
Note 9

OO Programming with C++

Yunheung Paek
Associate Professor

Software Optimizations and Restructuring Lab.

Seoul National University

Programming Methodologies2

Topic

� From C to C++

� Basic features of C++

� Class

� Inheritance

� Multiple Inheritance

� Virtual function

� Operator overloading

Programming Methodologies3

C++

� An object-oriented descendant of C, which was developed

from CPL (Combined Programming Language: a bulky language with

high-level operations and bit operations useful for efficient system

programming).

� a hybrid language with the duality

– procedural/imperative programming paradigm

– object-oriented programming paradigm

� features are not really new – mainly borrowed
– most of syntax and semantics from C

– data encapsulation was already well-known

– notion of derived class and virtual functions from Simula67

– operator overloadings and declaration within blocks from Algol68

� Why so popular today? … easier transition from C, and perfect C

code reusability, one crucial feature of a language

Programming Methodologies4

History

� created at Bell laboratories in AT&T (1983)

– At about 1980, it was developed with the name of C with Classes

(AT&T) – Without operator overloading, reference type and virtual

function

– At 1983, “C++” was used.

– At 1985, C++ Release 1.0

� Providing operator overloading, reference type and virtual

functions

� The name “C++” was made because the syntax of “C”

was almost reused in this language and more improved

than C, so it was added using incremental operator “++”

� Adjusted to not only “system programming” and “object

oriented programming”

Programming Methodologies5

Differences of C++ from C

� class construct

– the underpinning for object-oriented programming

• information holding with private/sharedprivate/sharedprivate/sharedprivate/shared

• defines data objects and the associated operations (called

member functions � e.g, num_of_elements(), is_element())

Class construct example

class Integer_Sets {
private:

int* array_of_ints;
public:

int num_of_elements();
int is_element(int num);

…
}
Integer_Set s;
…
if (s.is_element(4)) …

… s.array_of_ints //error!

– similar to the struct construct in C,

but more general

struct Integer_Set { //in C
int* array_of_ints;
int num_of_elements(); //error!
…

}
… s.array_of_ints … //OK!

– defines data objects and the

associated operations

C++

Programming Methodologies6

Differences of C++ from C

� operator overloading for class objects
Integer_Set operator + (Integer_Set& s, Integer_Set& t) {

… //defined as union operators
}
Integer_Set operator + (Integer_Set& s, int t) {

… //defined as include operators
}

eg. operator+({1,2}+{2,4}) -> {1,2,4}
operator+({1,2}+5) -> {1,2,5}

Integer_Set S,T;
int i, j, k;

…
S = (S + i) + (T + (j + k));

� function: overloading and flexible number of parameters
int foo(char c);
int foo(float x, int j = 0);
…
a = foo(2.6, 7) + foo(’p’) + foo(3.3);

� inlining – useful only when carefully used
inline int dec(int & val) { … }
dec(j); -> j--;
cf: inline int dec(int val) { … }

Programming Methodologies7

Differences of C++ from C

� call-by-reference
void inc1(int & val) { val += 1; }
void inc2(int * val) { *val += 2; }

…
int j = 0;
int* jp = &j;
inc1(j); //call-by-reference
inc2(jp); //call-by-value

� explicit type conversion

� stream I/O – cin, cout
#include <stream.h>

char* c = “cis635”;

cout << c << *c << (int) c << (int) *(c+1);

���� output: cis635 c 134516088 105

� enum for enumeration types
typedef enum { yellow, red, blue } Basic_Color;

Basic_Color color = red;

…

if (color == blue) …

Programming Methodologies8

Class

� With the concept of Class, programmer can create a new

data type directly.

� You must do this to express new concept specifically,

which can not be expressed with data types included in

C++.

� If a new data type is defined well and closely to the

concept, the program gets simple and plain and easy to

understand.

� Fundamental idea of defining a new data type is concerned

with dividing the names needed to use the object correctly

and specifications accompanied implementing this object.

Programming Methodologies9

Member functions in C?

struct date { int month, day, year; }; // struct def inition

date today; // struct var iable declaration

void set_date(date*, int, int, int); // 3 functio ns processing date type var
void next_date(date*);
void print_date(date*);

Problems: There is no device connecting data type with

function related to this definitively.

