
Note 7 

Block Structures

Yunheung Paek
Associate Professor

Software Optimizations and Restructuring Lab.

Seoul National University



Programming Methodologies2

Topics

� Definition of a block

� Block structures

� Implementation of block structures



Programming Methodologies3

Blocks

� A block 

– is a section of code that consists of a set of declarations and a 

sequence of statements.

– provides its own environment or scope for variables. 

– allocates storage to variables local to a block when execution enters 

the block; the storage is deallocated when the block is exited. 

– is delimited by keywords or special characters 

• procedure bodies ex: Fortran → function . . . end

• begin/end ex: Algol → begin . . end

• special characters ex: C → { . . . }

� The programming languages that allow programs to define 

blocks are called block-structured languages. 

– block-structured: Pascal, PL/I, Algol, C/C++, Scheme 

– non-block-structured: Cobol, Basic, Assembly 
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Terminology for blocks

� A block enclosed by other blocks is called a nested block. A 
block enclosing other blocks is called a nesting block.

� The variables declared (or bound) in a block are called 

local variables. Bindings of local variables of a block are 

visible only inside the block. 

� The declarations of local variables in a block are implicitly 
inherited by nested blocks. It is not allowed to export a 
declaration to nesting blocks. 

� Non-local variables of a block are those whose declarations 

are implicitly inherited from nesting blocks. They are not 

bound in the block, but bound in one of the nesting blocks. 

� Global variables are those bound in the outermost nesting 

block; thereby, their bindings are visible in entire program, 

and they are accessible anywhere in a program.
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Types of blocks

� Disjoint block structure

– The body of a procedure is a 

block. 

– There is no nesting of blocks. 

� Nested block structure

– A block contains other blocks 

nested inside it.

ex: Fortran

main

proc 1

proc 2

proc 3

ex: Pascal, Algol, C, Scheme

main

proc 1

proc 2

proc 3

main

{

}

{     }

proc 1

proc 2

{     }

. 
. 

.. 
. 

.. 
. 

.
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Disjoint block structure

program main
integer i, j(30), k
real x, y(50)
character c(10)
common /soar/ x, c
common /soap/ j

call proc1(i)
y(2) = proc2() + x

. . .

subroutine proc1(m)
integer m, n
real x, y
character c(10)
common /soar/ y, c

. . .

real function proc2 
real p 
integer m(15),j(10)
common /soap/ m, j 

. . .

block1

block2

block3

Procedures communicate with common variables or parameters using call-by-reference 

Fortran Globals(=common blocks)

cx

cy

soar

soap

j

m j

Locals to block1(=main)

i, k, y(50)

Locals to block2(=proc1)

m, n, x

Locals to block3(=proc2)

p
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Nested block structure
C Scheme

int x, j;

main() {
int i, k(10);
float z(5);
. . .

. . .

. . .
}

{  int k, n;
. . .

. . .
}

{  int z;
. . .foo(z)

}

{  float w(3), x;
. . .

}

char foo(int n) {
int i, m;
char c;
. . .

. . .
}

{  char d;
int m;
. . .

}

block1

block2

block3

block4

block5

block6

block7

>

>

>

(define x . . .)

(define j . . .)

(define (main v y)

. . .
)

(define (f n)
. . .

)

(define (g x m)

. . .
)

(define (h j)
. . .

)

(define (f j)
. . .

)

Scheme provides a uniform scope rule for ordinary 

variables and functions.

Blocks communicate with non-locals or parameters.

block1

block2

block3

block4

block5

block6

block7

block8

compare
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Advantages of block structure

� The block structure improves readability of programming 
by delimiting the scope of a binding, whiling nested blocks 
allow some bindings to be shared.

� The storage location of shared bindings can be used for 

communication between different blocks.

� It saves storage because the binding of a variable needs to 
be remembered only as long as the innermost nesting block 
is executed.

� Upon return of a block, the storage for the local variables can be 

deallocated unless a variable is static. 

� It provides a mechanism for structuring programs, which 

may improve writability of programming.

� For instance, a given task is decomposed to several subtasks. A 

main procedure performs the whole task by distributing the subtasks 

to its sub-procedures within it. 
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Problems w/ globals in block structure

� It is generally difficult to exercise sharing bindings (or 

declarations) effectively.

� So, there is a tendency to move the declarations to the 

outermost block, which results in many global variables in 

a program. This exacerbates the following problems:

� Side-effects: Debugging/maintaining programs are more difficult 

� Indiscriminate accesses: Due to implicit inheritance of bindings, 

all bindings in a block can be accessed by all nested blocks even 

when they are not supposed to. This results in less secure code.

e.g.) typos in a nested block may not be recognized, and yet 

producing incorrect output.

