Sorting Algorithms

1

Algorithms Kyuseok Shim SoEECS, SNU.

Designing Algorithms

- Incremental approaches
- Divide-and-Conquer approaches
- Dynamic programming approaches
- Greedy approaches
- Randomized approaches

You are not going to win at everything in life. Go out there and do your best. When it is over, congratulate the winner-- if it's not you!

By Gail Denvers's father

You are not going to win at everything in life. Go out there and do your best. When it is over, congratulate the winner-- if it's not you!

By Gail Denvers's father (Gail won a goldmedal at the 1992 Olympic)

Incremental Approach

- Sorting: Permuting a sequence of numbers into ascending order
- Insertion Sort Algorithm
 - Works the way many people sort a hand of playing cards
 - Start with an empty left hand and cards face down on the table
 - Remove one card at a time from the table and insert it into the correct position in the left hand
 - To find a correct position for a card, we compare it with each of the cards already in the hand from right to left
 - At all times, the cards held in the left hand are sorted

- Sorting: Permuting a sequence of numbers into ascending order
- Consists of N-1 passes
 - For pass p = 1 through N-1, it ensures that the elements in position 0 through p are in sorted order.
 - Use the fact that the elements 0 through p-1 are already known to be in sorted order.
- It uses an incremental approach!

INSERTION-SORT(A)

- 1 for j < -2 to length[A]
- 2 do key <- A[j]

3

5

6

7

8

- Insert A[j] into the sorted sequence A[1..j-1]
- 4 i <− j − 1
 - while i>0 and A[i]>key
 - do A[i+1] <- A[i] i <- i-1
 - a[i+1] <- key

.

Original	34	8	64	51	32	21	Position Moved
After j =2	8	34	64	51	32	21	1
After j = 3	8	34	64	51	32	21	0
After j = 4	8	34	51	64	32	21	1
After j = 5	8	32	34	51	64	21	3
After j = 6	8	21	32	34	51	64	4

Order of Growth

- Rate of growth of the running time really interests us
- Thus, we only consider the leading term of a formula since the lower-order terms are relatively insignificant for large n
- We also ignore the leading term's constant coefficient since constant factors are less significant than the arte of growth
- Thus, we write that insertion sort has a worst case running time of Θ(n²)

Order of Growth

- We usually consider one algorithm to be more efficient than another if its worstcase running time has a lower order of growth
 - Due to constant factors and lower-order terms, this evaluation may be in error for small inputs
 - But for large enough inputs, a Θ(n²) algorithm, for example, will run quickly in the worst case than a Θ(n³) algorithm

Inversions

Given 34, 8, 64, 51, 32, 21

We have 9 inversions:

- (34, 8), (34, 32), (34, 21), (64, 51), (64, 32), (64, 21), (51, 32), (51, 21), (32, 21)
- Swapping two adjacent elements (that are out of place) removes one inversion
- Thus, this is exactly the number of swaps that need too be (implicitly) performed by insertion sort

THEOREM 7.1

- The average number of inversion in an array of N distinct elements is N(N-1)/4.
- Proof:

• THEOREM 7.1

- The average number of inversion in an array of N distinct elements is N(N-1)/4.
- Proof:
 - For any list L, consider L', the list in reverse order.
 - Consider any pair of two elements in the list (x,y), with y > x.
 - In exactly one of L and L', this ordered pair represents an inversion
 - The total number of these pairs in a list L and its reverse L' is N(N-1)/2.
 - Thus, an average list has half this amount.

THEOREM 7.1

- Any algorithm that sorts by exchanging adjacent elements requires Ω(n²)
- Proof:
 - Each swap removes only one inversion, so Ω(n²) swaps are required.

