
Note 7

Block Structures

Yunheung Paek
Associate Professor

Software Optimizations and Restructuring Lab.

Seoul National University

Programming Methodologies2

Topics

� Definition of a block

� Block structures

� Implementation of block structures

Programming Methodologies3

Blocks

� A block

– is a section of code that consists of a set of declarations and a

sequence of statements.

– provides its own environment or scope for variables.

– allocates storage to variables local to a block when execution enters

the block; the storage is deallocated when the block is exited.

– is delimited by keywords or special characters

• procedure bodies ex: Fortran → function . . . end

• begin/end ex: Algol → begin . . end

• special characters ex: C → { . . . }

� The programming languages that allow programs to define

blocks are called block-structured languages.

– block-structured: Pascal, PL/I, Algol, C/C++, Scheme

– non-block-structured: Cobol, Basic, Assembly

Programming Methodologies4

Terminology for blocks

� A block enclosed by other blocks is called a nested block. A
block enclosing other blocks is called a nesting block.

� The variables declared (or bound) in a block are called

local variables. Bindings of local variables of a block are

visible only inside the block.

� The declarations of local variables in a block are implicitly
inherited by nested blocks. It is not allowed to export a
declaration to nesting blocks.

� Non-local variables of a block are those whose declarations

are implicitly inherited from nesting blocks. They are not

bound in the block, but bound in one of the nesting blocks.

� Global variables are those bound in the outermost nesting

block; thereby, their bindings are visible in entire program,

and they are accessible anywhere in a program.

Programming Methodologies5

Types of blocks

� Disjoint block structure

– The body of a procedure is a

block.

– There is no nesting of blocks.

� Nested block structure

– A block contains other blocks

nested inside it.

ex: Fortran

main

proc 1

proc 2

proc 3

ex: Pascal, Algol, C, Scheme

main

proc 1

proc 2

proc 3

main

{

}

{ }

proc 1

proc 2

{ }

.
.

..
.

..
.

.

Programming Methodologies6

Disjoint block structure

program main
integer i, j(30), k
real x, y(50)
character c(10)
common /soar/ x, c
common /soap/ j

call proc1(i)
y(2) = proc2() + x

. . .

subroutine proc1(m)
integer m, n
real x, y
character c(10)
common /soar/ y, c

. . .

real function proc2
real p
integer m(15),j(10)
common /soap/ m, j

. . .

block1

block2

block3

Procedures communicate with common variables or parameters using call-by-reference

Fortran Globals(=common blocks)

cx

cy

soar

soap

j

m j

Locals to block1(=main)

i, k, y(50)

Locals to block2(=proc1)

m, n, x

Locals to block3(=proc2)

p

Programming Methodologies7

Nested block structure
C Scheme

int x, j;

main() {
int i, k(10);
float z(5);
. . .

. . .

. . .
}

{ int k, n;
. . .

. . .
}

{ int z;
. . .foo(z)

}

{ float w(3), x;
. . .

}

char foo(int n) {
int i, m;
char c;
. . .

. . .
}

{ char d;
int m;
. . .

}

block1

block2

block3

block4

block5

block6

block7

>

>

>

(define x . . .)

(define j . . .)

(define (main v y)

. . .
)

(define (f n)
. . .

)

(define (g x m)

. . .
)

(define (h j)
. . .

)

(define (f j)
. . .

)

Scheme provides a uniform scope rule for ordinary

variables and functions.

Blocks communicate with non-locals or parameters.

block1

block2

block3

block4

block5

block6

block7

block8

compare

Programming Methodologies8

Advantages of block structure

� The block structure improves readability of programming
by delimiting the scope of a binding, whiling nested blocks
allow some bindings to be shared.

� The storage location of shared bindings can be used for

communication between different blocks.

� It saves storage because the binding of a variable needs to
be remembered only as long as the innermost nesting block
is executed.

� Upon return of a block, the storage for the local variables can be

deallocated unless a variable is static.

� It provides a mechanism for structuring programs, which

may improve writability of programming.

� For instance, a given task is decomposed to several subtasks. A

main procedure performs the whole task by distributing the subtasks

to its sub-procedures within it.

Programming Methodologies9

Problems w/ globals in block structure

� It is generally difficult to exercise sharing bindings (or

declarations) effectively.

� So, there is a tendency to move the declarations to the

outermost block, which results in many global variables in

a program. This exacerbates the following problems:

� Side-effects: Debugging/maintaining programs are more difficult

� Indiscriminate accesses: Due to implicit inheritance of bindings,

all bindings in a block can be accessed by all nested blocks even

when they are not supposed to. This results in less secure code.

e.g.) typos in a nested block may not be recognized, and yet

producing incorrect output.

