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Introduction

◈ Passive LC Filters

◈ Electronic Filter – Active Filter◈
Active RC Filters 
Switched capacitor circuitsSwitched capacitor circuits

→ Advantages : No inductors→ Advantages : No inductors
Inductors are large and physically bulky for low 
frequency applicationsq y pp
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12.1.1 Filter Transmission

◈ Filter – a two port device

Transfer function:
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The filter transmission:
Gain function:
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12.1.2 Filter Types

◈ Frequency-selection Function
Passing : Passband |T|=1Passing : Passband, |T|=1
Stopping : Stopband, |T|=0

◈ Brick-Wall response
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12.1.3 Filter Specification

Passband Ripple  
range: 0.05 dB ~ 3 dB

wp : Passband edge

Amax : Maximum allowed

variation in passband

transmission

ws : Stopband edge

Amin : Minimum required 

stopband attenuation

ws/wp : Selectivity factor
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12.1.3 Filter Specification

◈ Filter Approximation
The process of obtaining a transfer function that meets given specifications

Performed using computer programs(Snelgrove, 1982;Ouslis and Sedra, 1995), filter 

design table(Zverev, 1967) or closed-form expressions(Section 12.3)
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12.2 The Filter Transfer Function

◈ Filter Transfer Function T(s)
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- z1, ,zM : transfer function zeros = transmission zeros
- p1,···,pN : transfer function poles = natural modes
- real or complex number(conjugate pair)
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12.2 The Filter Transfer Function

◈ Filter Transfer Function T(s)
Since in the stopband the transmission is zero or small 
- the zeros are usually, placed on the jω axis at stopband frequencies

Infinite attenuation at ωl1 and ωl2Infinite attenuation at ωl1 and ωl2

1. zeros at s =+ jωl1 & + jωl2

also at  s =- jωl1 & - jωl2

Numerator polynomial
(s + jωl1)(s - jωl1)(s + jωl2)(s - jωl2)

= (s2 + ωl1
2)(s2 + ωl2

2)
→ for s = jω,
(s2 + ω 2)(s2 + ω 2)(s + ωl1 )(s + ωl2 ) 

= (-ω2 + ωl1
2)(-ω2 + ωl2

2)
which is zero at ω=ωl1 and ω=ωl2

2 zeros at s=∞

MN
MaT(s)s →∞→ , as∵

2. zeros at s=∞
the numbers of zeros at s=∞=N—M
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12.2 The Filter Transfer Function

◈◈ Pole-zero pattern for a 5th-order LPF(N=5)
Two pairs of complex-conjugate 
poles and real-axis pole

ll th l li i th i i it→ all the poles lie in the vicinity 
of passband
→ high transmission at pass g p
band frequencies

s =± jω & ± jω & ∞s =± jωl1 & ± jωl2 & ∞
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12.2 The Filter Transfer Function

It has one or more zeros at s = 0 
and one or more zeros at s = ∞and one or more zeros at s = ∞
Assuming that only one zero 
exists at s = 0 & s = ∞

N=6

∞==±=±= ssjsjs ll ,0,, 21 ωω
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12.2 The Filter Transfer Function

It is possible that all zeros are at s=∞

The more selective the required filter response is, the higher its order 
must be, and the closer its natural modes are to the jw axis
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12.2 The Filter Transfer Functions

◈ Problem 12.9 

A third order low pass filter has transmission zeros at ω 2rad/s and ω ∞ ItsA third-order low-pass filter has transmission zeros at ω=2rad/s and ω=∞. Its 

natural modes are at s=-1 and s=-0.5±j0.8. The dc gain is unity. Find T(s)

Poles at -1 and -0.5±j0.8 : denominator D(s)=(s+1)(s2+s+0.89)

Zeros at ∞ and ±j2         : numerator    N(s)=k(s+j2)(s-j2)=k(s2+4)j ( ) ( j )( j ) ( )

There is one zero at ∞ because Degree(D(s))- Degree(N(s))=1. Thus,

)4( 2 +sk

DC gain = 1                    : T(j0)=4k/0.89=1   → k=0.2225
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+
=

sss
sk

sT

T(s) is,

)890)(1(
)4(2225.0

)( 2

2 +
=

s
sT

10/31/2007 (c) 2007 DK Jeong

)89.0)(1(
)( 2 +++ sss

12/76



12.3 Butterworth and Chebyshev Filters

◈◈ In this section, we present two functions that are frequently used 

in approximating the transmission characteristics of low-

pass filters.pass filters. 