Programming Methodologies10

Member functions in the C++ struct

struct date {
int month, day, year ; // members

void set(int, int, int, int); // member function (or procedure, method)
void get(int*, int*, int*);
void print();
void next();

};

Example: calling member function:

date today; // definition of date type object today (allocation of memory storage)
….
today.set(9, 18, 1990); // providing the same type of arguments, initialization
today.next();

Programming Methodologies11

Member function

� It is possible that member functions with the same name

are defined in different structures.

� So when you define a member function, you must appoint

the name of the structure where this member function is

included.

void date::next() // next() belongs to s truct date
{

if (++day > 28) { // the usage of day, member of date struct
…

}
}

Programming Methodologies12

Information hiding

� It is not true that only member functions within date

structure can access member of date structure.
� If you want to do this, you must use class instead of

struct .

class date {
int month, day, year ; // (private) member

public:
void set(int, int, int, int); // (public) member function
void get(int*, int*, int*);
void print();
void next();

};

Programming Methodologies13

Use of private and public members

month, day, year

set()
get()
next()
print()

Class date

(private)

(public)

OK

OK

NOT OK

Programming Methodologies14

Information hiding within a class

� The function which is not a member function cannot use

a private member of date class.

void backdate() // backdate() is not a member function of date
{

today.day- -; // error
}

� Advantages

− Protection of interior data or decrease of possibility of error

occurrence attributed to hiding.

− You only have to understand user guider of member functions,

which increases convenience because you do not need to know

interior implementation/data structure.

Programming Methodologies15

Information hiding of Class

month
day
year

set()

get()

next()

print()

Inout Port

Programming Methodologies16

Self referencing pointer - this

class x {
int m;

public:
int readm() { return m; } // or return this ->m;

}; // This represents the address of

// currently used object

x aa;
x bb;

void f()
{

int a = aa.readm(); // substitution a for m in aa

int b = bb.readm(); // substitution b for m in bb

….
}

Programming Methodologies17

List using “this ”

class dlink {
dlink* pre;
dlink* suc;

public:
void append(dlink*);

};

void dlink::append(dlink* p)
{

p->suc = suc;
p->pre = this;
if (suc)

suc->pre = p;
suc = p;

}

void f(dlink* a, dlink* b)
{

……
list_head->append(a);
list_head->append(b);

}
dlink* list_head;
……
f(……);

pre suc pre suc

pre suc

this (list_head)

Programming Methodologies18

Instantiation of a class object

class date {
int month, day, year;

public:
void set_date(int m, int d, int y)
{

month = m;
day = d;
year = y;

}
};

date lee;
lee.set_date(9, 6, 1957);

Problems: If you instantiate a class object using a member

function, programmers get used to a mistake with missing

an invocation of this function or invoking it multiple times.

In C++, programmers can

declare directly a member

function (say, “constructor”)

which is called automatically

when the object is declared

and instantiated.

Solution

Programming Methodologies19

Constructor

class date {
int month, day, year;

public:
date(int m, int d, int y) { // constructor(member function)

month = m;
day = d;
year = y;

}
};

� The constructor is a member function whose name is the

same as the class.

� The method of calling a constructor

date today = date(23, 6, 1990);
date xmas(25, 12, 0);
date my_birthday; // error, not assigned arguments to constructor

Programming Methodologies20

Multiple constructors

� It is possible to assign several constructors.

class date {
int month, day, year;

public:
date(int, int, int);
date(char*);
date(int);
date();

}

� Instantiating an object by calling a proper constructor

according to the data type and the number of arguments.

date today(4); // date(int)
date july4(“5 Nov”); // date(char*)
date now; // date()

Programming Methodologies21

Member initialization

Generally, a constructor initializes the values of the

member variables of the class object.

date::date(int m, int d, int y): month(m), day(d), yea r(y)
{ }

date::date(int m, int d, int y) {
month = m;
day = d;
year = y;

