
1

Sorting Algorithms

Algorithms

Kyuseok Shim

SoEECS, SNU.

2

Designing Algorithms

� Incremental approaches

� Divide-and-Conquer approaches

� Dynamic programming approaches

� Greedy approaches

� Randomized approaches

3

You are not going to win at everything in life.
Go out there and do your best. When it is

over, congratulate the winner-- if it's not you!

By Gail Denvers's father

4

You are not going to win at everything in life. Go
out there and do your best. When it is over,

congratulate the winner-- if it's not you!

By Gail Denvers's father

(Gail won a goldmedal at the 1992 Olympic)

5

Incremental ApproachIncremental ApproachIncremental ApproachIncremental Approach

� Sorting: Permuting a sequence of numbers into
ascending order

� Insertion Sort Algorithm
� Works the way many people sort a hand of playing cards

� Start with an empty left hand and cards face down on
the table

� Remove one card at a time from the table and insert it
into the correct position in the left hand

� To find a correct position for a card, we compare it with
each of the cards already in the hand from right to left

� At all times, the cards held in the left hand are sorted

6

Insertion SortInsertion SortInsertion SortInsertion Sort AlgorithmAlgorithmAlgorithmAlgorithm

� Sorting: Permuting a sequence of numbers
into ascending order

� Consists of N-1 passes

� For pass p = 1 through N-1, it ensures that the
elements in position 0 through p are in sorted
order.

� Use the fact that the elements 0 through p-1
are already known to be in sorted order.

� It uses an incremental approach!

7

Insertion Sort AlgorithmInsertion Sort AlgorithmInsertion Sort AlgorithmInsertion Sort Algorithm

INSERTIONINSERTIONINSERTIONINSERTION----SORT(A)SORT(A)SORT(A)SORT(A)

1 1 1 1 for j<for j<for j<for j<----2 to 2 to 2 to 2 to length[Alength[Alength[Alength[A]]]]

2222 do key <do key <do key <do key <---- A[jA[jA[jA[j]]]]

3333 Insert Insert Insert Insert A[jA[jA[jA[j] into the sorted sequence A[1..j] into the sorted sequence A[1..j] into the sorted sequence A[1..j] into the sorted sequence A[1..j----
1]1]1]1]

4444 i <i <i <i <---- j j j j ---- 1111

5555 while i>0 and while i>0 and while i>0 and while i>0 and A[iA[iA[iA[i]>key]>key]>key]>key

6666 do A[i+1] <do A[i+1] <do A[i+1] <do A[i+1] <---- A[iA[iA[iA[i]]]]

7777 i <i <i <i <---- iiii----1111

8888 a[i+1] <a[i+1] <a[i+1] <a[i+1] <---- keykeykeykey

8

Insertion Sort AlgorithmInsertion Sort AlgorithmInsertion Sort AlgorithmInsertion Sort Algorithm

AfterAfterAfterAfter

j = 6j = 6j = 6j = 6

After After After After

j = 5j = 5j = 5j = 5

AfterAfterAfterAfter

j = 4j = 4j = 4j = 4

After After After After

j = 3j = 3j = 3j = 3

After After After After

j =2j =2j =2j =2

OriginalOriginalOriginalOriginal

8

8

8

8

8

34

21

32

34

34

34

8

121325164

Position Position Position Position
MovedMovedMovedMoved

21325164

464513432

321645134

121326451

021325164

9

Order of Growth

� Rate of growth of the running time really
interests us

� Thus, we only consider the leading term of
a formula since the lower-order terms are
relatively insignificant for large n

� We also ignore the leading term's constant
coefficient since constant factors are less
significant than the arte of growth

� Thus, we write that insertion sort has a
worst case running time of Θ(n2)

10

Order of Growth

� We usually consider one algorithm to be
more efficient than another if its worst-
case running time has a lower order of
growth

� Due to constant factors and lower-order terms,
this evaluation may be in error for small inputs

� But for large enough inputs, a Θ(n2) algorithm,
for example, will run quickly in the worst case
than a Θ(n3) algorithm

11

Inversions

� Given 34, 8, 64, 51, 32, 21

� We have 9 inversions:
� (34, 8), (34, 32), (34, 21), (64, 51), (64,

32), (64, 21), (51, 32), (51, 21), (32, 21)

� Swapping two adjacent elements (that
are out of place) removes one inversion

� Thus, this is exactly the number of
swaps that need too be (implicitly)
performed by insertion sort

12

Insertion Sort AlgorithmInsertion Sort AlgorithmInsertion Sort AlgorithmInsertion Sort Algorithm

� THEOREM 7.1

� The average number of inversion in an
array of N distinct elements is N(N-1)/4.