Divide and Conquer

- This is more than just a military strategy
- It is also a method of algorithm design that has created such efficient algorithms as Merge Sort, Quick Sort
- In terms or algorithms, this method has three distinct steps:
 - Divide: If the input size is too large to deal with in a straightforward manner, divide the data into two or more disjoint subsets.
 - Recurse: Use divide and conquer to solve the subproblems associated with the data subsets.
 - Conquer: Take the solutions to the subproblems and "merge" these solutions into a solution for the original problem.

Merge Sort

Divide:

- If S has at least two elements, remove all the elements from S and put them into two sequences, S1 and S2, each containing about half of the elements of S. (i.e. S1 contains the first $\lceil n/2 \rceil$ elements and S2 contains the remaining $\lceil n/2 \rfloor$ elements.
- **Recurse**: Recursive sort sequences *S* 1 and *S* 2.
- Conquer: Merge the sorted sequences S1 and S2 into a unique sorted sequence S.

Merge(A,p,q,r)

- $1 n_1 < -q p + 1$
- 2 $n_2 < -r q$
- 3 create arrays L[1..n₁+1] and R[1..n₂+1]
- 4 for i < -1 to n_1

6 for
$$j < -1$$
 to n_2

Merge(A,p,q,r)

Loop Invariant:

At the start of each iteration for the for-loop above, the subarray A[p..k-1] contains the k-p smallest elements of $L[1..n_1+1]$ and $R[1..n_2+1]$, in sorted order. Moreover, L[I] and R[j] are the smallest elements of their arrays that have not been copied back into A.

Merge Sort Tree

- Q1: How deep is this tree?
- Q2: How much memory is needed for merge sort?

Merge Sort

MergeSort(A,p,r)

- 1 if p < r
- 2 then q = floor((p+r)/2)
- 3 MergeSort(A,p,q)
- 4 MergeSort(A,q+1,r)
- 5 Merge(A,p,q,r)
- Merge() is the procedure to merge two sorted lists.

Merge Sort Analysis

Recurrence equation : T(1) = 1 $T(n) = 2T(\frac{n}{2}) + n$

$$\frac{T(n)}{n} = \frac{T(1)}{1} + \log n$$
$$T(n) = n \log n + n = O(n \log n)$$

Merge Sort

- Merging two half arrays S1, S2 into a full array S requires three pointers, one for S1, another for S2, and the other for S.
- The formal analysis result coincides with the intuitive count of the big Oh, namely, the area taken by the merge sort tree.
- The amount of memory needed for merge sort
 - An extra array

Sorting Algorithms in General

Sorting: Permuting a sequence of numbers into ascending order

O(n²) Sorting Algorithms:

Insertion Sort, Bubble Sort

O(nlogn) Sorting Algorithms

- Heap Sort: Based on Heap data structure
- Quick Sort: Widely regarded as the "fastest" algorithm
- Merge Sort: Stable algorithm; if two elements have the same value, then their relative position after sorting is the same

Is it possible to sort faster than O(*n*log*n*) time?

- Any comparison-based sorting must make at least O(nlogn) Comparisons in the worst-case
- Linear-Time sorting algorithms for SMALL integers

Quick Sort(cont.)

Given an array A[1...r]

Divide: The array A[1...r] is *partition*ed into two nonempty subarrays A[1...p-1] and A[p+1...r] around the pivot A[p] such that all elements in A[1...p-1] <= A[p] <= all elements in A[p+1...r]

Partition(A,p,r) 1 $x \leftarrow A[r]$ 2 $i \leftarrow p-1$ 3 for $j \leftarrow p$ to r-14 do if $A[j] \le x$ 5 then $i \leftarrow i+1$ 6 exchange $A[i] \leftrightarrow A[j]$ 7 exchange $A[i+1] \leftrightarrow A[r]$

8 **return** i + 1

Quick Sort

 Conquer: Each of A[1...p] and A[p+1...r] are sorted by recursive calls to Quick sort

Quicksort(A,1,r)

- 1 if $(1 \ge r)$ return;
- 2 $p \leftarrow Partition(A,1,r);$
- 3 Quicksort(A,1,p-1);
- 4 Quicksort(A,p+1,r);

Quick Sort: Partition

Shaded region: not yet partitioned, white region: Partitioned

First, choose the pivot somehow, let's say, it is A[0]=5. Second, Move the pivot at the end of the array. Move i to the right until finding the element > the pivot, and Move j to the left until finding the element < the pivot.

