Note 5

Control Structures

Yunheung Paek
Associate Professor

Software Optimizations and Restructuring Lab.

Seoul National University

so&r

Topics

® Evaluation of expressions
- precedence
- associativity

® Evaluation of statements
- sequential
- selective
- iterative

® exceptions
@® recursion

Programming Methodologies

so&r

Control structures

Control structures control the order of execution of
operations in a program.

expression-level control structures
- precedence/associativity rules, parentheses, function calls

statement-level control structures

1. sequential structures: stmt,; stmt,; ...; stmt_;

- a sequence of compound statements

selective structures: if-then-else, case/switch
iterative structures: for, while, do, repeat
escape/exception/branch: exit, break, goto, continue
recursive structures: by recursive function calls

g1 DN W N

Programming Methodologies

so&r

An expression is ...

® a means of specifying computations in a program.
® composed of one or more operations.

® An operation = an operator + zero or more operands

- operators: arithmetic, logical, relational, assignment, procedure
call, reference/dereference, comma, id, constant, ...

- operands: sub expressions

C++ p = &z;
X=y+*p/0.4
afi] = (z>07?foo(x, y, p) : -1);

® Syntax tree: abstract representation of expressions

Operator
operand 1 operand 2 operand 3 ... operandn

—> a node = an operator, children of a node = operands

4 Programming Methodologies SO &1‘

Evaluation of expressions

® Executing a program is actually a sequence of evaluation of
expressions in the program.

® How does the compiler/machine determine the evaluation
order of an expression?
-> use a syntax tree

/ \ 5. /_\
y I > foo(
/\ . / \ | |
| VA RN
P Xyp

® The expression evaluation order in a language (in other
words, the way to build a syntax tree) is defined by the
language semantics.

5 Programming Methodologies SO &1‘

Rules specifying evaluation orders

® Precedence rule: the relative priority of operators when

more than one kinds of operator are present

Ex: “* has higher precedence than +”
- thus, 3+4*5 is equal to 3+(4* 5), not (3+4)* 5,
3/ — 5 T~
45N 3 4 —

® Associativity rule: the relative priority of operators when

two adjacent operators with the same precedence occur in

a expression

Ex: “- is left-associative”
- thus, 3-4-5 is equal to (3- 4)- 5, not 3- (4- 5).
\ . _ T
/ DN , N

6 Programming Methodologies SO &1‘

Operator precedence/associativity in C

Precedence Operators Associativity
15 > .10 Left
14 ++ - ~ lunary+ unary- * & Right
13 *1 % Left
12 + - Left
11 << >> Left
10 <><==> Left
9 === Left
8 & Left
7 N Left
6 | Left
5 && Left
4 Il Left
3 ?. Left
2 = Right
1 Left

7 Programming Methodologies so&r

Evaluation order of function arguments

® Given a function invocation func(arg ,,arg ,,...,arg), all
the arguments are usually evaluated before func is called.
(consider the syntax tree)
- Then, what is the order of evaluation of them? Z;ﬁ;gif,f,fff;ﬁst‘,’,’;
1. no order imposed (Fortran) i-th argument for
2. left-to-right order (C++, Dr Scheme) the invocation
3. right-to-left order (MIT Scheme)

® The order is important due to of expressions.

Ex: Dr Scheme > (define x 3)
> (define inc-x (lambda ()
(begin (set! x (+ 1 x)) x)))
> (define foo (lambda (m n) (+ (* 200 m) n)))
Z O(;oo (inc-x) (inc-x))

g O(;r (* 100 (inc-x)) (inc-x)) —/_— evaluated in the DFS order

1. What are the values of mand n in the procedure call for foo ?
2. What if MIT Scheme is used?

8 Programming Methodologies SO &1‘

Sequential structures

® When is the order of a sequence of compound statements

important?

P C { Scheme (begin
statement] (function
statement 2;

L)

(function , ...)

\ statement ; (funct.ié.n

noe))

=>» It is when there is data dependence between the statements.
That is, when the same location is modified by different statements.

® Find data dependences in the following statements.

x=34 read vy; X = 8.8;

y=x- 2.1, X = 5.0; y=39%*1.2;
Xx=7.1; z=4.1;

X =1z, y=x*1.1; o

y=23+2 bfi]=j+0.1;

w=2z/0.6; a[2] = a[1] + 1 b[i+1] = b[i-1];

print z; X = a[3] * x l=1+1;
a[4]=a[3]/y m = bfi] + b[i-1];

9 Programming Methodologies SO &1‘

Selective, iterative structures

® Selective structures:

choose control flow depending on conditional test

- Most languages support - if/then/else, switch/case
® |terative structures

looping construct
C = while, for, do-while

® goto statements

10

efficient, general purpose, easy to use and translate to machine
codes

flattens hierarchical program structures into a linear collection of
statements -> difficult to read/understand

difficult to optimize or verify programs

Programming Methodologies SO &1‘

Exceptions

® Diverse types of error may occur in program execution
- overflow, type error, segment faults, divide by zero
- Exceptions are such errors detected at run time.