� Proof:

13

Insertion Sort AlgorithmInsertion Sort AlgorithmInsertion Sort AlgorithmInsertion Sort Algorithm

� THEOREM 7.1
� The average number of inversion in an array of N distinct

elements is N(N-1)/4.

� Proof:
� For any list L, consider L’ , the list in reverse order.

� Consider any pair of two elements in the list (x,y), with
y > x.

� In exactly one of L and L’ , this ordered pair represents
an inversion

� The total number of these pairs in a list L and its reverse
L’ is N(N-1)/2.

� Thus, an average list has half this amount.

14

Insertion Sort AlgorithmInsertion Sort AlgorithmInsertion Sort AlgorithmInsertion Sort Algorithm

� THEOREM 7.1
� Any algorithm that sorts by exchanging adjacent

elements requires Ω(n2)

� Proof:
� Each swap removes only one inversion, so Ω(n2) swaps

are required.

15

Divide and Conquer
� This is more than just a military strategy

� It is also a method of algorithm design that has
created such efficient algorithms as Merge Sort,
Quick Sort

� In terms or algorithms, this method has three
distinct steps:
� DivideDivideDivideDivide: If the input size is too large to deal with in a

straightforward manner, divide the data into two or more
disjoint subsets.

� RecurseRecurseRecurseRecurse: Use divide and conquer to solve the
subproblems associated with the data subsets.

� ConquerConquerConquerConquer: Take the solutions to the subproblems and
“merge” these solutions into a solution for the original
problem.

16

Merge Sort

� DividDividDividDivide:
If S has at least two elements, remove all the elements

from S and put them into two sequences, S 1 and S 2 ,
each containing about half of the elements of S. (i.e. S 1
contains the first ⌠n/2 elements and S 2 contains the
remaining ⌠n/2 elements.

� RecurseRecurseRecurseRecurse: Recursive sort sequences S 1 and S 2 .

� ConquerConquerConquerConquer: Merge the sorted sequences S 1 and S 2
into a unique sorted sequence S.

17

Merge(A,p,q,r)
1 n1 <- q – p + 1

2 n2 <- r – q

3 create arrays L[1..n1+1] and R[1..n2+1]

4 for i <- 1 to n1

5 do L[i] <- A[p+i-1]

6 for j <- 1 to n2

7 do R[j] <- A[q+j]

8 L[n1+1] <- ∞

9 R[n2+1] <- ∞

18

Merge(A,p,q,r)
10 i <- 1

11 j <- 1

12 for k <- p to r

13 do if L[i] <= R[j]

14 then A[k] <- L[I]

15 i <- i + 1

16 else A[k] <- R[j]

17 j <- j + 1

Loop Invariant:Loop Invariant:Loop Invariant:Loop Invariant:

At the start of each iteration for the forAt the start of each iteration for the forAt the start of each iteration for the forAt the start of each iteration for the for----loop above, the loop above, the loop above, the loop above, the subarraysubarraysubarraysubarray A[p..kA[p..kA[p..kA[p..k----1] 1] 1] 1]
contains the kcontains the kcontains the kcontains the k----p smallest elements of L[1..np smallest elements of L[1..np smallest elements of L[1..np smallest elements of L[1..n1111+1] and R[1..n+1] and R[1..n+1] and R[1..n+1] and R[1..n2222+1], in sorted +1], in sorted +1], in sorted +1], in sorted
order. Moreover, L[I] and R[j] are the smallest elements of theiorder. Moreover, L[I] and R[j] are the smallest elements of theiorder. Moreover, L[I] and R[j] are the smallest elements of theiorder. Moreover, L[I] and R[j] are the smallest elements of their arrays that r arrays that r arrays that r arrays that
have not been copied back into A.have not been copied back into A.have not been copied back into A.have not been copied back into A.