}

Programming Methodologies22

Example with a constructor

#include <iostream.h>
class x {

int m; // private member
public

x(int mm) {m = mm; }
int readme() { return m; }

};

main () {
x aa(3); x bb(5); x cc = aa;
int a = aa.readme();
int b = bb.readme();
int c = cc.readme();
cout << “a is ” << a << “\n”;
cout << “b is ” << b << “\n”;
cout << “c is ” << c << “\n”;

}

Programming Methodologies23

Another example with a constructor

#include <iostream.h>
class Date {

int mo, da, yr;
public

Date() {
cout << “\nDate constructor” ;
mo = 0; da = 0; yr = 0;

}
Date(int m, int d, int y) { mo = m; da = d; yr = y; }

// or Date(int m, int d, int y): mo(m), da(d), yr(y) {}
void print() {

cout << “\n” << mo << “/” << da << “/” << yr;
}

};

Experiment result

Date constructor
Date constructor
6/24/90
0/0/0

main () {
Date days[2];
Date temp(6,24,90);
days[0] = temp;
days[0].print();
days[1].print();

}

Programming Methodologies24

Destructor

� In contrast to a constructor, a destructor eliminates an

object that is no more needed by the program.

� The destructor of the class ‘X’ is expressed as ~X().

� While the constructor allocates a memory location from

free space, the destructor deletes this memory allocation.

� It is automatically invoked when the program ends and

returns the memory location it has used.

Programming Methodologies25

Example with a destructor

#include <iostream.h>
class Date {

int mo, da, yr;
public

Date() { mo = 0; da = 0; yr = 0; }
Date(int m, int d, int y) {

mo = m; da = d; yr = y;
}
~Date() { cout << “\nDate destructor ” ; }

void print() {
cout << “\n” << mo << “/” << da << “/” << yr;

}
};

main () {
Date days[2];
Date temp(6,24,90);

days[0] = temp;
days[0].print();
days[1].print();

}

Experiment result

6/24/90
0/0/0
Date destructor
Date destructor
Date destructor

Programming Methodologies26

Friend

� The same member function often must be defined together

in two or more classes.

� There is no need to define functions performing the same

operations in each class.

� In this case, it is effective to make one function, called a

friend, and use it together.

� It’s the case where you must use “friend”.

� The function declared by “friend” has the status as the

same as one declared within the class.

� Namely, it can access private members of the class.

Programming Methodologies27

Examples with friend functions

class matrix;
class vector {

float v[4];
…

friend vector multiply (matrix&, vector&);
};
class matrix {

vector v[4];
…

friend vector multiply (matrix&, vector&);
};
vector multiply (matrix& m, vector& v)
{

…
}

class x {
…
void f ();

};

class y {
…
friend void x::f ();

};

void x::f () {
…

}

Outside the class

Inside the class

Programming Methodologies28

Another example

class x {
…
void f();
void g();
…

};

class y {
…
friend class x ;

};

All member functions of class x
become a friend of y, but the

member variables of x have

nothing to do with y.

Using all member functions of one class as a friend of

other classes

Programming Methodologies29

Static member

� Recall that a class is only a type, not an object.

� So several objects of the same class includes their own member.

� In some case, it is very comfortable for objects of the

same type to hold one data in common.

� This shared data is declared by using “static”.

class task {
….
task* next;
static task* task_chain ;
void schedule(int);
void wait(event);
….

};

next

task_chain

next

next

object1

object3

object2

Programming Methodologies30

Static member

� The scope of a static member is confined within the

defined class.

� But if it is declared as a public member, it can be used in

the outside of class by using the :: operator.

� Example: p = task::task_chain;

� Static members are always instantiated to “0” by the

compiler when the class is declared. But during program

execution, it can be modified.

� Example: task job;
task *task::task_chain = &job;

Programming Methodologies31

Public/Private base class

Public base class

class manager : public employee {
…

};

� meaning: All public members in ‘employee’ become

public members and protected members in class

‘manager’

Ex:

void name_print(manager* p) {
cout << p->name(); // using public member, ‘next’, in ‘employee’

}

class employee {
…

public:
char* name();
…

};

Programming Methodologies32

Private base class

class manager : private employee {
// or by default without private

…
};

� meaning: All public, protected members in ‘employee’

become private members in class ‘manager’.

