
Programming Methodologies1

Principle in binding of variables

“A bound variable in an expression can be renamed

uniformly to another variable that does not appear free

in the expression without changing the meaning of the

expression.”

� Example:

∀x (∃y f(x,y)) = ∀x (∃v f(x,v))

= ∀y (∃v f(y,v))

= ∀y (∃x f(y,x))

≠ ∀y (∃y f(y,y)) � y was free in f(y,x)

The declaration ∀y in ∀y (∃y f(y,y)) is vacuous and invisible
to f(y,y) in (∃y f(y,y)) because ∃y supercedes ∀y.

Programming Methodologies2

Using the principle

� What does this mean to a programming language?

code 1 � int x; { int * y; … = x + *y; … }

code 2 � int x; { int * v; … = x + *v; … }

code 3 � int y; { int * v; … = y + *v; … }

code 4 � int y; { int * x; … = y + *x; … }

code 5 � int y; { int * y; … = y + *y; … }

� code 1 = code 2 = code 3 = code 4 != code5

useful for detecting homework program copying?

Programming Methodologies3

Static vs. dynamic scopes

� Each language has its own rules that tell us where to find

the declaration for a name in a program. The rules are

called the scope rules (or scope regime).

� Scope rules can be categorized largely into two kinds:

– static scope (Fortran, Pascal, C, Scheme, Common Lisp)

– dynamic scope (pure Lisp, APL, SmallTalk)

� static scope

– A scope of a variable is the region of text for which a specific

binding of the variable is visible.

– Therefore, the connection between references and declarations can

be made lexically, based on the text of the program.

– At compile time, a free variable is bound by a declaration in

textually enclosing scopes/environments.

Programming Methodologies4

Static vs. dynamic scopes

� dynamic scope

– The connection between references and declarations cannot be

determined lexically since, in general, a variable is not declared

until run-time, and may even be redeclared as the program executes.

– At run-time, a free variable in a procedure is bound by a declaration

in the environment from which the procedure is called.

� Program execution may behave differently depending on

whether static or dynamic scoping is used.

– Consider the following program:

> (define (tnu m n) (begin // main program tnu

(define (g m) (- m n)) // subprogram g
(define (h n) (* m (g n))) // subprogram h
(+ (h m) n))) // body of program tnu

(tnu)
> (tnu 9 2)

??? // What will be the output if this is a pure

// Lisp code? What if it is a Scheme code?

(define g (lambda (m) (- m n)))

Programming Methodologies5

Environments with static/dynamic scopes

� Environment configuration when g is called

Note: different scope rules differentiate binding of a free variable!

tnu

m 9h Static Scoping

(Scheme)n 9

m 9

g

Dynamic Scoping

(Pure Lisp)

m 9

m 9

n 9

n 2

n 2

g

h

tnu

le
x
ic
a
l stru

c
tu
re

c
a
ll c

h
a
in

Programming Methodologies6

Environments with static/dynamic scopes

� Environment configuration when g is called

Note: different scope rules differentiate binding of a free variable!

tnu

m 9h (define (tnu m n) (begin
(define (g m) (- m n))
(define (h n) (* m (g n)))
(+ (h m) n)))

n 9

m 9

g

m 9

m 9

n 9

n 2

n 2

g

h

tnu

le
x
ic
a
l stru

c
tu
re

c
a
ll c

h
a
in

(define (tnu m n) (begin
(define (g m) (- m n))
(define (h n) (* m (g n)))
(+ (h m) n)))

Programming Methodologies7

Implicit parameter passing

“Develop a routine add-nth-powers(x y n) which returns xn+yn.”

� Using dynamic scoping
> (define (add-nth-powers x y n) (+ (n-expt x) (n-expt y)))

> (define (n-expt m) (expt m n)) // returns m^n

> (add-nth-powers 4 3 2) // the output = ?

� This works because dynamic scoping allows implicit parameter passing.

� What if static scoping is used?