� Screening problems: The visibility of a declaration in a block can

be accidentally lost when a variable with the same name is re-

declared in an intervening nested block. This often happens when a

program is large.

Programming Methodologies10

Implementation of block structure

� When a program block is invoked in a block-structured

language, the body of the block is executed.

� Each execution of the body is called an activation of the

block.

� Associated with each activation of a block is storage of the

variables declared in the block and any additional

information needed for the activation.

� The storage associated with an activation is called an

activation record (AR).

� Components of an AR may vary depending on languages.

Programming Methodologies11

Activation record

Local variables

Formal arguments

Return values

Return address

Saved states

Static link

Dynamic link

The size of storage for local variables can be
easily calculated at compile time if the language
uses static type binding.

If the block is a function which has to return the
result, storage is allocated in the activation record.

In order to resume execution of the caller after
the current block is exited, the address of the
caller's code to return to should be kept.

Miscellaneous info about the caller site when
this block was invoked.

It points to the activation record of its innermost
enclosing block.

It points to the activation record of the caller.

If the block is a procedure, additional storage is
needed for arguments

Programming Methodologies12

Storage types for the implementation

� Static location
– The addresses of static variables are fixed before run time.

– Some storage is reserved for the variables at compile time.

� Stack
– A stack is used to manage allocation/deallocation of ARs.

– A language that holds ARs in a stack is said to obey a stack-discipline.

� Most traditional imperative programming languages such as C

and Pascal obey the discipline.

� Heap

– A heap is more expensive but more flexible than a stack.

� Typically, it is used for dynamic/pointer variables.

– Functional languages use a heap for activation record allocation in

order to treat functions/procedures as first-class citizens. (why?)

– Also, some newer imperative programming languages such as

Modula-3 and Oberon use a heap for AR allocation.

Programming Methodologies13

AR implemented in a stack

� Some observations on uses of ARs

– Recursion has significant implications for language implementations

of block structure. To support recursion, a separate AR has to be

allocated for each procedure block invocation (why?)

– When a block is exited, the life-time of the local variables ends.

The AR is no longer needed after returning from the block.

� ARs can be efficiently managed with an LIFO stack.

f() { . . .}

g() {

static int i=0;

..f()..

if(i++==0) g()..

}

h() {

..g()..

}

main() {

..h()..f()..

}

main main mainmain

h

main

h

main

f

main

h

g

main

h

g

main

h

g

main

h

g

f

main

h

g

g

main

h

g

g

main

h

g

g

f

Programming Methodologies14

Static and dynamic links in a stack

� A dynamic link is used to restore

access to the AR where the current

block is activated: that is, the AR of

the caller of the block.

� A static link in an AR of a block points

to the AR of the next nesting block.

� Assume that X is a block whose AR is

currently on the top of the stack when

a new block Y is invoked. The dynamic

and static link values of a new AR of Y

are:

{
Dynamic = address of the base of the AR of X

Static = address of the AR of d+1’ th outer nesting block of X if d ≥ 0

address of the base of the AR of X if d = - 1

where d = nesting level of X – nesting level of Y.

main
h

……
g

f

… h()…
f()… g()…

… g() …

h
f
g
g

main

dynamic

static

Note: in case of the

C language, d = 0

When h() is called twice

Static link는 코
드의 block 구조
에 의해 결정됨
반면에 dynamic

link는 어떤 함
수를 불렀을 때

결정됨

Programming Methodologies15

� Local accesses are fast:

address of a local variable = address of base of current AR + an offset

� Nonlocal accesses are slower because they require extra

pointers chasing following static or dynamic links.

– If dynamic scoping is used, follow the dynamic links until the

nonlocal variable is found. � static links can be removed from ARs

– If static scoping is used, follow the static links until the nonlocal

variable is found. � this is generally more efficient

Access to (non)-local data in a stack

…

1.2e+6

5.09

21…
…

c

y

x

i

AR for foo

offset

base address

heap

stack

foo (int i) {

double x, y;

char* c;

…

}

offset(x) = offset(i) + 4

offset(y) = offset(x) + 8

offset(c) = offset(y) + 8

... = offset(c) + 4

Programming Methodologies16

Displays

� The problem with static links: nonlocal accesses are costly when the

nesting level of the current AR is deep because it should chase several

links.

� Solution: use a display, a single array of static links.

� Pros and cons of displays

– The memory access time is equal for all nonlocal accesses; nonlocal

accesses cost only one more memory access than local.

– The current display must be updated at every block invocation and return.

