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Introduction

& Passive LC Filters

4@ Electronic Filter — Active Filter
s Active RC Filters
= Switched capacitor circuits

— Advantages : No inductors

S A = 2e =22 =

Inductors are large and physically bulky for low
frequency applications
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12.1.1 Filter Transmission

@ Filter — a two port device

e,
l-‘I,' [5)

o,

= [ransfer function:

= T he filter transmission:
= Gain function:
= Attenuation function:

= Input Output relation:

10/31/2007

O

Filter circuit 3l
T(s) |
O

V
V.(s) magnitude
phase
T(jw)=[T(jo)e (s = jo)

G(w) =20logT(jw) dB
A(w) = —20log‘T(ja))‘ dB

V,(jo)|=|T(jo)|V,(jo)

(c) 2007 DK Jeong
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12.1.2 Filter Types

N

“@ Frequency-selection Function
= Passing : Passband, |T|=1
= Stopping : Stopband, |T|=0

@ Brick-Wall response

Yan |T| A
1 blooa i on oo o
~<— Passband —>|=<— Stopband — — ~<— Stopband Passband — —
] - 0 -
@), @ w, w
(a) Low-pass (LP) (b) High-pass (HP)
| T|A | T|A
Blove o e 1
=—— Lower Upper —— ~=— Lower Upper — —
stopband Passband stopband passband Stopband passband
0 - 0 P
@y Wy Lo Wy W «
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12.1.3 Filter Specification

I T|, dB A

p
L/
| R
Passband Ripple = 4_. T
range: 0.05dB — 3 dB *
"'rj'rnil'.
= w, :Passband edge
_ ~<— Passband i T Stopband — —
= A : Maximum allowed gy
max Irarmgi-
variation in nd faE
ariatio passba oty v
transmission '
0 : ;
= W, :Stopband edge p @ | | @

(i | Wy

= A, :Minimum required
stopband attenuation

= W /w, : Selectivity factor
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12.1.3 Filter Specification

N

10/31/2007

" Filter Approximation

The process of obtaining a transfer function that meets given specifications

Performed using computer programs(Snelgrove, 1982;0uslis and Sedra, 1995), filter
design table(Zverev, 1967) or closed-form expressions(Section 12.3)
Tl dB A

‘J..‘!'I'I'I'.IH
1’ Amin
r< Lower stopband == ~<- Passband -3 ~<— Upper| stopband —— —
Y
| W1 Wy Clan s %

fﬂl' 1 (Ll 2
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12.2 The Filter Transfer Function

@ Filter Transfer Function T{(s)

aMSM —kczM_lsM_1 +---+a,
s" +b, sV +-+ b,
- N: filter order

- if N=M, stable
- 8y, ,ay & by, *,by.4 : real numbers

= T(s)=

= T(s) = ay(s—z )N(s—2,)(§—2z)

(s=p)s—=py)--(s—py)
- 24,*,Zy - transfer function zeros = transmission zeros
- p4,+,Py - transfer function poles = natural modes
- real or complex number(conjugate pair)
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12.2 The Filter Transfer Function

N

"@ Filter Transfer Function T(s)

Since in the stopband the transmission is zero or small

— the zeros are usually, placed on the jw axis at stopband frequencies
= [nfinite attenuation at w;; and w,

|T|. dB A
1. zeros at s =+ jw;; & + jwp
also at s == jw; & = jwp,
Numerator polynomial 1] )
(s + jw, )(s = jw,)(s + jw)s = jwy) A
= (52 + CU//Z)(SZ * w/ggj T

— for s = jw,
/02 L 7 2)/02..L 7/:) 2)
(o ! ;] /o ! /

wy wo ~<— Passband —r=<+%t—>1=<— Stopband ——
— [ 2 2V — 2 2
=T ( CU'+CU// )( W +0)/2} Trargi-
which is zero at w=w;; and w=w tion
band [
2. zeros at s=o

the numbers of zeros at s=o=N—M ¢

w,, w,
ay,

ass —>oo, I(s) > —"-
S

ey g ey 3
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12.2 The Filter Transfer Function

@ Pole-zero pattern for a 5t"-order LPF(N=5)

= Two pairs of complex-conjugate
poles and real-axis pole

— all the poles lie in the vicinity
of passband

— high transmission at pass
band frequencies

1 J'Ii‘d * i

()

X ]‘l“.?]l.f-:\' :'} (4
L) zeros

s plane

] S=ijw|1&ijw|2&°°

2 2Ny 2 2
a,(s” +w )(s” +wp,)

m I(s)=
(5) s> +b,s* +b,s’ +b,s’ +bs+b,

10/31/2007 (c) 2007 DK Jeong
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12.2 The Filter Transfer Function
A jo ¢ o
/] (J_ Wer 0
1/ X W2
= |t has one or more zeros ats =0 e s lane
and one or more zeros at s = « b oo
= Assuming that only one zero ;”‘"Z .
existsats =0 & s = = T ’
= N=6 g ——
O —w,
ITI, dB A
" s=*jw,,s=tjw,,s=0,5s =00
) ¥ I
A /
2 2 2 2 £imax
" T(s)= aSS(: T a)él)(s + a)lz) 1 i
s°+bys” +...+ b,
= Lower stopband 3= ~< Passband = ~=— Upper|stopband ———
'SS/M' ] | | J\/—\ .
| @1 Wy Wpy Wy | 5
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12.2 The Filter Transfer Function

N

A jw

x poles
() zeros

qY

ey

= |tis possible that all zeros are at s=«

= The more selective the required filter response is, the higher its order
must be, and the closer its natural modes are to the jw axis
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12.2 The Filter Transfer Functions