Ex:

manager* man;
cout << man->name(); // error: ‘name’ is a private member in ‘manager’

Public/Private base class

Programming Methodologies33

Part public base class

class manager : private employee {
…

public:
…
employee::name(); // ‘name’ as a public member

}; // 하나만하나만하나만하나만 public 으로으로으로으로 선언선언선언선언

Ex:

manager* man;
cout << man->name(); // no error

Public/Private base class

Programming Methodologies34

Protected members

� While protected members is used like private members by
users, those in a class derived from this class is used like
public ones. � merely those are impossible to access from the outside.

class three : public two {
public:

void f3();
private:

float z3;
};

class two {
public: // public

char *name;
void f2();

protected: // protected
float prot1, prot2;

private: // private
float priv;

};

void three::f3() {
name = “korea”; // public: ok
prot1 = prot2 = 1; // protected � public in derived class: ok
priv = 5; // private: not ok

}
main() {

three sun;
sun.name = “olympic”; // public: ok
sun.prot1 = sun.prot2 = 0; // protected member is private for users: not ok
su.priv = 5.0; // private: not ok

Programming Methodologies35

Derived class initialization

� If there is a constructor in base class, when defining a

derived class, we must call it.

class base {
….

public:
base(int); // base class constructor
~base();

};

class derived : public base {
int m;

public:
derived(char *n) : base(10), m(20) { …. }

};

Programming Methodologies36

Multiple inheritance in C++

class dial { // accumulated running distance mark of speed panel
public:

int update();
virtual void display() { … }

};
class monitor { // current speed mark

public:
int gauges();

};
class speed : public dial, private monitor { // speed panel

void display() { … }
…

}

dial
update()
display()

monitor
gauges()

speed
display()

…

speed meter;
meter.update(); // from dial

meter.guages(); // from monitor
dial *dp = &meter;
monitor *mp = &meter;
dp->display(); // call speed::display()
mp->display(); // call speed::display()

Programming Methodologies37

Constructor for multiple inheritance

� Classes ‘b1’ and ‘b2’ are made and each constructor is

defined.
� Class ‘d’ is derived from those two classes.

class d : public b1, public b2
{

d(char*);
int x;

};

d::d(char *s) : b1(strlen(s), atof(s)), b2(s[0])
{

…
}

d::d(char *s) : b1(strlen(s), atof(s)), x(3), b2(s[0])
{

…
}

Two possible initializations for d

Programming Methodologies38

Operator overloading

� The usage of pre-defined operator to the class by

modifying the meaning intentionally.

� C++ can apply operators (+,- ,* ,/ ,etc..) directly to the

fundamental data type like “int”, but it does not provide

operators directly applicable to string, array, or user-

defined types.

� But it provides the functionality to define the operator

suitable for the class type.

� If you use a user-defined operator applicable to a class

object, you can use class objects more conveniently and

elegantly than simply using normal functions.

Programming Methodologies39

Example

class Date {
int mo, da, yr;

public:
Date() { }
Date(int m, int, d, int y) { mo=m; da=d; yr=y; }
void print() { cout << mo << “/” << da << “/” << yr; }
Date operator +(int); // operator overloading

};
static int dys[] = {31,28,31,30,31,30,31,31,30,31,30 ,31};

Date Date::operator+(int num)
{

Date dt = *this;
num += dt.da;
….
return dt;

}

main()
{

Date oldd(2,20,91);
Date newd;
newd = oldd + 12;
newd.print();

}

+ is applied to
the this object

(first argument)

Programming Methodologies40

class Date {
int mo, da, yr;

public:
Date() { }
Date(int m, int, d, int y) { mo=m; da=d; yr=y; }
void print() { cout << mo << “/” << da << “/” << yr; }
…
Date operator+(int n , Date& dt) { return dt+n; } // Operator overlapping

};

� If it is defined not as a friend but as a member function,

implicitly including the first argument, it has three

arguments. � Then it becomes a ternary operation.

� In C++, only a unary operation and a binary operation

are permitted.

main()
{ ….

newd = 12 + odd ;
….

}

this ?

