
Note 5

Control Structures

Yunheung Paek

Associate Professor

Software Optimizations and Restructuring Lab.

Seoul National University

Programming Methodologies2

Topics

� Evaluation of expressions
– precedence

– associativity

� Evaluation of statements
– sequential

– selective

– iterative

� exceptions

� recursion

Programming Methodologies3

Control structures

� Control structures control the order of execution of

operations in a program.

� expression-level control structures

� precedence/associativity rules, parentheses, function calls

� statement-level control structures

1. sequential structures: stmt1; stmt2; …; stmtn;

� a sequence of compound statements

2. selective structures: if-then-else, case/switch

3. iterative structures: for, while, do, repeat

4. escape/exception/branch: exit, break, goto, continue

5. recursive structures: by recursive function calls

Programming Methodologies4

An expression is …

� a means of specifying computations in a program.

� composed of one or more operations.

� An operation = an operator + zero or more operands

– operators: arithmetic, logical, relational, assignment, procedure

call, reference/dereference, comma, id, constant, …

– operands: sub expressions

C++ p = &z;

x = y + *p / 0.4;

a[i] = (z > 0 ? foo(x, y, p) : -1);

� Syntax tree: abstract representation of expressions
Operator

operand 1 operand 2 operand 3 … operand n

� a node = an operator, children of a node = operands

…

Programming Methodologies5

Evaluation of expressions

� Executing a program is actually a sequence of evaluation of

expressions in the program.

� How does the compiler/machine determine the evaluation

order of an expression?

� use a syntax tree
= =

x + [] ?:

y / a i > foo() -

* 0.4 z 0 , 1

p x y p

� The expression evaluation order in a language (in other

words, the way to build a syntax tree) is defined by the

language semantics.

Programming Methodologies6

Rules specifying evaluation orders

� Precedence rule: the relative priority of operators when

more than one kinds of operator are present

Ex: “* has higher precedence than +”

� thus, 3+4*5 is equal to 3+(4*5), not (3+4)*5.

+ *

3 * + 5

4 5 3 4

� Associativity rule: the relative priority of operators when

two adjacent operators with the same precedence occur in

a expression
Ex: “- is left-associative”

� thus, 3-4-5 is equal to (3-4)-5, not 3-(4-5).

- -

- 5 3 -

3 4 4 5

Programming Methodologies7

Operator precedence/associativity in C

Left,1

Right=2

Left?:3

Left||4

Left&&5

Left|6

Left^7

Left&8

Left== !=9

Left< > <= =>10

Left<< >>11

Left+ -12

Left* / %13

Right++ - ~ ! unary+ unary- * &14

Left-> . [] ()15

AssociativityOperatorsPrecedence

Programming Methodologies8

� Given a function invocation func(arg 1,arg 2,…,arg n) , all

the arguments are usually evaluated before func is called.

(consider the syntax tree)

� Then, what is the order of evaluation of them?

1. no order imposed (Fortran)

2. left-to-right order (C++, Dr Scheme)

3. right-to-left order (MIT Scheme)

� The order is important due to ____________of expressions.
Ex: Dr Scheme > (define x 3)

> (define inc-x (lambda ()
(begin (set! x (+ 1 x)) x)))

> (define foo (lambda (m n) (+ (* 100 m) n)))
> (foo (inc-x) (inc-x))
405
> (+ (* 100 (inc-x)) (inc-x))
607

1. What are the values of mand n in the procedure call for foo ?

2. What if MIT Scheme is used?

Evaluation order of function arguments

argi represents an
expression for the

i-th argument for

the invocation

evaluated in the DFS order

Programming Methodologies9

Sequential structures

� When is the order of a sequence of compound statements

important?

� It is when there is data dependence between the statements.

That is, when the same location is modified by different statements.

� Find data dependences in the following statements.
x = 3.4

y = x – 2.1;

read y;

x = 5.0;

x = 7.1;

y = x * 1.1;

x = 8.8;

y = 3.9 * 1.2;

z = 4.1;
x = z;

y = 2.3 + z;

w = z / 0.6;

print z;
a[2] = a[1] + 1

x = a[3] * x

a[4] = a[3] / y

b[i] = j + 0.1;

b[i+1] = b[i-1];

I = I + 1;

m = b[i] + b[i-1];

C {
statement 1;
statement 2;

…
statement n;

}

Scheme (begin
(function 1 …)
(function 2 …)

…
(function n …))

Programming Methodologies10

Selective, iterative structures

� Selective structures:

– choose control flow depending on conditional test

– Most languages support � if/then/else, switch/case

� Iterative structures

– looping construct

– C � while, for, do-while

� goto statements

– efficient, general purpose, easy to use and translate to machine

codes

– flattens hierarchical program structures into a linear collection of

statements -> difficult to read/understand

– difficult to optimize or verify programs

Programming Methodologies11

Exceptions

� Diverse types of error may occur in program execution

– overflow, type error, segment faults, divide by zero

– Exceptions are such errors detected at run time.