4 Problem 12.9

A third-order low-pass filter has transmission zeros at w=2rad/s and w=00. Its

natural modes are at s=-1 and s=-0.5%j0.8. The dc gain is unity. Find T(s)

10/31/2007

Poles at -1 and -0.5%j0.8 : denominator D(s)=(s+1)(s*+s+0.89)
Zeros at oo and *j2 : numerator  N(s)=k(s+j2)(s-j2)=k(s*+4)

There is one zero at oo because Degree(D(s))- Degree(N(s))=1. Thus,

k(s* +4)
T'(s)= 3
(s+1)(s"+5+0.89)
DCgain=1 : T(G0)=4k/0.89=1 — k=0.2225
T(s) is,
0.2225(s” +4)
I'(s)= ;
(s+1)(s” +5+0.89)
(c) 2007 DK Jeong
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12.3 Butterworth and Chebyshev Filters

@ In this section, we present two functions that are frequently used
in approximating the transmission characteristics of low-
pass filters.

. Closed-form expressions

10/31/2007 (c) 2007 DK Jeong 13/76



12.3.1 The Butterworth Filter

@ Filter Transfer Function T(s)

T(A = Monotonically decreasing transmission
V1 +

= Butterworth filter with a passband edge wy, is
1

T(jw)= —
\/1 +&’° (wj
@p

o at w = wp,

! s All the transmission zero at w = «
— ﬂ = The magnitude function for an Nt"-order
|
|
|
|
|
|
|
|
|
|
|
|
|

T(jo,)|=——

1+&°

= Thus, the parameter € determines the maximum variation in passband transmission,

A =20log1+¢&’

= Conversely, given A
- \/IOAmaX/IO _1
10/31/2007 (c) 2007 DK Jeong 14/76
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12.3.1 The Butterworth Filter

@ Filter Transfer Function T(s) (cont.)

|T| A

o = In the Butterworth response the maximum

e deviation in passband transmission occurs at the
NN passband edge, wp, only

0.8 <
o6 X\ = The first 2N—1 derivatives of |T| relative to w are
\ ~ zeroatw =0
N
0.4
\

— very flat near w = 0 (maximally flat response)

= The degree of passband flatness increases as the
61X e
8 AN order N is increased
ail e ¥ g e — as the order N is increased the filter response

0 > wlw,

0 0.4 08 1.2 1.6 20 approaches the ideal brick-wall type of response

0.2

= The edge of the stopband, w = wg, attenuation is

A(wg) =-20 logb/\/l +&% (g w,)™" J: 10 log[l +&° (o /a)P)ZN]
= This equation can be used to determine the filter order required, which is the lowest
integer value of N that yields A(wg)2A .,

10/31/2007 (c) 2007 DK Jeong 15/76



12.3.1 The Butterworth Filter

@ Filter Transfer Function T(s) (cont.)

s plane ’ s plane ; P s plane
= The natural modes of an Nt"-order Butterworth filter can be determined from the

graphical construction above.
= Natural modes lies on a circle of radius wp(1/€)"N
— same frequency of w, = wp(1/¢)"N
= Space by equal angles of 11/N, with the first mode at an angle /2N from the +jw axis.
= Transfer function is
Kaw,

T(s)=
(s—p)s—p,)--(s—py)
10/31/2007 (c) 2007 DK Jeong 16/76

— K is a constant dc gain of the filter



12.3.1 The Butterworth Filter

4 How to find a Butterworth transfer function

10/31/2007

Determine &.

£ =~10""10_1

Determine the required filter order as the lowest integer value of A that results in

A(ws) 2 Amin'

Alwg) = —ZOlogh/\/l + & (g w,)™" J: 1010g[1 - gz(a)S/a)P)ZN]

Determine the N natural modes

Determine 7(s)

Kaw,

A
s plane s plane s plane
/
} " @ @ g l
—— \!_/
(a)
by (c)

I'(s)=

(s=p)Ss—p,)--(s—py)

(c) 2007 DK Jeong
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12.3.1 The Butterworth Filter

4~ Example 12.1
Find the Butterworth transfer function that meets the following low-pass filter

specifications: f,=10kHz, A,,=1dB, f,;=15kHz, A;,=25dB, dc gain=1

max
Ajo

= o =10""10 _1 = 0.5088

5 plane

= A(w;)=10log|l+ & (g /w,)* |
=22.3dB (when N=8)
=25.3dB (when N=9)

g Y

wy= @, (1/e)!'N=6.773 X10’rad/s
p; = @y(-cos80 Hjsin80 ) = wy(-0.1736+j0.9848)

Combining w,, w,— s°+s0.3472w,tw,’

K,
I'(s)= 2 IV IV IV 2
(s+@o)(s” +51.8792w, + @, )(s~ +51.5321w, + @, )(s~ +sw, + w; )(s” +50.3472w, + @, )

10/31/2007 (c) 2007 DK Jeong 18/76




12.3.2 The Chebyshev Filter

N

10/31/2007

" The Chebyshev Filter

-

7] A 7] 4

-
(0 w, ] @, P

= Equiripple response (A,.« = the peak ripple) in the passband and a monotonically

decreasing transmission in the stopband.

= The odd-order filter, |T(0)|=1

The even-order filter exhibits its maximum magnitude deviation at w = 0.