� Screening problems: The visibility of a declaration in a block can 

be accidentally lost when a variable with the same name is re-

declared in an intervening nested block. This often happens when a 

program is large.
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Implementation of block structure

� When a program block is invoked in a block-structured 

language, the body of the block is executed.

� Each execution of the body is called an activation of the 

block. 

� Associated with each activation of a block is storage of the 

variables declared in the block and any additional 

information needed for the activation.

� The storage associated with an activation is called an 

activation record (AR). 

� Components of an AR may vary depending on languages.
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Activation record

Local variables

Formal arguments

Return values

Return address

Saved states

Static link

Dynamic link

The size of storage for local variables can be 
easily calculated at compile time if the language 
uses static type binding.

If the block is a function which has to return the 
result, storage is allocated in the activation record.

In order to resume execution of the caller after 
the current block is exited, the address of the 
caller's code to return to should be kept.

Miscellaneous info about the caller site when 
this block was invoked.

It points to the activation record of its innermost 
enclosing block.

It points to the activation record of the caller.

If the block is a procedure, additional storage is 
needed for arguments
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Storage types for the implementation

� Static location
– The addresses of static variables are fixed before run time.

– Some storage is reserved for the variables at compile time. 

� Stack 
– A stack is used to manage allocation/deallocation of ARs. 

– A language that holds ARs in a stack is said to obey a stack-discipline.

� Most traditional imperative programming languages such as C 

and Pascal obey the discipline. 

� Heap

– A heap is more expensive but more flexible than a stack.

� Typically, it is used for dynamic/pointer variables. 

– Functional languages use a heap for activation record allocation in 

order to treat functions/procedures as first-class citizens. (why?) 

– Also, some newer imperative programming languages such as  

Modula-3 and Oberon use a heap for AR allocation. 
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AR implemented in a stack

� Some observations on uses of ARs

– Recursion has significant implications for language implementations 

of block structure. To support recursion, a separate AR has to be 

allocated for each procedure block invocation (why?) 

– When a block is exited, the life-time of the local variables ends. 

The AR is no longer needed after returning from the block. 

� ARs can be efficiently managed with an LIFO stack.

f() { . . .}

g() {

static int i=0;

..f()..

if(i++==0) g()..

}

h() {

..g()..

}

main() {

..h()..f()..

}

main main mainmain

h

main

h

main

f

main

h

g

main

h

g

main

h

g

main

h

g

f

main

h

g

g

main

h

g

g

main

h

g

g

f
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Static and dynamic links in a stack

� A dynamic link is used to restore 

access to the AR where the current 

block is activated: that is, the AR of 

the caller of the block.

� A static link in an AR of a block points 

to the AR of the next nesting block.

� Assume that X is a block whose AR is 

currently on the top of the stack when 

a new block Y is invoked. The dynamic 

and static link values of a new AR of Y 

are:

{
Dynamic = address of the base of the AR of X

Static =    address of the AR of d+1’ th outer nesting block of X if d ≥ 0

address of the base of the AR of X if d = - 1

where d = nesting level of X – nesting level of Y.

main
h

……
g

f

… h()…
f()… g()…

… g() …

h
f
g
g

main

dynamic

static

Note: in case of the 

C language, d = 0

When h() is called twice

Static link는 코
드의 block 구조
에 의해 결정됨
반면에 dynamic 

link는 어떤 함
수를 불렀을 때

결정됨
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� Local accesses are fast:

address of a local variable = address of base of current AR + an offset

� Nonlocal accesses are slower because they require extra 

pointers chasing following static or dynamic links.

– If dynamic scoping is used, follow the dynamic links until the 

nonlocal variable is found. � static links can be removed from ARs

– If static scoping is used, follow the static links until the nonlocal

variable is found. � this is generally more efficient

Access to (non)-local data in a stack

…

1.2e+6

5.09

21…
…

c

y

x

i

AR for foo

offset

base address

heap

stack

foo (int i) {

double x, y;

char* c;

…

}

offset(x) = offset(i) + 4

offset(y) = offset(x) + 8

offset(c) = offset(y) + 8

...  = offset(c) + 4
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Displays

� The problem with static links: nonlocal accesses are costly when the 

nesting level of the current AR is deep because it should chase several 

links.

� Solution: use a display, a single array of static links. 

� Pros and cons of displays

– The memory access time is equal for all nonlocal accesses; nonlocal

accesses cost only one more memory access than local.