� What would happen if your program ignores exceptions?
$ a.out

Abort (core dump)

– Errors will eventually cause low-level message (from O/S or

hardware) to be printed and to terminate the program execution.

– What is the problem with low-level messages? � They do not provide

sufficient information about the error that caused your program to end.

� Alternative solution: use test code defined by languages or users
test result = foo(a,b,c);

if (test result is error) raise exception;

� When an exception is raised, the normal program control is

interrupted and the control is transferred to an exception handler,

a special routine that handles the exception.

Programming Methodologies12

Exception handlings

� control flow for exception handling

� Exception handling makes programs robust & reliable. But,

it may be tedious because it needs to test possible errors.

This might be inefficient if errors occurs infrequently.

foo (int i, char c) {
float a[10];
…
if (error occurs)

raise exception(error-type);
…

}

exception_handler {
switch (error-type) {

case 1: …
case 2: …
…
case n: …

}
}

error analysis

error report/print

error correction

resumption

model

continue

termination

model

abort

Programming Methodologies13

� A function f is recursive if it contains an application of f in

its definition.

� How does Scheme implement recursion?

� Recursion simplifies programming by exploiting the divide-

and-conquer method � “divide a large problem into smaller ones”

� Can you rewrite the finobacci function without using recursion, and

find how many lines you need for your version?

Recursive structures

fib(4)
fib(3)

fib(2)fib(2)

fib(1)fib(1) fib(0) fib(1) fib(0)

C++ int fib(int n) {
return ((n==0||n==1) ?

1 : fib(n-1)+fib(n-2)));
}

Scheme (define fib (lambda (n)
(if (or (= n 0) (= n 1))

1
(+ (fib (- n 1))

(fib (- n 2))))))

Programming Methodologies14

More facts about recursion

� Recursion allows users to implement their algorithms in the

applicative style rather than the imperative style.

� Recursion can be expensive if not carefully used.
� Compare these two functions that compute the factorial

function 1

function 2

function 3

main …
…
…
…
…
…
…
…
…

main {

do this;

do that;

…

do this;

do that;

}

Applicative/Functional Programming Procedural/Imperative Programming

compute the factorial with recursion

int fac(int n) {

return (n==0 ? 1 : n*fac(n-1));

}

compute the factorial with iteration

int fac2(int n) {

int p = 1;
for (; n > 0; n--) p = n * p;

return p;
}

Programming Methodologies15

Comparison of fac and fac2

The main problem with the recursive version is that fac needs more

memory space and function calls as the problem size n increases. In

contrast, fac2 always needs only 1 function call and 1 word regardless

of the value of n. � Suppose n is 1000!

Computation of fac(4)
fac(4)
4 * fac(3)
4 * (3 * fac(2))
4 * (3 * (2 * fac(1)))
4 * (3 * (2 * (1 * fac(0))))
4 * (3 * (2 * (1 * 1)))
4 * (3 * (2 * 1))
4 * (3 * 2))
4 * 6
24

Computation of fac2(4)
fac2(4)

p = 1 < ------- n = 4
p = 4 < ------- n = 3
p = 12 < ------- n = 2
p = 24 < ------- n = 1

n = 0

five function calls

four words to store the temporal data

one function call

one word to store the temporal data

return p

return

function call

Programming Methodologies16

Tail recursion

� A function f is tail-recursive if it is a recursive function

that returns either a value without needing recursion or

the result of a recursive activation.

Ex: void fac3(int n, int& p) { if (n > 0) { p*=n; fac3(n-1,p);} }

� cf: Neither fib nor fac is tail-recursive.

� What are tail-recursive functions so great about?

– While still taking advantage of recursion, they can execute

programs in constant space.

fac3(4, 1)

fac3(3, 4) five function calls

fac3(2, 12) one temporal variable

fac3(1, 24)

fac3(0, 24)

fu
n
c
tio

n
 c

a
ll

re
tu

rn

This is contant r.w.t. problem size

no int!

Programming Methodologies17

fib2(3,1,1)

fib2(2,2,1)

fib2(1,3,2)
fib2(0,5,3)

return

Application of tail recursion

� Write a tail-recursive version of fib.

void fib2(int n, int& l, int& r) {

if (n > 0) { l+=r; r=l-r; fib2(n-1,l,r); }

}

fib2(4,1,0)