= Total number of passband maxima and minima equals the order of the filter, N.
= All the zeros are at w = oo,

(c) 2007 DK Jeong 19/76



12.3.2 The Chebyshev Filter

4 The Chebyshev Filter (cont.)

IT| A I7|

= The magnitude of the transfer function with a passband edge wy is

1
T(jw)| =
G J1+&” cos’[N cos (@] )]
|

\/1 +&” cosh’[N cosh™ (w/w,)]

1
T(ja)P)‘ = \/ﬁ
&

= Thus, the parameter € determines the passband ripple according to
A =10log(1+¢&?)

max

conversely,

o= \/10,4 w/10
10/31/2007 (c) 2007 DK Jeong 20/76

for w<w,

T(jw)| = for o> w,

for w=w,




12.3.2 The Chebyshev Filter

4 The Chebyshev Filter (cont.)

IT| A I7|

= The attenuation at the stopband edge(w = wy) is
A(wg) =101og[1+ £ cosh’(N cosh™ (wg /@,))]

— this equation can be used to determine the order N required to obtain a specified
A, by finding the lowest integer value of N that yields A(wg) = A,

= Increasing the order N of the Chebyshev filter causes its magnitude function to
approach the ideal brick-wall low-pass response.

10/31/2007 (c) 2007 DK Jeong 21/76



12.3.2 The Chebyshev Filter

f\

“@ The Chebyshev Filter (cont )

IT| A

= The poles are

(2k-1z). (1 . 1) (2k
= —w, SIn sinh| —sinh™ — |+ j®, cos
Pk P k ) k } J@p k

= The transfer function is

N
Kw,

o= 2" (s—p)s—p,)---(s—py)

10/31/2007 (c) 2007 DK Jeong 22/76



12.3.2 The Chebyshev Filter

4 How to find the transfer function
1. Determine ¢
£ =10%="0 ]

2. Determine the order required, A(wg)
A(wy) =10log[1+ & cosh’® (N cosh™ (@ / @,))]

3. Determine the poles, p,

Py =—0p sin( 21 E) sinh(i sinh™' lj + jo, cos( 2] zj cosh(i sinh™ l) k=12,--,N
N 2 N g N 2 N g

4. Determine the transfer function, T(s)

N
Ko,

2" (s—p)(s—py) - (s—py)

T(s)=

10/31/2007 (c) 2007 DK Jeong 23/76



12.3.2 The Chebyshev Filter

4~ Example 12.2
Find the Chebyshev transfer function that meets the following low-pass filter

specifications: f,=10kHz, A,,=1dB, f,;=15kHz, A;,=25dB, dc gain=1

s &=+10""19_1=0.5088

= A(w,)=10log[1+ & cosh*(N cosh™ (w /@,))]
=21.6dB (when N=4)
=29.9dB (when N=5)

/7 N\ /7

" p=—0, SinL Zk—1 EJ sinhLl sinh™ lJ + jo, COSL 2k 1 EJ coshLi sinh™ lJ k=12, N
N 2 N & N 2 N

g

P1-Ps = ®,(-0.0895%j0.9901), py,py = ©,(-0.2342£j0.6119), p;s = ©,(-j0.2895)

5
— a)P
8.1408(s +0.2895, )(s> + 50.4684w, + 0.4293w2 )(s> + 50.1789w, + 0.9883w?)

T(s)

10/31/2007 (c) 2007 DK Jeong 24/76



12.4 First-Order and Second-Order Filter

Functions
@ Study the simplest filter transfer functions

s first and second order

# Cascade design

= realize a high-order filter.

— design of active filters (utilizing op amps and RC circuits)

# Filter poles occur in complex-conjugate pairs

= a high-order transfer function T(s) is factored into the product of second-order

functions.

& If T(s) is odd there will also be a first-order function in the factorization.

# Overall transfer function of the cascade
= simply the product of the transfer functions of the individual blocks.

10/31/2007 (c) 2007 DK Jeong 25/76



12.4 First-Order and Second-Order Filter
Functions

@ General First-Order Transfer Function

as+a
T(s)=- > > bilinear transfer function
s+ o,

= A natural mode at s=-w,
= A transsmission zero at s=-ay/a,
= High frequency gain — a,

= The numerator coefficients, a0 and al, determine the type of filter(e.g., low pass,
high pass, etc.)

= Active circuit
Low output impedance
Limits the high-frequency operation(— op amp)

10/31/2007 (c) 2007 DK Jeong 26/76



12.4 First-Order and Second-Order Filter
Functions

"@First-Order Filters

N

Filter Type and T(s) s-Plane Singularities Bode Plot for |T Passive Realization Op Amp-RC Realization
y g
(a) Low pass (LP) RA
; It A4 S—
r o A |T|. dB R o
O at = + L .
a | 3 dB R ”
20 log |CU_‘:|| 2Oda::c:au:lt: Vi =0 i A In
a - o+ O
T(s) = 0 = - © < V. }
5+ — —“3-0 a I CR = L - — Va
w Wy _— sy AL
0 | - DC gain = 1 = CR, @y, e
o 1o R,
! @ (log) DC gain = — R—'
I
(b) High pass (HP) R,
A jo
: J FI B
C o]
+ [ e + |
- 20 1 Vi < kR Vi
T(s)= i » . 0 log o < i = \
s+ 0, 7 o o =) s
— ] o 1 —_— —
w CR = — bRy =l =
Cury fid)
] High-frequency gain = 1 ! R
High-frequency gain = — R_2
1
(c) General C, R>
A |T|.dB ” R, — AAA,——
A jw iy _zoi R, C, "—I IC—z"
20 I0g|w—“| decade 2—'—W- I <
Vi R, c, V, + -0
a5 +a 20 log|| a, | s % | V; f
T(s)=_1"""0 - : [ Y o - | o o — , i
s+ @y ‘r N : : C+ )RR = | = CoRy = g~
. 0 ;s =
o a a
I_( - : : C\R, = a_l C\Ry = a_l
2 ] ]
1 Ry
0 ' e DC gain = -2 DC gain = —%
“1 oy dp (] 1 2 1
Go - P
10/31/20C 2105 | g - G e gan = £
1 2 2

27/76



12.4 First-Order and Second-Order Filter

Functions

N

“@First-Order Filters (cont.)