® What would happen if your program ignores exceptions?

$ a.out
Abort (core dump)

- Errors will eventually cause low-level message (from O/S or
hardware) to be printed and to terminate the program execution.

- What is the problem with low-level messages? - They do not provide
sufficient information about the error that caused your program to end.

® Alternative solution: use test code defined by languages or users

test result = foo(a,b,c);
If (test result is error) raise exception;

- When an exception is raised, the normal program control is
interrupted and the control is transferred to an exception handler,

a special routine that handles the exception.
11 Programming Methodologies SO&I‘

Exception handlings

® control flow for exception handling

foo (int i, char c) {
float a[10]; abort

|f -(error occurs)
raise exceptlon(error type);

i S . .

Yy e termination
................................... continue mode!

‘excepton’hander { osum pt,.on-a.._: J —

| SWItCh (error-type) { |

§ case 1: model | ““error analysis

e, » CASE 20 ... e

| U R i error report/ prmt

- T v._

| } | ~_error correction .-

® Exception handling makes programs robust & reliable. But,
it may be tedious because it needs to test possible errors.
This might be inefficient if errors occurs infrequently.

12 Programming Methodologies SO &1‘

Recursive structures

® A function f is recursive if it contains an application of f in
its definition.

C++ int fib(int n){ Scheme (define fib (lambda (n)
return ((n==0||n==1) ? (if(or(=n0)(=n1l))
1 : fib(n-1)+fib(n-2))); 1

} (+ (fib (- n 1))
- How does Scheme implement recursion? {18 0 A
® Recursion simplifies programming by exploiting the divide-
and-conquer method > “divide a large problem into smaller ones”

fib(4)

- Can you rewrite the finobacci function without using recursion, and
find how many lines you need for your version?

=

13 Programming Methodologies so&r

More facts about recursion

® Recursion allows users to implement their algorithms in the
applicative style rather than the imperative style.

main main {
function 1<E do this;
do that;
function 2<E T this:
do that;
function 3<E]
Applicative/Functional Programming Procedural/lmperative Programming

® Recursion can be expensive if not carefully used.
- Compare these two functions that compute the factorial

compute the factorial with recursion compute the factorial with iteration
int fac(int n){ int fac2(int n) {
——O D1 - n* 1Y) int p=1,
return (n==0 ? 1 : n*fac(n-1)); T R
} return p;

14 Programming Methodologies SO &1‘

Comparison of fac and fac?2

Computation of fac(4) Computation of fac2(4)
fac(4) fac2(4)

4 * fac(3) function call p=1 <------ n=4 |
4 * (3 * fac(2)) p=4 <----- n=3

4> (3*(2*fac(1))) p=12 <---mm-- n=2
4*(3*(2*(1*fac(0)))) P=24 <--mmm- n=1
4*(3*(2*(1*1)) n=0
4*(3*(2*1))

o x
24 /

five function calls one function call

four words to store the temporal data one word to store the temporal data

The main problem with the recursive version is that fac needs more
memory space and function calls as the problem size n increases. In
contrast, fac2 always needs only 1 function call and 1 word regardless

of the value of n. - Suppose n is 1000!

15 Programming Methodologies so&r

Tail recursion

® A function f is tail-recursive if it is a recursive function
that returns either a value without needing recursion or
the result of a recursive activation.

EX: void fac3(int n, int& p) {if (n > 0) { p*=n; fac3(n-1,p)it}

noint!
- cf: Neither fib nor fac is tail-recursive.

® What are tail-recursive functions so great about?

- While still taking advantage of recursion, they can execute
programs in constant space.

fac3(4, 1)

fac3(3, 4) § §C five function calls
fac3(2, 12) <. 2 ‘/{ onetem po ral varlabl '''''''''
fac3(L, 24) S
fac3(0,24) | = :

This is contant r.w.t. problem size

16 Programming Methodologies SO &1‘

Application of tail recursion

® Write a tail-recursive version of fib.

void fib2(int n, int& I, int& r) {
if (n > 0) { I+=r; r=l-r; fib2(n-1,1,r); }
}

fib2(4,1,0)

fib2(3,1,1)

17 Programming Methodologies

return

)

so&r