19

)b()a(

L

A

i

2

1

…

8

4

2

1

9

5

3

k

4

10

∞

4

5

11

1

12

R

2

13

1

1

3

14

j

2

2

…

15

3

3

∞

4

L

A

I

2

1

…

8

4

2

k

2

9

5

3

4

10

∞

4

5

11

1

12

R

2

13

j

1

1

3

14

2

2

…

15

3

3

∞

4

20

L

A

2

1

…

8

i

4

2

1

9

5

3

2

10

(

∞

4

2

11

d

k

1

12

)

R

2

13

1

1

3

14

2

2

…

15

j

3

3

∞

4

L

A

2

1

…

8

i

4

2

1

9

5

3

2

10

(

∞

4

k

5

11

c

1

12

)

R

2

13

1

1

3

14

j

2

2

…

15

3

3

∞

4

21

)f()e(

L

A

2

1

…

8

4

2

1

9

i

5

3

2

10

∞

4

2

11

3

12

R

4

13

1

1

k

3

14

2

2

…

15

3

3

j

∞

4

L

A

2

1

…

8

i

4

2

1

9

5

3

2

10

∞

4

2

11

3

12

R

k

2

13

1

1

3

14

2

2

…

15

3

3

j

∞

4

22

L

`

A

2

1

…

8

4

2

1

9

5

3

2

10

(

i

∞

4

2

11

g

3

12

)

R

4

13

1

1

5

14

2

2

k

…

15

3

3

j

∞

4

23

Merge Sort Tree
85 24 63 45 17 31 96 50

85 24 63 45

85 24

85 24

85 24 63 45 17 31 96 50

85 24 63 45

24 85

85 24

Merge

Recursively
Divide

85 24 63 45 17 31 96 50

24 45 63 85

24 85

85 24

45 63

63 45

Merge

Q2: How much memory is needed for merge sort?

Q1: How deep is this tree?

17 31 50 96

17 31

17 31

50 96

96 50

24

Merge Sort

MergeSort(A,p,r)
1 if p < r

2 then q = floor((p+r)/2)

3 MergeSort(A,p,q)

4 MergeSort(A,q+1,r)

5 Merge(A,p,q,r)

� Merge() is the procedure to merge two sorted
lists.

Merge Sort Analysis

)log(log)(

log
1

)1(
=

)(

)
2

(2=)(

1=)1(

:equation Recurrence

nnOnnnnT

n
T

n

nT

n
n

TnT

T

=+=

+

+

26

Merge Sort

� Merging two half arrays S1, S2 into a full
array S requires three pointers, one for S1,
another for S2, and the other for S.

� The formal analysis result coincides with
the intuitive count of the big Oh, namely,
the area taken by the merge sort tree.

� The amount of memory needed for merge
sort

� An extra array

Sorting Algorithms in
General
Sorting: Permuting a sequence of numbers into ascending

order

O(n2) Sorting Algorithms:

� Insertion Sort, Bubble Sort

O(nlogn) Sorting Algorithms

� Heap Sort: Based on Heap data structure

� Quick Sort: Widely regarded as the “ fastest” algorithm

� Merge Sort: Stable algorithm; if two elements have the
same value, then their relative position after sorting is the
same

Is it possible to sort faster than O(nlogn) time?

� Any comparison-based sorting must make at least
O(nlogn) Comparisons in the worst-case

� Linear-Time sorting algorithms for SMALL integers

Quick Sort(cont.)

Given an array A[1...r]
� Divide: Divide: Divide: Divide: The array A[1...r] is partitionpartitionpartitionpartitioned into two

nonempty subarrays A[1...p-1] and A[p+1...r] around
the pivot A[p] such that all elements in A[1...p-1] <=

A[p] <= all elements in A[p+1...r]

29

Partition(A,p,r)
1 x ← A[r]

2 i ← p – 1

3 for j ← p to r – 1

4 do if A[j] ≤ x

5 then i ← i + 1

6 exchange A[i] ↔ A[j]

7 exchange A[i+1] ↔ A[r]

8 return i + 1

30

Quick Sort
� Conquer:Conquer:Conquer:Conquer: Each of A[1...p] and

A[p+1...r] are sorted by recursive calls
to Quick sort

Quicksort(A,1,r)

1 if (1 >= r) return;

2 p ← Partition(A,1,r);