T(s) Singularities |T|and ¢ Passive Realization Op Amp-RC Realization
All pass (AP) A|T|. dB
20 log |ay| o R,
: + AAA
Ajw é R,
0 N R, R < >
- P - R -0
T(s) =—a, §— @y, w(log) V, | + . |
s+ &)[, lr"’l. ! ._.
a,>0 il = | = == —
o A R, c = | =
I I ; . —
0
CR = lw, . CR = lley
—90° Flat gain (a,) = 0.5 Flat gain (@) = 1

—180°

10/31/2007

(c) 2007 DK Jeong

Although the transmission is constant, its phase shows frequency selectivity
All-pass filters are used as phase shifters and in systems that require phase shaping
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12.4 First-Order and Second-Order Filter
Functions

4@ Second-Order Filter Functions

= The general second order (or biquadratic) filter transfer function
2
T(s)=— a,s” +as+a, 2
s"+(w,/ Q)s+w o

= ®yand Q determine the natural modes(poles) according to

= 4 e J1-(1/407
P> D, 2Q—J 0\/ (1/407)

= Q>0.5: complex-conjugate natural modes.

10/31/2007 (c) 2007 DK Jeong 29/76



12.4 First-Order and Second-Order Filter
Functions

4 Second-Order Filter Functions (cont.)
= Q determines the distance of the o
poles from the jw axis Pole freq.
: the higher the value of Q, the '

closer the poles are to the jw axis
— more selective

s plane

= Q <0 — poles are in the RHP
— oscillation

a¥

= Q = pole quality factor = pole Q

10/31/2007 (c) 2007 DK Jeong 30/76



12.4 First-Order and Second-Order Filter
Functions

J© Second-Order Filter Functions — LP case

N

Filter Type and Tis} s-Plane Singularities IT|
ia) Low pass (LP) A e
k
|
| \eo
r ay | \\ |
(s) 7 [ A 0 -
-::-J + it | |
e = |
o, | 11
|
: 1
= Lowpass Filter : The peak occurs only for O >f
1 :
0 =ﬁ — Butterworth, or maximally flat

10/31/2007 (c) 2007 DK Jeong 31/76



12.4 First-Order and Second-Order Filter
Functions

J© Second-Order Filter Functions — HP case

N

(b) High pass (HP) L f I
i . s s s e |ﬂ1(!‘."'\|ll'.| —
< T A | : 40
|\ I
) | \{ I
T(s) = —2 : Mo :
x by 7 -
5 +.l.'E + | gt | I |
i VI-3@
High-frequency gain = a, | : 20
| |
| | -
i (L1}

= Highpass Filter : Transmission zeros at s=0

1
Peak for —

10/31/2007 (c) 2007 DK Jeong 32/76



12.4 First-Order and Second-Order Filter
Functions

b
1
@ Second-Order Filter Functions — BP case
(c) Bandpass (BP) 23 7] A Touy — — — — | — = (ayMewqy)
Ih\ 0707 T — — — 1'— U TILAY )
) | N\ eh |s = | | |
T(s)= —2 | X 1 R St
.n-:-+_a-{(r.—j')'+m,:, : B it woy 1 E 17| ISR R i S _l " %__ T g
Center-frequency gain = Hﬂ:—}{‘J :"H lm_ | : | s |
R
| A SRV i
b 0 | 2w | o
{ewn gy 1O — |

= Bandpass Filter : Transmission zeros at s=0 and s=co
Magnitude response peaks at w = w,=center frequency

1 @,
3dB: w;, w,= @, 1+4Q2 iZQ

BW=w,—w,= % :as QT, BW | (more selective)

10/31/2007 (c) 2007 DK Jeong 33/76



12.4 First-Order and Second-Order Filter

Functions

N

'@ Second-Order Fi

ter Functions — Notch case

Filter Type and Ti(s)
{d} Motch

R

Tiz) =a,

3 [ 2
SHs= o)

DC gain=
High-frequency gain = a-

s-Plane Singularities

4 jw

I.d_j\
I
| [
Y )
| N '
Moy |
[ 1‘ b
he—sf |
i
| |
| |
by

[T A

17|

= Notch Filter : Transmission zeros are located on the jw axis,
at the complex-conjugate locations +jw,, then the
magnitude response exhibits zero tranmission at w=w,,.

10/31/2007

(c) 2007 DK Jeong

(notch in the magnitude response occurs at w=w,,
notch frequency)
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12.4 First-Order and Second-Order Filter
Functions

'@ Second-Order Filter Functions — LPN, HPN

N

(e) Low-pass notch (LPN)

5+ ]

Tiz) = a.
5 & 1-5 + fﬂ,:
W, = m,

5 el _ 4]
N -5

2 L1 | B I ——_ gy = iy I

m -
DC gain= g, — , =1 & _I e
o oy i i 20
20
. ] (]
TRl

EY

High-frequency gain = a,

(1) High-pass notch (HPN) Lo
L
y 3 I\ - LA
. 5+ A - s, — e
Tix) =ty : Lo | \" | ,uux - | || ' itk |
: oy, 2 | e i) o2 2 4, o0
5 +.'In—j+fﬂ|, | Y | 1II.'[i:'-’ml-_1""'rn:|'|.]' + Q W
B
@, = m, | 0 ‘L -
o | T i
DC gain = a, — pe—
o, | =
')
High-frequency gain = a. | “ I
Eh-1rcq YE ] | H__-r
b