: Closed-form expressions
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12.3.1 The Butterworth Filter

◈ Filter Transfer Function T(s)
Monotonically decreasing transmission
All the transmission zero at ω = ∞
The magnitude function for an Nth-orderThe magnitude function for an N order
Butterworth filter with a passband edge ωP is

N
jT

2

1)(
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=ω

at ω = ωP ,
P

21 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ω
ωε

1

Thus, the parameter ε determines the maximum variation in passband transmission,

21
1)(
ε

ω
+

=pjT

p p

Conversely, given Amax,

2
max 1log20 ε+=A

10/31/2007 (c) 2007 DK Jeong

110 10/max −= Aε
14/76



12.3.1 The Butterworth Filter

◈ Filter Transfer Function T(s) (cont.)
In the Butterworth response the maximum 
deviation in passband transmission occurs at the 
passband edge, ωP, only

The first 2N—1 derivatives of |T| relative to ω are 
zero at ω = 0
→ very flat near ω = 0 (maximally flat response)→ very flat near ω = 0 (maximally flat response)

The degree of passband flatness increases as the 
order N is increased

The edge of the stopband, ω = ωS, attenuation is 

o de s c eased
→ as the order N is increased the filter response  

approaches the ideal brick-wall type of response

g p S

This equation can be used to determine the filter order required, which is the lowest 
i t l f N th t i ld A( ) A

[ ] [ ]N
PS

N
PSSA 2222 )(1log10)(11log20)( ωωεωωεω +=+−=

integer value of N that yields A(ωS)≥Amin
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12.3.1 The Butterworth Filter

◈ Filter Transfer Function T(s) (cont.)

The natural modes of an Nth-order Butterworth filter can be determined from the 
graphical construction above.
Natural modes lies on a circle of radius ωP(1/ε)1/N

　 → same frequency of ω0 = ωP(1/ε)1/N

Space by equal angles of π/N, with the first mode at an angle π/2N from the +jw axis.
Transfer function is

K is a constant dc gain of the filter)( 0
NKT ω

→ K is a constant dc gain of the filter
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12.3.1 The Butterworth Filter

◈ How to find a Butterworth transfer function
Determine ε. 

110 10/max −= Aε
Determine the required filter order as the lowest integer value of N that results in  
A(ωS) ≥ Amin. 

[ ] [ ]NNA 2222 )(1log10)(11log20)( ωωεωωεω ++

Determine the N natural modes

[ ] [ ]PSPSSA )(1log10)(11log20)( ωωεωωεω +=+−=

Determine T(s) 
)( 0

NKsT =
ω
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12.3.1 The Butterworth Filter

◈ Example 12.1 

Fi d th B tt th t f f ti th t t th f ll i l filtFind the Butterworth transfer function that meets the following low-pass filter 

specifications: fp=10kHz, Amax=1dB, fs=15kHz, Amin=25dB, dc gain=1

5088.0110 10/max =−= Aε

[ ]N
PSSA 22 )(1log10)( ωωεω += [ ]PSSA )(1log10)( ωωεω +

dB
dB

3.25
3.22

=
= (when N=8)

(when N=9)

ω0 = ωp(1/ε)1/N = 6.773×104rad/s
p1 = ω0(-cos80°+jsin80°) = ω0(-0.1736+j0.9848)

Combining ω0, ω9 → s2+s0.3472ω0+ω0
2

)(
9
0ωKT
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12.3.2 The Chebyshev Filter

◈ The Chebyshev Filter

Equiripple response (Amax = the peak ripple) in the passband and a monotonically    
decreasing transmission in the stopbanddecreasing transmission in the stopband.
The odd-order filter, |T(0)|=1
The even-order filter exhibits its maximum magnitude deviation at w = 0.
Total number of passband maxima and minima equals the order of the filter, N.Total number of passband maxima and minima equals the order of the filter, N.
All the zeros are at w = ∞.
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12.3.2 The Chebyshev Filter

◈ The Chebyshev Filter (cont.)

The magnitude of the transfer function with a passband edge ωP is

P
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jT ωω
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Thus, the parameter ε determines the passband ripple according to 

conversely

PPj
ε+1

)(
2

)1log(10 2
max ε+=A

conversely,
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12.3.2 The Chebyshev Filter

◈ The Chebyshev Filter (cont.)

The attenuation at the stopband edge(ω = ωS) is

))](cosh(cosh1log[10)( 122
PSS NA ωωεω −+=

→ this equation can be used to determine the order N required to obtain a specified      
Amin by finding the lowest integer value of N that yields A(ωS) ≥ Amin.

Increasing the order N of the Chebyshev filter causes its magnitude function to 
approach the ideal brick-wall low-pass response.
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12.3.2 The Chebyshev Filter

◈ The Chebyshev Filter (cont.)

