

is defined.
� Jane in Ohio, Jane in Maine, Jane in Virginia

� In a programming language, a scope is a program

environment in which names are defined or declared.
� procedures and blocks (Pascal, C), lambda expressions (Scheme)

� Through a declaration within some scope, a name is bound

to a variable with certain attributes, and the variable is

called a bound variable.

� A variable which is not bound in the scope is called a free

variable.

Programming Methodologies13

Scope

{ // beginning of a new environment/scope

int a[10]; int i; char c; // declarations of three names

c … // a reference to ’c’: bound to a character variable

… a[i] // references to ’a’ and ’i’: bound to integer variables

x … // a reference to the free variable ’x’ within this scope

} // end of a scope

… c … // The name no longer represents a character variable.

// Then, what is it now?

� A binding of a name is visible and effective inside the scope where

the name is declared.

� The idea of a scope is to limit the boundary of a declaration

of a name.

� Outside the boundary of a declaration, that declaration and

binding should not be visible.

Programming Methodologies14

Example: scopes in mathematics

declarations

references

Let x be the amount of salary that Susan receives every month,
and y be the price of the new car she wants to have.
Then, the time that it takes for her to buy the car is y/x months.

Now, let x be the amount of money that John wastes every day,
and y be the total amount of money he currently has.

Then, the time that it takes before he goes bankrupt is y/x days.

scope 1

scope 2

declarations

scope of zscope of yscope of x

free variable

� The notion of a scope also appears in mathematics.

� Existential, ∃, and universal, ∀, quantifiers provide a
formal notion of scope.

� (∀x (∃y f(x,y)) ∨ (∀z g(x,y,z)))

� A declaration of x makes x a bound variable.