10/31/2007 (c) 2007 DK Jeong
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12.4 First-Order and Second-Order Filter

_Functions
1 . .
4 Second-Order Filter Functions — All-pass case
(g) All pass (AP) TIA
Lo |ﬂ|
N L
e RIS 0 :
§ +s%+m i{—}“(;—)-i o w
Flat gain = :';} i; : b A
k d 2 >

= Allpass Filter : Two transmission zeros are in the right half of the s

10/31/2007

plane, at the mirror image locations of the poles

(c) 2007 DK Jeong
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12.4 First-Order and Second-Order Filter

_Functions

Filter Type and T(s)

4~ Problem 12.19

5-Plane Singularities

Bode Plot for |T|

Use the information displayed in below figure to design a first-order op amp-RC

low-pass filter having a 3-dB frequency of 10 kHz, a dc gain magnitude of 10,
and an input resistance of 10kQ

Passive Realization Op Amp-RC Realization
(a) Low pass (LP)
A j A |7, aB R |
’ AN I O I C |
T c 1:} uln.
5 i
T(s) = - — * O L
5+ ay - - o r R = l —& \
el _— 5
[>C gain 1 =
DC gain ﬁ;
10/31/2007

(c) 2007 DK Jeong
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12.4 First-Order and Second-Order Filter

_Functions
@ Problem 12.19 (cont.)

Filter Type and T(s) s-Plane Singularities Bode Plot for |T| Passive Realization Op Amp-RC Realization
{a) Low pass (LP) R
T A7) dB P 3
O ar = 1B 2 i i I—q
- o 20——— : o R,
20 log "qu decade Vi cCo AN
t =
T(s) = —=2 " - o -I o v .
5+ itk _ i L | cr=_1 ! — 1
| by —_— = 1
il — CHR> —
ol | — DCgain=1 | — 77 ay =
L] aor{ logr ) . e LFS
DC gain R,

= R, =R, =10kQ

= DC gain=-R,/R, =-10
— R, = 10R, = 100kQ

— C=1/wyR, =0.159nF

10/31/2007 (c) 2007 DK Jeong 38/76



12.4 First-Order and Second-Order Filter

_Functions

@~ Problem 12.28

Use the information given in below figure to find the transfer function of a

frequency gain of unity.

second-order high-pass filter with natural modes at -0.5+jV3/2 and a high

(b) High pass (HP)

|
< T A N T lazl@ /Y1 - 3
| | _
| | | ez
Tis)= | | |
x o 2 | 0 - . —
$ +.1.E+m. | e | | F ool b
T oo e - - R /N 5
igh-frequency gain = a, | ||
| U | |
| | | 2
o ] \R‘\" LU ;;
10/31/2007 (c) 2007 DK Jeong
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12.4 First-Order and Second-Order Filter

_Functions
@ Problem 12.28 (cont.)

ib) High pass (HF) Ljw
A
I
| M
[ \{'
Tis) = fy8 : \ "
2 el 2 -
5 +_1.-E + | L
High-lrequency gain = a, |
| =
l
0

)@yl

|

40’

=4 I ——

- w,=1/2)-(3/2) =1, @,/20=1/2

CZS2 CZS2

(s> +s@, / O+ @?) (s +s+])

m |T(jo)| = a,= 1. Thus,
2

T(s)=

10/31/2007 (c) 2007 DK Jeong

N (s> +s5+1)
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12.5 The Second-Order LCR Resonator

4# The Resonator Natural Modes

™ & > » 0 _C_m_’—-ig

hi e Lé IONEL =“§ ANRTQ k$ o=t |

L 4 »

(a) (b) (c)

= The natural modes can be determined by applying an excitation
that does not change the natural structure of the circuit

= In fig(b) the resonator is excited with a current source I.
: An independent ideal current source is equivalent to an open
circuit — does not alter the natural structure of the resonator
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12.5 The Second-Order LCR Resonator

X 2 The Resonator Natural Modes .k

,fi = Li @ i 2“3 70 R$ o= V.

4 & QO

8]

(a) (b) (c)

Figure 12.17 (a) The second-order parallel LCR resonator. (b, ¢) Two ways of exciting the resonator of (a) without changing its nat
ural structure: resonator poles are those poles of V/7and V,/ V.

= The natural modes can be determined by applying an excitation
that does not change the natural structure of the circuit

= In fig(b) the resonator is excited with a current source I.
: An independent ideal current source is equivalent to an open
circuit — does not alter the natural structure of the resonator

= An alternative way of exciting the parallel LCR resonator is shown in
Fig. (c)
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12.5 The Second-Order LCR Resonator

4 The Resonator Natural Modes (cont.)

[

. - - . o) —C—m—o—iia
R C== L; ;CAD §“ — Li LO H’? C ==
yo (0]
L] [ - L ] O O L » ]
(a) (b) S (c)
e o o e c
F—F L+SC+l s> +s( : )+ 1
S CR  LC
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12.5 The Second-Order LCR Resonator

@ Realization of Transmission Zeros

= Find out where to inject the input voltage signal V. so that the
transfer function V_/V, is the desired one

L J O I L O

7T I

e

!
L

o

|||¢rr;§

o—

(a) General structure
(a)

= Any of the nodes labeled x, y, or z can be disconnected from
ground and connected to Vi forming of a voltage divider.