– The current display must be updated at every block invocation and return.

– Local accesses always need an extra step to read display.

h

f

g

g

main

display

after h returns

g

main

display

f

g

g

main

display

after f & g returns

dynamic

static
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Storage allocation for static variables

� A static variable declared in a block should retain its value 

between activations of the block.

– If static variables are stored in ARs, this requirement cannot be met 

because the AR for each activation is removed after the activation is 

killed and, thereby, the values of all the variables in the AR is lost.

– One solution is to store static variables in separate memory space 

with fixed addresses. For this, the compiler reserves some static 

storage space for static variables when it compiles the program.

� Access to static data is fast:

address of static data = base address of static storage + offset

� the base address and offsets can be determined at compile-time.

stack

base address of 

static storage

foo (int i) {
static int s = 0;
…
s++;
…

}

AR for foo
s � α

… 4

…

α

Memory

s

address of s = α + 0
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…

Heap allocation/deallocation

� If ARs are managed with a heap(the area of memory used for dynamic 

memory allocation), life times of the ARs need not be tied to the LIFO 

flow of control between activation.

� Even after control returns from a procedure block, an AR for the block 

can stay in storage. That is, the local variables are bound as long as 

needed.

– This is useful for functional languages that provide thunks.

– Even in imperative languages, the size of an AR may not be determined 

when the AR is created because of dynamic arrays.

– So, languages that use a stack for AR allocation still need a heap to allocate 

dynamic structures and to put pointers to them in the AR.

The size of a pointer is fixed 

depending on machines.

AR for foo

p heap

stackfoo() {
int* p;

…
p = new int[5];

…
}

... ...

Related to 

delay or force 

in Scheme
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Allocation of dynamic arrays/lists

� Most languages support dynamic allocation primitives.
Pascal type item = ˆlist;

list = record
head : integer;
tail : item

end;
var p : item;
begin

new(p);
p^.head = 3;
p^.tail = nil; // p = {3}

C++ list* p = new list;
p->head = 3;
p->tail = ’\0’;

Ada item p = new list(3, nil);

Scheme (define p (cons 3 ’()))

CLU p : array[int] := {}
array[int]$addh(p, 3) // p = {3}

� The primitives allocate storage for a list/struct/record on a heap 
and store a pointer to it in p that is located in the AR on a stack.
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� implicitly at every block exit
f() { int* q = new int[10]; ... return q; }

g() { ... int* p = f(); ... }

� What would p point to if q is deallocated when f returns? Nothing

� implicitly at program termination
h() { ... int* p = f(); ... p = f(); ... }

� If p is not deallocated before the second call to f, memory leak occurs 

due to garbage.

� use deallocation primitives: dispose (Pascal), delete (C++)
h() { ... int* p = f(); ... delete p; p = f(); … }

� versatile and flexible, but more difficult and less secure because the user 

must deallocate dynamic arrays explicitly.

� use garbage collection: Ada, CLU, Scheme, Emacs (Lisp)

– A background process monitors all the objects in the heap and 

deallocate garbage if it is found.

� more secure and convenient but expensive because of run-time overhead

How to deallocate dynamic data?
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Common errors w/ dynamic allocation

� Explicit deallocation may cause dangling pointers.
void f () {

char* d;
char* c = d = "this is a list";
delete c;
...
cout << d; //Error! The string may no longer exist

}

� Mixing stack-allocated variables and pointers may cause 
errors.

float* g() {
float* s = new float;
float t;
...
return &t;

} // s is garbage if it is not explicitly deallocated in g
void h() {

float* r = g(); // no syntax error but r is a dangling pointer
...

}
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Parameter passing in block structure

� Implementing 

call-by-value/result/reference

foo(value a, result b, ref c) {

...

}

bar() {

... foo(x,y,z) ...

}

� Implementing call-by-sharing

> (define x ‘(1 2))

> (define f (lambda (a) ...))

> (f x)

...

AR for foo

3

AR for bar

21

90

:

a

b

c

x

y

z

copying

aliasing

global AR

x

AR for f

a

heap

1     2
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� Implementing thunks as arguments (call-by-name/functions 

as results)

f(name a) {

g() {

...

}

...

return g;

}

h(){

...

e = f(x+3);

...

}

AR for f

a

AR for h

e

expression

x+3

environment

Parameter passing in block structure

..
.

..
.

AR for h

e

expression

g(){
...

}

AR for f

a

expression

x+3

thunk

after f returns

..
.

Since the environment of 

g is f and e is g, AR for f

is needed.