Operator overloading w/ 2 arguments

Programming Methodologies41

Complex operator overloading

class complex {
double re, im;

public:
complex(double r, double i) { re=r; im=i; }
complex operator+ (complex c2) {

return complex(re+c2.re, im+c2.im);
}

};

void f()
{

complex a = complex(1, 3.1);
complex b = complex(1.2, 2);
complex c = b;
a = b + c; // a = (1.2+1.2, 2+2)
b = b + c + a; // observing general operation prec edence

}

Programming Methodologies42

Operator overloading with a friend

class complex {
double re, im;

public:
complex(double r, double i) { re=r; im=i; }
friend complex operator+ (complex, complex);

};

complex operator+ (complex c1, complex c2) {
return complex(c1.re+c2.re, c1.im+c2.im);

}

void f()
{

complex a = complex(1, 3.1);
complex b = complex(1.2, 2);
complex c = b;
a = b + c; // a = (1.2+1.2, 2+2)
b = b + c + a; // observing general operation prec edence

}

Programming Methodologies43

Overlapping operators

� For most embedded operators in C++, we can declare a

function that defines the meaning of an operator, and

overlap it.

� Ex : +, -, *, /, &, <<, >>, &&, &=, *=, []

� But we cannot change the priority or grammar of operator.

� Using an operator looks simpler than calling it as an

ordinary function.

void f (complex a, complex b)

complex c = a + b; // Example that is reduc ed using operator
complex d = operator+(a, b); // Example that dir ectly calls

// operator function
}

Programming Methodologies44

Binary/unary operators

� Binary operator is defined as (1) a member function with

two arguments or (2) a friend function with two arguments.
int operator+(int);

friend int operator+(int, Date);

� The prefix of unary operator is defined as (1) member

function with no argument or (2) a friend function whose

first argument is itself.
&Date operator++(); // ‘this’ is inserted as argument

friend &Date operator++(&Date);

� Postfix of unary operator is defined as (1) member function

with one ‘int’ argument or (2) a friend function whose first

argument is itself and the second argument is ‘int’.
&Date operator++(int); // variable name 이이이이 없음없음없음없음

friend &Date operator++(&Date, int);

Programming Methodologies45

Example

class X {
friend X operator-(X); // unary(-) operator
friend X operator-(X,X); // binary(-) operator
friend X operator-(); // error : no argument
friend X operator-(X,X,X); // error : ternary operator

X* operator&(); // unary operator : address calculation
X operator&(X); // binary operator: logical multiplication (AND)
X operator&(X,X); // error: ternary operator

};

class Date {
Date() { }
…
// Date is the first argument.
Date operator+(); // unary
Date operator+(int); // binary
Date operator++() {

*this = *this + 1; return *this; } // Prefix
Date operator++(int) {

Date r = *this; *this = *this + 1; return r; } // P ostfix
…

};

Programming Methodologies46

Overriding operator (=)

class string {
char* p;
int size; // Array size is indicated by pointer p
string(int sz) { p = new char[size = sz]; }
~string() { delete p; }

};

void f ()
{

string s1(10);
string s2(20);
s1 = s2; // the loss of the pointer value of s1 which is assigned

}

Solution?

Programming Methodologies47

class string {
char* p;
int size;

string(int sz) { p= new char[size = sz]; }
~string() { delete p; }
void operator=(string&); // substitution operation overlapping

};
void string::operator=(string& a)
{

if (this = = &a) return; // s = s
delete p; // s1 disappearance

p = new char[size = a.size];
strcpy(p, a.p);

}

Overriding operator (=)

Solution: overriding operator

Programming Methodologies48

Subscript operators

� Subscript operators, [] ,are binary operators.

� If there is aa[bb], ‘aa’ is the first operator argument and

‘bb’ is the second operator argument and subscript.

class String { char *s;
String(char *p) {

s = new char[strlen(p) + 1];
strcpy(s, p);

}
char& operator[] (int n) {

return *(s + n);
}

…..
}; main() {

String mstr(“The xxxx of April”);
mstr[4] = ‘2’; mstr[5] = ‘5’;
mstr[6] = ‘t’; mstr[7] = ‘h’;

}