_ V,(s) _ Z,(s)

T'(s)= =
() Z(9)+Z,(s)
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12.5 The Second-Order LCR Resonator

@ Realization of Transmission Zeros (cont.)

8]

B
-

||| O
|||

(a) General structure
(a)

= The transmission zeros : Z,(s) = zero & Z,(s)#zero
or Z,(s)—infinite & Z,(s)—not infinite
= The output will be zero either when Z,(s) behaves as a short circuit
of Z,(s) behaves as an open circuit.

= If there is a value of s at which both Z, and Z, are zero, then V_/V,
will be finite and no transmission zero is obtained
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12.5 The Second-Order LCR Resonator

4# Realization of the Low-Pass Function

L zeros sL =o0
&  ° O
1
0
- (sC+—)
V: Hg e —— |, R
—> twoO zeros at s =00
1
® 'e _
L T(S)EVO — ZZ — Yl — SL
lh] L.-l"' I/z ZI+Z2 Y1+Y2 L+SC+l
sL
B 1/LC
s*+s(1/CR)+1/LC
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12.5 The Second-Order LCR Resonator

N
\J

@ Realization of the High-Pass Function

' h JeTOS = (0 : Capacitor
O | 0 =0: Inductor
| T(s)= V" 47
o (G R L 1 4 s°+5( ")+a)02
a, =1
O - O
(c) HP
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12.5 The Second-Order LCR Resonator

4# Realization of the Band-Pass Function

z R zeros | 5= 0 :Inductor
o—MW ? ¢ s = oo : Capacitor

= at w, LC-tuned circuit exhibits an infinite
V. Cm:  E .. impedance
— no current flows

= the center freq. gain is unity

i L B 1
= T()=— 2 ___ R
(d) BP e+¥,+Y. 1 1 -
sL
1

_ S(a)
s ) ()
CR’ ' LC
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12.5 The Second-Order LCR Resonator

4# Realization of the Notch Function

L = The impedance of the LC circuit becomes
infinite at @, =1/+/LC

oYY
# . o ..
. ” — Zero transmission
V R V. = The resistor does not introduce zeros.
O

2 2
s° + w,

T'(s)=a
p— 2 s 2
(e) Notch at w,,

= The high-frequency gain a, can be found
from the circuit to be unity
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12.5 The Second-Order LCR Resonator

N

" Realization of the Notch Function (cont.)

= To place the notch frequency w, arbitrarily
relative to wy,

L,C=1/w/

= Thus the L,C, tank circuit introduces a pair

N + 1
(1) General notch of zeros at & JW,

M Jr T i

= Not to alter the natural modes,

C,+C,=C & L,||L,=L
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12.5 The Second-Order LCR Resonator

4 Realization of the Notch Function - LPN

(h) LPN as s == =

10/31/2007

= For the LPN, w >w,
— L,C<(L)||IL)(C;+Cy)
This condition can be satisfied with L,
eliminated (i.e., L,= © and L,=L)

= Transfer function

s> +(1/LC,))
s> +5(1/CR)+1/L(C, +C,)

T(s)=

m Ass —®
Vv /Vi=C,/C,+C,)
Thus,
a,=C/(C,+C))

(c) 2007 DK Jeong 51/76



12.5 The Second-Order LCR Resonator

4@ Realization of the Notch Function - HPN

. Ly = For the HPN, w <w_
— C 0
ﬁﬂ — L,C>(L,||L)(C;+CY)
v, @ 1,4 R ., Which can be satisfied by selecting C,=0
-
(1) HPN (w, < wy)

= Transfer function

T(s) = s’ +(1/LC)
s> +s(1/CR)+[1/(L, || L,)C]

= Ass— V_ approaches V,
thus the high frequency gain, a,, 1s unity.
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12.5 The Second-Order LCR Resonator

4 Realization of the All-pass Function

L
£

Sk

V. C_") ——0C V, oO—e

§H| -

-

4

10/31/2007

= The all-pass transfer function

s> —s(w, /Q)+W02 1 s2(w, / Q)

T(s)=
) s> +s(w, / Q) +w,’ s> +s(w, / Q) +w,’

= The second term is a bandpass function
with a center-frequency gain of 2

= All pass realization with a flat gain of 0.5

T(s)=0.5— s(Wy / Q)
s +s(w, /Q)+wo2
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12.5 The Second-Order LCR Resonator

4l

@~ Problem 12.36
Use the circuit of below figure, design a lowpass filter with w,=10° rad/s and
Q=1/~2. Utilize a 0.1uF capacitor

1/LC a,
T(S): 2 = 2 2
s"+s(l/CR)+1/LC (s +sw,/ Q0+ wy) I
* & O
n a)():l/»\/LC — L =ImH
I Hg G — |
= QZCOOCR
—>R=Q/a)0C=70.7Q =
e
(b) LP
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12.6 Second-Order Active Filters Based on
Inductor Replacement

4 Study a family of op amp-RC circuits (various second-order
filters)

4 Based on an op amp-RC resonator

4 Obtained by replacing the inductor L, in the LCR resonator with

an op amp-RC circuit that has an inductive input impedance
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12.6 Second-Order Active Filters Based on
Inductor Replacement

4 The Antoniou Inductance-Simulation Circuit

»

= Invented by A. Antoniou

= If the circuit is fed at its input (node 1) with a voltage source V, and
the input current is denoted I, (for ideal op amps)

Z. =V ,/I,=sC,R,R;R/R, L=C,R,R;Ry/R,

l
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12.6 Second-Order Active Filters Based on
Inductor Replacement

4 The Antoniou Inductance-Simulation Circuit (cont.)

®- “’\ ® “':© =

Oy

1

0 @
v, ®
L= 2 ARsR3Ry | —— I | — = ‘ “"

v

\ 1 7 5Cy R-
L = L= sC4RR3R5/R; @ SCa K5
|

®
o

(b)

= Assuming ideal op amps.
= The design of this circuit is usually based on selecting
R;=R,=R;=R;=R L=CR?

