Gaussian Beam

이 병 호 서울대 전기공학부 byoungho@snu.ac.kr

Gaussian Beam

Major characteristics of the Gaussian beam waist $\omega(z)$

Example of Gaussian Beam

Asymptotic Behavior

TEM₂₀

TEM₃₀

TEM₁₀

TEM₅₀

TEM₆₀

TEM₁₁

TEM₂₁

order Gaussian beam modes.

NRL HoloTech

Intensity photographs of some low-

Gaussian Beam Equation

$$\psi(r,z) = \psi_o \exp\left(-j\left[kz - \tan^{-1}\left(\frac{\lambda_0 z}{\pi n w_0^2}\right)\right]\right) \frac{w_o}{w(z)} \exp\left(\frac{-r^2}{w^2(z)}\right) \exp\left(-j\left(\frac{kr^2}{2R(z)}\right)\right)$$

$$w^{2}(z) = w_{0}^{2} \left(1 + \left(\frac{\lambda_{0} z}{\pi n w_{0}^{2}} \right)^{2} \right) = w_{0}^{2} \left(1 + \left(\frac{z}{z_{R}} \right)^{2} \right)$$

$$\theta_a = \frac{\lambda_0}{\pi n w_0} = \frac{2}{\pi} \frac{\lambda}{2 w_0} \qquad z_R = \frac{\pi n w_0^2}{\lambda_0} = \frac{\pi w_0^2}{\lambda}$$
$$R(z) = z \left(1 + \left(\frac{\pi n w_0^2}{\lambda_0 z}\right)^2 \right) = z \left(1 + \left(\frac{z_R}{z}\right)^2 \right)$$

Seoul National University

Gaussian Beam Profile

The normalized beam intensity $// /_0$ as a function of the radial distance ρ (r) at different axial distances: (a) z = 0; (b) $z = z_0$; (c) $z = 2 z_0$.

 $Z_{0.}$ means $Z_{R.}$

Gaussian Beam Characteristics

 $R(z) \longrightarrow$ infinity

Major characteristics of the Gaussian beam radius of curvature R(z)

The Gaussian beam radius of curvature R(z)plotted for an argon-ion laser running at λ =514.5nm with three starting beam waists. The beam with a starting waist of $\omega_0 = 3$ mm has a Rayleigh range of 54.955 m, the beam with a starting waist of $\omega_0 = 5$ mm has a Rayleigh range of 152.653 m and the beam with a starting waist of $\omega_0 = 7$ mm has a Rayleigh range of 299.199 m. Notice that the inflection point of the beam radius of curvature R(z) corresponds to the Rayleigh range.

Propagation of Rays

Ray Matrices (I)

Ray Matrices (II)

$$\frac{1}{q(z)} = \frac{1}{R(z)} - j \frac{\lambda}{\pi w^2(z)}$$

$$q_2(z) = \frac{Aq_1(z) + B}{Cq_1(z) + D}$$

Example (I)

A simple lens system composed of a single thin lens. A Gaussian laser beam with a beam waist ω_{o1} is incident on the lens. The incident beam has a perfectly planar wavefront upon incidence on the lens (in order words, $R \rightarrow \infty$ at the input surface of the lens).

Example (II)

$$\frac{1}{q_1(z)} = \frac{1}{R(z)} - j\frac{\lambda}{\pi\omega^2(z)} = \frac{1}{\infty} - j\frac{\lambda_0}{\pi\omega_{o1}^2n} = -j\frac{\lambda_0}{\pi\omega_{o1}^2n}$$

$$q_{2}(z) = \frac{Aq_{1}(z) + B}{Cq_{1}(z) + D} = \frac{\left(1 - \frac{z}{f}\right) \cdot q_{1}(z) + z}{\frac{-1}{f} \cdot q_{1}(z) + 1}$$

$$\frac{1}{R(z)} = \frac{\frac{-1}{f} + z \left(\frac{1}{f^2} + \frac{1}{z_{01}^2}\right)}{\left(1 - \frac{z}{f}\right)^2 + \left(\frac{z}{z_{01}}\right)^2}$$

Example (III)

$$\frac{\lambda_0}{\pi\omega^2(z)n} = \frac{\frac{1}{z_{01}}}{\left(1 - \frac{z}{f}\right)^2 + \left(\frac{z}{z_{01}}\right)^2}$$

$$z_{01} = \frac{\pi \omega_{01}^2 n}{\lambda_0}$$

$$z_{\min} = \frac{f}{1 + \left(\frac{f}{z_{01}}\right)^2}$$

Beam Focusing

Seoul National University

Transmission through a Thin Lens

Seoul National University

Laser Cavity

Energy can be extracted from a stable resonator by fabricating one of the end mirrors as a partial reflector.

Periodic Optical Structures

Wave propagation through the first order optical systems

Hamilton's point characteristic function

 $V(x_1, y_1, z_1, x_2, y_2, z_2)$

Eikonal functionray-direction vector $S(x_1, y_1, z_1)$ $\underline{s}_i = (p_i, q_i, m_i)$

Relationship between V-function and Eikonal function

$$V(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2})$$

= $\int_{r_{1}}^{r_{2}} nds = S(x_{2}, y_{2}, z_{2}) - S(x_{1}, y_{1}, z_{1})$

Functional relationship between ray-direction and V-function

Seoul National University

Wave propagation through the first order optical systems

When the first order approximation is validated in calculating the V-function, the optical system is called the first order optical system. It is equivalent to the paraxial optical system. Then the transform of a ray by the first order optical system can be described by the 4×4 matrix equation.