– Local accesses always need an extra step to read display.

h

f

g

g

main

display

after h returns

g

main

display

f

g

g

main

display

after f & g returns

dynamic

static

Programming Methodologies17

Storage allocation for static variables

� A static variable declared in a block should retain its value

between activations of the block.

– If static variables are stored in ARs, this requirement cannot be met

because the AR for each activation is removed after the activation is

killed and, thereby, the values of all the variables in the AR is lost.

– One solution is to store static variables in separate memory space

with fixed addresses. For this, the compiler reserves some static

storage space for static variables when it compiles the program.

� Access to static data is fast:

address of static data = base address of static storage + offset

� the base address and offsets can be determined at compile-time.

stack

base address of

static storage

foo (int i) {
static int s = 0;
…
s++;
…

}

AR for foo
s � α

… 4

…

α

Memory

s

address of s = α + 0

Programming Methodologies18

…

Heap allocation/deallocation

� If ARs are managed with a heap(the area of memory used for dynamic

memory allocation), life times of the ARs need not be tied to the LIFO

flow of control between activation.

� Even after control returns from a procedure block, an AR for the block

can stay in storage. That is, the local variables are bound as long as

needed.

– This is useful for functional languages that provide thunks.

– Even in imperative languages, the size of an AR may not be determined

when the AR is created because of dynamic arrays.

– So, languages that use a stack for AR allocation still need a heap to allocate

dynamic structures and to put pointers to them in the AR.

The size of a pointer is fixed

depending on machines.

AR for foo

p heap

stackfoo() {
int* p;

…
p = new int[5];

…
}

... ...

Related to

delay or force

in Scheme

Programming Methodologies19

Allocation of dynamic arrays/lists

� Most languages support dynamic allocation primitives.
Pascal type item = ˆlist;

list = record
head : integer;
tail : item

end;
var p : item;
begin

new(p);
p^.head = 3;
p^.tail = nil; // p = {3}

C++ list* p = new list;
p->head = 3;
p->tail = ’\0’;

Ada item p = new list(3, nil);

Scheme (define p (cons 3 ’()))

CLU p : array[int] := {}
array[int]$addh(p, 3) // p = {3}

� The primitives allocate storage for a list/struct/record on a heap
and store a pointer to it in p that is located in the AR on a stack.

Programming Methodologies20

� implicitly at every block exit
f() { int* q = new int[10]; ... return q; }

g() { ... int* p = f(); ... }

� What would p point to if q is deallocated when f returns? Nothing

� implicitly at program termination
h() { ... int* p = f(); ... p = f(); ... }

� If p is not deallocated before the second call to f, memory leak occurs

due to garbage.

� use deallocation primitives: dispose (Pascal), delete (C++)
h() { ... int* p = f(); ... delete p; p = f(); … }

� versatile and flexible, but more difficult and less secure because the user

must deallocate dynamic arrays explicitly.

� use garbage collection: Ada, CLU, Scheme, Emacs (Lisp)

– A background process monitors all the objects in the heap and

deallocate garbage if it is found.

� more secure and convenient but expensive because of run-time overhead

How to deallocate dynamic data?

Programming Methodologies21

Common errors w/ dynamic allocation

� Explicit deallocation may cause dangling pointers.
void f () {

char* d;
char* c = d = "this is a list";
delete c;
...
cout << d; //Error! The string may no longer exist

}

� Mixing stack-allocated variables and pointers may cause
errors.

float* g() {
float* s = new float;
float t;
...
return &t;

} // s is garbage if it is not explicitly deallocated in g
void h() {

float* r = g(); // no syntax error but r is a dangling pointer
...

}

Programming Methodologies22

Parameter passing in block structure

� Implementing

call-by-value/result/reference

foo(value a, result b, ref c) {

...

}

bar() {

... foo(x,y,z) ...

}

� Implementing call-by-sharing

> (define x ‘(1 2))

> (define f (lambda (a) ...))

> (f x)

...

AR for foo

3

AR for bar

21

90

:

a

b

c

x

y

z

copying

aliasing

global AR

x

AR for f

a

heap

1 2

Programming Methodologies23

� Implementing thunks as arguments (call-by-name/functions

as results)

f(name a) {

g() {

...

}

...

return g;

}

h(){

...

e = f(x+3);

...

}

AR for f

a

AR for h

e

expression

x+3

environment

Parameter passing in block structure

..
.

..
.

AR for h

e

expression

g(){
...

}

AR for f

a

expression

x+3

thunk

after f returns

..
.

Since the environment of

g is f and e is g, AR for f

is needed.