= Convenient values are selected for C and R to yield the desired
inductance value L
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12.4 First-Order and Second-Order Filter
_Functions
4~ Problem 12.40

Design the Antoniou inductance-simulation circuit to realize an inductance of
0.1H

choose R;=R,=R;=R,=10K

— L= 105C,H Y,

MAN—
m L=0.1H

— C,=InF

<

(a)

10/31/2007

(c) 2007 DK Jeong
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12.6 Second-Order Active Filters Based on
Inductor Replacement

"@ The Op Amp-RC Resonator

N

I~
IONy A
- +K/>— —0 V,
N :
- -0 | l . R, R, Rs .
, V, o T . r_}[? W\,—u—W\,—n—W\,—»—"—<
N ! \
§ R, =4/ C L % R, == (_‘ﬁ\ : Rs
| | T v
1= Xr 72 Lz L / =

i /
(a) L="C,RRRJR

Fa
—AAA-
{“
— K=1+2
iy

(c)

(b)

Y

Figure 12.21 (@) An LCR resonator. (b) An op amp—RC resonator obtained by replacing the inductor L in the LCR resonator of (a) wi
th a simulated inductance realized by the Antoniou circuit of Fig. 12.20(a). (c) Implementation of the buffer amplifier K.
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12.6 Second-Order Active Filters Based on
Inductor Replacement

@ The Op Amp-RC Resonator (cont.)

V.o i = WM—I»—W'\;—{—MW—»—II—<
g R, ==\ R;
II|
'|
(b)

= Replacing the inductor L with a simulated inductance realized by the
Antoniou circuit — second-order resonator.

= Pole frequency
@, =1/+LC = 1/A/C4CsRiR3Rs/ R

10/31/2007 (c) 2007 DK Jeong
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12.6 Second-Order Active Filters Based on

Inductor Replacement
@ The Op Amp-RC Resonator (cont.)

= Pole Q factor

N A‘ 0=w,CR, =R, VCsR2/ CaRiR3Rs

= Usually selects

> .
I ; ;. C;
) l > MH&_‘_&_"—”—‘ C,=Cs=Cand R;=R,=R;=R;=R,
g R ==\ ? R which results in
T/ - O=R. /R

= Select a practically convenient value for C — determine the value of
R to realize a given w, — determine the value of R; to realize a

given Q
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12.6 Second-Order Active Filters Based on
_Inductor Replacement
T@ Realization of the Various Filter types

e SV A G N 7 S\ H‘}"J\ﬁqﬁ
1T EREE e

(b) HP

(a) LP
= Low-pass function : inject V, to node y

‘; = High-pass function : inject V, to node y

RJ )‘e"{ |
'_‘W"_"_‘W"_‘H”Hjj = disconnect node z from ground and
R

L@ =, v ., connect it to the signal source V,

(c) BP
(c) 2007 DK Jeong 62/76
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10

12.6 Second-Order Active Filters Based on

_Inductor Replacement

T@ Realization of the Various Filter types (

cont.)

() HPN. 0, = w,,

)07

Rs
(e) LPN, @, = w,
s
—MW—
"
VWA = V.
—O
+
Co R, R R; G
O 'S | % A'A'A' A "A'A' I I
Sk
<
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12.6 Second-Order Active Filters Based on
Inductor Replacement

@ Realization of the Various Filter types (cont.)

| R, R, R, . v
V. o . ’ . WM—I'—W'\-—'—NW—»—I |—<>—‘j ‘ > P
—— == K=1+=
(] ‘:' ] .-‘\."-. J‘I E 5
\ (c)

= In all cases the output can be taken as the voltage across the
resonance circuit, V..

= Connecting a load there would change the filter characteristics.
— The problem can be solved by utilizing a buffer amplifier.
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12.6 Second-Order Active Filters Based on
Inductor Replacement

# The All- Pass circuit

= An all-pass function with a flat gain of unity

AP = 1 — (BP with a center frequency gain of 2) — complementary

= All-pass circuit with unity flat gain is the complement of the
bandpass circuit a center-frequency of 2.

= A simple procedure for obtaining the complement of a given linear
circuit : Interchanging input and ground in a linear circuit generates
a circuit whose transfer function is the complement of that of the
original circuit.
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12.6 Second-Order Active Filters Based on
_Inductor Replacement
@~ Problem 12.44

Design the all-pass circuit of below figure to provide a phase shift of 180(degree)
at f=1 KHz and to have Q=1. Use 1-nF capacitors.

All pass (AP
(g) pass (AP) my
ra
——WA—
: o
‘ Vv, Lo
O j‘ »
N 4
ﬂ i % Ky @ PosR s o } N / }
~ * ” * ‘v‘v~_—m_‘—m—"—| Ii Ti(s)=a, [¢] o I .
g o | 0o |
10 $ 5 R YR
- Flat | 20 20 | (ﬁT
— —— v l ‘ 0 i
— — ‘ .
______ ‘
1
(2) All-pass e I —

(c) 2007 DK Jeong
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12.6 Second-Order Active Filters Based on

_Inductor Replacement
@~ Problem 12.44 (cont.)