Static scoping does not allow implicit parameter passing. So …

1. pass the parameter n explicitly; or…
> (define (add-nth-powers x y n) (+ (n-expt x n) (n- expt y n)))
> (define (n-expt m n) (expt m n))

2. use a global variable n-global.
> (define n-global 0) // meaningless initialization

> (define (add-nth-powers x y n)
(begin (set! n-global n) (+ (n-expt x) (n-expt y))))

> (define (n-expt m) (expt m n-global))

� any other solution?
> (define (add-nth-powers x y n) (begin (

> (define (n-expt m) (expt m n))

> (+ (n-expt x) (n-expt y))))

Programming Methodologies8

Problems of dynamic scoping

� more difficult to read and understand a program because

– The principle of binding is violated.

> (define (tnu’ m n) (begin

(define (g m) (- m n))

(define (h k) (* m (g k)))

(+ (h m) n)))

� tnu and tnu’ are different if dynamic scoping is used!

– The meaning of a routine with free variables depends on call chain

because of a screening problem.

e.g.) In the routine tnu, the subroutine h captures the free

variable n in the routine g, changing the meaning of g.

� Typically more expensive because variable name

comparison thru a call chain is involved in program

execution.

m 9

m 9

k 9

n
2

g

h

tnu’

Programming Methodologies9

Problems of dynamic scoping

� more difficult to read and understand a program because

– The principle of binding is violated.

> (define (tnu’ m n) (begin

(define (g m) (- m n))

(define (h k) (* m (g k)))

(+ (h m) n)))

� tnu and tnu’ are different if dynamic scoping is used!

– The meaning of a routine with free variables depends on call chain

because of a screening problem.

e.g.) In the routine tnu, the subroutine h captures the free

variable n in the routine g, changing the meaning of g.

� Typically more expensive because variable name

comparison thru a call chain is involved in program

execution.

m 9

m 9

k 9

n
2

g

h

tnu’
In tnu()

Programming Methodologies10

Problems of dynamic scoping

� more difficult to read and understand a program because

– The principle of binding is violated.

> (define (tnu’ m n) (begin

(define (g m) (- m n))

(define (h k) (* m (g k)))

(+ (h m) n)))

� tnu and tnu’ are different if dynamic scoping is used!

– The meaning of a routine with free variables depends on call chain

because of a screening problem.

e.g.) In the routine tnu, the subroutine h captures the free

variable n in the routine g, changing the meaning of g.

� Typically more expensive because variable name

comparison thru a call chain is involved in program

execution.

m 9

m 9

k 9

n
2

g

h

tnu’

Programming Methodologies11

Life time

� Life time of a variable is the interval of time for which a

specific binding of the variable is active. � cf: scope

� During the life time of a variable, a variable is bound to

memory storage.

� Let x be a simple/automatic variable declared inside a
scope S.
– The life time of x begins when program execution enters the scope

S, and ends when execution leaves the scope.

– Only when the binding of x is visible, x is a live variable.

Programming Methodologies12

Life time

� Let x be a static variable declared inside a scope S.

– The life time of x begins when program execution starts, and ends

when program execution terminates.

– Even when the binding of x is not visible, x remains a live variable.

C++ int f() {

static int die_hard; // static variable, as it says

int temp; // automatic variable

… f() …

}

main() {

… f() …

}

– What are the life time and scope of die_hard ?

– What are the life time and scope of temp ?

– What happens to them when f is recursively called?

Programming Methodologies13

� Let x be a static variable declared inside a scope S.
– The life time of x begins when program execution starts, and ends when

program execution terminates.

– Even when the binding of x is not visible, x remains a live variable.

C++ int f() {

static int die_hard; // static variable, as it says

int temp; // automatic variable

… f() …

}

main() {

… f() …

}

– What are the life time and scope of die_hard ?

• lifetime: during main(), scope: inside f()

– What are the life time and scope of temp ?

• lifetime: during f(), scope: inside f()

– What happens to them when f is recursively called?

• die_hard : only one die_hard is used

• temp : different temp s are born for each recursive call

Life time