Differential equation of the point characteristic function

$$\begin{array}{c} x \\ y_{2} \\ y_{2} \\ p_{2} \\ q_{2} \\ q_$$

Seoul National University

Integral transformation of the first order optical system

The integral transformation of the first order optical system

$$g(x_2, y_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x_2, y_2, x_1, y_1) f(x_1, y_1) dx_1 dy_1$$

Output field Input field

$$h(x_2, y_2, x_1, y_1) = |h(x_2, y_2, x_1, y_1)| e^{jk_0 V}$$

Integral transformation of the separable (orthogonal) optical system

Separable optical system

$$h(x_{2}, y_{2}, x_{1}, y_{1}) = -j\sqrt{\frac{1}{\det|B|}} \exp\left[j\pi(r_{2}, r_{1})\begin{bmatrix}D_{s}B_{s}^{-1} & -B_{s}^{-1}\\-B_{s}^{-1} & B_{s}^{-1}A_{s}\end{bmatrix} \begin{pmatrix}r_{2}\\r_{1}\end{pmatrix}\right] = -j\sqrt{\frac{1}{B_{x}B_{y}}} \exp\left[j\pi(x_{2}, y_{2}, x_{1}, y_{1})\begin{bmatrix}-x & -x & -x\\0 & \frac{D_{y}}{B_{y}} & 0 & \frac{-1}{B_{x}}\\\frac{-1}{B_{x}} & 0 & \frac{A_{x}}{B_{x}} & 0\\0 & \frac{-1}{B_{x}} & 0 & \frac{A_{x}}{B_{x}}\end{bmatrix} \begin{pmatrix}x_{2}\\y_{2}\\x_{1}\\y_{1}\end{pmatrix}\right]$$

Free space of length d

Cylindrical lens with *x*-focal length Cylindrical lens with *y*-focal length

 $\left[\begin{array}{cccc} \frac{D_x}{R} & 0 & \frac{-1}{R} & 0 \end{array}\right]$

$$D(d) = \begin{bmatrix} 1 & 0 & \lambda d & 0 \\ 0 & 1 & 0 & \lambda d \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad L(\infty, f_y) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{1}{\lambda f_y} & 0 & 1 \end{bmatrix} \qquad L(f_x, \infty) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{1}{\lambda f_x} & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example

Total transfer matrix

$$T = D(d_3)L(f_x, \infty)D(d_2)L(\infty, f_y)D(d_1) = \begin{bmatrix} 1 - d_3/f_x & 0 & \lambda(d_1 + d_2 + d_3) - \lambda(d_1 + d_2)d_3/f_x & 0 \\ 0 & 1 - (d_2 + d_3)/f_y & 0 & \lambda(d_1 + d_2 + d_3) - \lambda(d_2 + d_3)d_1/f_y \\ -1/(\lambda f_x) & 0 & 1 - (d_1 + d_2)/f_x & 0 \\ 0 & -1/(\lambda f_y) & 0 & 1 - d_1/f_y \end{bmatrix}$$

Integral transform kernel

$$h(x_{2}, y_{2}, x_{1}, y_{1}) = -j \frac{1}{\lambda \sqrt{\left[\left(d_{1} + d_{2} + d_{3}\right) - \left(d_{1} + d_{2}\right)d_{3} / f_{x}\right]\left[\left(d_{1} + d_{2} + d_{3}\right) - \left(d_{2} + d_{3}\right)d_{1} / f_{y}\right]}} \times \exp\left[j \frac{\pi}{\left[\lambda \left(d_{1} + d_{2} + d_{3}\right) - \lambda \left(d_{1} + d_{2}\right)d_{3} / f_{x}\right]}\left[\left(1 - \left(d_{1} + d_{2}\right) / f_{x}\right)x_{2}^{2} - 2x_{2}x_{1} + \left(1 - d_{3} / f_{x}\right)x_{1}^{2}\right]\right]} \times \exp\left[j \frac{\pi}{\left[\lambda \left(d_{1} + d_{2} + d_{3}\right) - \lambda \left(d_{2} + d_{3}\right)d_{1} / f_{y}\right]}\left[\left(1 - d_{1} / f_{y}\right)y_{2}^{2} - 2y_{2}y_{1} + \left(1 - \left(d_{2} + d_{3}\right) / f_{y}\right)y_{1}^{2}\right]\right]}\right]$$

When f_x and f_y are infinite, the integral transform kernel becomes that of the Fresnel diffraction integral.

H. Kim and B. Lee, *Optics Communications*, vol. 260, no. 2, pp. 383-397, 2006.

참고문헌

- 1. B. E. A. Saleh and M. C. Teich, *Fundamentals of Photonics*, Wiley, New York, USA, 1991.
- 2. K. J. Kuhn, *Laser Engineering*, Prentice Hall, New York, USA, 1998.
- 3. A. Yariv, *Optical Electronics in Modern Communications*, 5th ed., Oxford Univ. Press, New York, USA, 1997.