= Phase shift = 1809 at f = f, AN

— e v
— f,= 1kHz = R,/(2nC,CR,R,R;) >4H-J
—1+
BN : ; (@

Let R,=R,~R,=R.=R, C,=C,=C=InF, then o . H ! A+ A+ Ay ]|
fO = 27t/(CR)2 Vi @ g Rq g R
(2) All-pass
| Wo/Q = 1/R6C6 . [.u” =
5'—5—) + @,
— R=Q/C,w,) = 159.16kQ T(s) = ap—Y

2 @, 2
A +5—}+ﬂ}||

Flat gain = a,
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12.7 Second-Order Active Filters Based on the
Two-Integrator-Loop Topology

@ Derivation of the Two-Integrator-Loop Biquad

= To0 derive the two-integrator-loop biquadratic circuit, start from the
second-order high-pass transfer function

Vi Ks’

V. s +s(w, /Q)+WO2

1

= Cross-multiplying the equation and dividing both sides by s?,
2

l o, ,
Vip +§(7Vhp)+(S—ZVhp) =KV,

L)) {y

(a) (h)
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12.7 Second-Order Active Filters Based on the
Two-Integrator-Loop Topology

@ Derivation of the Two-Integrator-Loop Biquad(cont)

= A complete block diagram realization

Y
|
|
Y
o)
|

“ |8
&

Lo -V,

(c)
= From the output of the summer, obtained high-pass transfer function

>
= From the output of the first integrator, obtained bandpass function
I (5) (=5 Kays
bp -

v, s +s(w,/ Q)+ @,

= From the output of the second integrator, obtained lowpass function

T, (s)= o s W, _ Ka,’
v V. s’ +5(w,/ 0)+®,
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12.7 Second-Order Active Filters Based on the
Two-Integrator-Loop Topology

@ Circuit Implementation — KHN biquad

= The Kerwin-Huelsman-Newcomb circuit(KHN biquad)

R; C .
—AAA—— C Ry Ry
| ” . Vi AN
R R Ry
2 AN R Vip © ——
7 Y
V, O—AAA—9 I>—‘ 1 o ’ R, >
L - fy o
—0 V.. e —
- (b)
o A'A ' Vi,

R

(a)

= Integrator : Miller integrator circuit having CR=1/w,

= Summer : Op-amp summing circuit
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12.7 Second-Order Active Filters Based on the
Two-Integrator-Loop Topology
@ Circuit Implementation — KHN biquad

= Design procedure
1) Select suitable C and R for CR=1/w, )

2) Determine the values of the resistors WA - c
associated with the summer from N R J—{ ] I
R R R R o R o 2 V0 ,.M',_:D AN >
(4 (D)2, = (Y,
R, s R s

V. =
" R, +R, R, R, +R,
VWA

2 R,

l o, ,
V@:=I(V}—Z§(T;—V@)—-C;7—V@)

0 | —
A

f:1

~
|
Vo
|

1

R
—> %=2Q—1 (R, =R)

(b)

R
K=2-(/Q) (R, :RI,R—3:2Q—1)
(c) 2007 DK Jeong 71/76
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12.7 Second-Order Active Filters Based on the
Two-Integrator-Loop Topology

" Circuit Implementation — Tow-Thomas Biquad

N

1
L
Q
V _ @y s _ Wy
! K V, § Vi 5 Vi,

Y
|
Y

L r
o E: q
V., O—AAA,— > R | )
i’ ik ’y — AAA—
—0 —|
= o = £ [:

(b)

= All three op amp are used in a single-ended mode.
= All the coefficients of the summer have the same sign.
= High-pass function is no longer available.
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12.7 Second-Order Active Filters Based on the
Two-Integrator-Loop Topology
@ Circuit Implementation — Tgw-Thomas Biquad

MN

OR

——

.
AW ¢

e
LD

= Feedforward scheme is employed to realize the finite transmission
zeros required for the notch and all-pass functions

= The virtual ground at the input of each of the three op amps permits
the input signal to be fed to all three op amps.

= Transfer functions is

V, s*(C,/C)+s(1/C)1/R —r/RR,)+1/(C’RR,)

%

V s* +5(1/OCR)+1/(CR)?

l
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12.6 Second-Order Active Filters Based on

_Inductor Replacement
@~ Problem 12.49

Design the KHN circuit to realize a bandpass filter with a center frequency of
1kHz and a 3-dB bandwidth of 50Hz. Use 10-nF capacitors.

. AA'S
R, C; C
® AN 1 :
|| I
R
, R s AAA—o R
L O |
—0 Vy, =
AN —oO |/

10/31/2007 (c) 2007 DK Jeong

74/76



12.6 Second-Order Active Filters Based on

_Inductor Replacement
@ Problem 12.49 (cont.)

| B=W0/Q g
— Q=(2m103)/(21150)=50 "

[ : C
= Choose C=10nF W |— ” )|
— R=1/w;,C=15.92kQ " R 5
V.o AAA * WVLD_‘ — oV,

= Use R,=R=10kQ, —o Vi L

= Choose R,=10kQ — R3=390kQ

~

f=1

R
R —20-1(R, =R)
RZ

K=2-(1/Q) (R, =Rl,%:2Q—1)

2
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12.8 Single-Amplifier Biquadratic Active Filters

@ the Sallen-and-Key circuits (p. 1132)

| [: Vo _ I/(C,CRR,)
—0 V
| _‘ s+ L [1+RZJ+ I
R, (lf 4R2 R1 Cs C4R1R2
R = ) !
_— ) —
- 0 \/C3C4R1R2
1[",- Q — 1 C4
= JGCRR, 1 1
() Rl R2
DC gain =1
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