Performance of Quick Sort

T(n) = T(i) + T(n - i - 1) + n(Y(0)) = T(1) = 0)Performance depends on the selection of pivot **worst- case partitioning** divide *n* - 1 and 1 element

$$T(n) = T(n-1) + n$$

= T(n-2) + (n-1) + n
= T(1) + $\sum_{i=2}^{n} i + n$
= O(n²)

best - case partitioning divide $\frac{n}{2}$ and $\frac{n}{2}$ elements

$$T(n) = 2T(\frac{n}{2}) + n$$
$$= 2T(\frac{n}{4}) + 2n$$
$$= O(n\log n)$$

Performance of Quick Sort-Cont.

Average-case partitioning:

Assume that the size of a partition is equally likely(that is probability is $\frac{1}{n}$)

The average value of T(i) of T(n-i-1) is $\frac{1}{n}\sum_{j=0}^{n-1}T(j)$

$$T(n) = \frac{2}{n} \left[\sum_{j=0}^{n-1} T(j) \right] + n$$

We already know $T(n) = O(n \log n)$ from the average case analysis of unbalanced binary search tree

This average performance requires good selection of pivot!

 Median-of-Partitioning: take the median of the left, right, and center elements in A[1...r]

Selection Problem

- Input: A set of n distinct numbers and a number i with 1
 <= i <= n</p>
- Output: The element $x \in A$ that is larger than exactly i-1 other elements of A
- Can be solved in $O(n \log n)$ time by sorting

Quick Selection Algorithm

- Find the k-th smallest element
 - Pick a pivot v in S.
 - Partition S {v} into S1 and S2
 - If k <= |S1|, then k-th smallest element must be in S1
 - If k = 1 + |S1|, we got the answer
 - Otherwise, the k-th smallest element lies in S2 and it is (k-|S1|-1)st smallest element in S2.

RandomizedSelect(A,p,r,i)

if p = r then return A[p]
q <- RandomizedPartition(A,p,r)
k <- q -p +1
if i = k then return A[q]
else if i < k
 return RandomizedSelect(A,p,q-1,i)
else</pre>

return RandomizedSelect(A,q+1,r,i-k)

RandomizedSelect(A,p,r,i)

- Worst-case running time is $\Theta(n^2)$
- Average case:
 - RandomizedSelect is equally likely to return any element as the pivot
 - For each k s.t. 1 <= k <= n, the subarray A[p..q] has k elements with probability 1/n
 - Xk = I {subarray A[p..q] has exactly k elements
 - E[Xk] = 1/n

$$T(n) \le \sum_{k=1}^{n} X_{k} (T(\max(k-1, n-k)) + n))$$
$$= \sum_{k=1}^{n} X_{k} T(\max(k-1, n-k)) + n)$$

RandomizedSelect(A,p,r,i)

$$\begin{split} E[T(n)] \\ &\leq E[\sum_{k=1}^{n} X_{k}T(\max(k-1,n-k))+n] = \sum_{k=1}^{n} E[X_{k}T(\max(k-1,n-k))]+n \\ &= \sum_{k=1}^{n} E[X_{k}]E[T(\max(k-1,n-k))]+n = \sum_{k=1}^{n} (1/n)E[T(\max(k-1,n-k))]+n \\ &= \sum_{k=n/2}^{n-1} (2/n)E[T(k)]+n \leq 3cn/4+c/2+an = cn-(cn/4-c/2-an) \end{split}$$

Quick Selection Algorithm

- One recursive call contrast to the quicksort algorithm
- Worst case: $\Theta(n^2)$
- Average time complexity: O(n)