3 Quicksort(A,1,p-1);

4 Quicksort(A,p+1,r);

Quick Sort: Partition
Shaded region: not yet partitioned, white region: Partitioned

5 3 2 6 4 1 3 7

A[1...r]

i j

7 3 2 6 4 1 3 75

i j

5 3 2 6 4 1 3 75

i j

73

i

j

3 3 2 1 4 5 7 6

i

j

5 3 2 6 4 1 3 7573 73 2 5 3 2 6 4 1 3 76 7 53 73 2 1

A[1...p-1]
A[p+1...r]

i j

First, choose the pivot somehow, let’s say, it is A [0]=5.
Second, Move the pivot at the end of the array.
Move i to the right until finding the element > the pivot, and
Move j to the left until finding the element < the pivot.

Finally, swap the pivot with the i-th element

Pivot

Performance of Quick Sort

T n T i T n i n Y T

n
T n T n n

T n n n

T i n
O n

T n T n

T n

O n n

i

n

n n

n

n

() () () (()) ())

()

(log)

= + − − + = =

+
=

=

=∑

1 0 1 0

1
1
2 1

1

2

2

2

2 2

2

4

Performance depends on the selection of pivot
: divide - and 1 element

 () = (-) +
 = (-) + (-) +

 = () +

: divide and elements

 () = 2 () +

 = 2 () +

worst- case partitioning

best - case partitioning

Performance of Quick Sort-
Cont.
AverageAverageAverageAverage----case partitioning:case partitioning:case partitioning:case partitioning:

This average performance requires good
selection of pivot!

� Median-of-Partitioning: take the median of the
left, right, and center elements in A[l...r]

Assume that the size of a partition is equally likely (that is

probability is

The average value of () of (- -) is

We already know () = () from the average case analysis of
unbalanced binary search tree

1

1

2

1 0

1

0

1

n

n

n

T i T n i T j

T n T j n

T n O n n

j

n

j

n

)

()

() [()]

log

=

−

=

−

∑

∑= +

Selection Problem

� Input: A set of n distinct numbers and a number i with 1
<= i <= n

� Output: The element that is larger than
exactly i-1 other elements of A

� Can be solved in time by sorting

Ax ∈

)log(nnO

35

Quick Selection Algorithm

� Find the k-th smallest element
� Pick a pivot v in S.
� Partition S – {v} into S1 and S2

� If k <= |S1|, then k-th smallest element
must be in S1

� If k = 1 + |S1|, we got the answer

� Otherwise, the k-th smallest element lies
in S2 and it is (k-|S1|-1)st smallest
element in S2.

36

RandomizedSelect(A,p,r,i)

ifififif p = r thenthenthenthen returnreturnreturnreturn A[p]

q <- RandomizedPartition(A,p,r)

k <- q –p +1

if if if if i = k thenthenthenthen return A[q]

else ifelse ifelse ifelse if i < k

returnreturnreturnreturn RandomizedSelect(A,p,q-1,i)

else else else else

returnreturnreturnreturn RandomizedSelect(A,q+1,r,i-k)

37

RandomizedSelect(A,p,r,i)
� Worst-case running time is

� Average case:

� RandomizedSelect is equally likely to return any
element as the pivot

� For each k s.t. 1 <= k <= n, the subarray A[p..q]
has k elements with probability 1/n

� Xk = I {subarray A[p..q] has exactly k elements

� E[Xk] = 1/n

)(2nΘ

))),1(max(

))),1(max(()(

1

1

nknkTX

nknkTXnT

n

k
k

n

k
k

+−−=

+−−≤

∑

∑

=

=

38

RandomizedSelect(A,p,r,i)

)2/4/(2/4/3)]([)/2(

))],1(max([)/1())],1(max([][

))],1(max([])),1(max([

)]([

1

2/

11

11

anccncnanccnnkTEn

nknkTEnnknkTEXE

nknkTXEnknkTXE

nTE

n

nk

n

k

n

k
k

n

k
k

n

k
k

−−−=++≤+=

+−−=+−−=

+−−=+−−≤

∑

∑∑

∑∑

−

=

==

==

39

Quick Selection Algorithm

� One recursive call contrast to the
quicksort algorithm

� Worst case:

� Average time complexity: O(n)

)(2nΘ