The poles are

Nkkjkp 211sinh1cosh12cos1sinh1sinh12sin 11 ⋅⋅⋅=⎟
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The transfer function is
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12.3.2 The Chebyshev Filter

◈ How to find the transfer function
1. Determine ε

110 10/max −= Aε
2. Determine the order required, A(ωS)

3 D t i th l

))](cosh(cosh1log[10)( 122
PSS NA ωωεω −+=

3. Determine the poles, pk

Nk
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2
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4. Determine the transfer function, T(s)
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12.3.2 The Chebyshev Filter

◈ Example 12.2 

Fi d th Ch b h t f f ti th t t th f ll i l filtFind the Chebyshev transfer function that meets the following low-pass filter 

specifications: fp=10kHz, Amax=1dB, fs=15kHz, Amin=25dB, dc gain=1

))](cosh(cosh1log[10)( 122
SS NA ωωεω −+=

5088.0110 10/max =−= Aε

))](cosh(cosh1log[10)( PSS NA ωωεω +

kk 11121112 ⎞⎛⎞⎛⎞⎛⎞⎛

dB
dB

9.29
6.21

=
= (when N=4)

(when N=5)

p1,p5 = ωp(-0.0895±j0.9901), p2,p4 = ωp(-0.2342±j0.6119), p5 = ωp(-j0.2895)
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12.4 First-Order and Second-Order Filter 

◈ Study the simplest filter transfer functions

fi t d d d

Functions

■ first and second order

◈ Cascade design

■ realize a high-order filter.

→ design of active filters (utilizing op amps and RC circuits)

◈ Filte poles occ in comple conj gate pai s◈ Filter poles occur in complex-conjugate pairs

■ a high-order transfer function T(s) is factored into the product of second-order 

functionsfunctions.

◈ If T(s) is odd there will also be a first-order function in the factorization.

◈ Overall transfer function of the cascade◈ Overall transfer function of the cascade
simply the product of the transfer functions of the individual blocks. 
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12.4 First-Order and Second-Order Filter 

◈ General First-Order Transfer Function
Functions

0

01)(
ω+
+

=
s

asasT bilinear transfer function

A natural mode at s=-ω0

0ω+s

A transsmission zero at s=-a0/a1

High frequency gain → a1

The numerator coefficients, a0 and a1, determine the type of filter(e.g., low pass, 
high pass, etc.) 

Active circuit
Low output impedance
Limits the high-frequency operation(→ op amp)
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12.4 First-Order and Second-Order Filter 

◈First-Order Filters
Functions
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12.4 First-Order and Second-Order Filter 

◈First-Order Filters (cont.)
Functions

Although the transmission is constant, its phase shows frequency selectivity
All pass filters are used as phase shifters and in systems that require phase shapingAll-pass filters are used as phase shifters and in systems that require phase shaping
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12.4 First-Order and Second-Order Filter 

◈ Second-Order Filter Functions
Functions

The general second order (or biquadratic) filter transfer function

22
01

2
2)( ++

=
asasasT

0
2

0
2 )/(

)(
ωω ++ sQs

sT

ω0 and Q determine the natural modes(poles) according to

20ω )4/1(1
2

, 2
0

0
21 Qj

Q
pp −±−= ωω

Q>0.5 : complex-conjugate natural modes.
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12.4 First-Order and Second-Order Filter 

◈ Second-Order Filter Functions (cont.)
Functions

Q determines the distance of the 
poles from the jω axis

th hi h th l f Q th
Pole freq.

: the higher the value of Q, the 
closer the poles are to the jω axis
→ more selective

Q < 0 → poles are in the RHP 
→ oscillation→ oscillation

Q = pole quality factor = pole Q
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12.4 First-Order and Second-Order Filter 

◈ Second-Order Filter Functions – LP case
Functions

Lowpass Filter : The peak occurs only for

→ Butterworth or maximally flat

2
1

>Q

1Q → Butterworth, or maximally flat
2

=Q
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12.4 First-Order and Second-Order Filter 

◈ Second-Order Filter Functions – HP case
Functions

Highpass Filter : Transmission zeros at s=0

Peak for
1

>QPeak for
2

>Q
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12.4 First-Order and Second-Order Filter 

◈ Second-Order Filter Functions – BP case
Functions

Bandpass Filter : Transmission zeros at s=0 and s=∞p
Magnitude response peaks at ω = ωo=center frequency 

3dB: ω1 ω2=
o11 2

ωω ±+3dB: ω1, ω2

BW=ω2—ω1=      :as Q↑, BW↓(more selective)

QQo 24
1 2ω ±+

Q
oω
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12.4 First-Order and Second-Order Filter 

◈ Second-Order Filter Functions – Notch case
Functions

Notch Filter : Transmission zeros are located on the jω axis, 
at the complex-conjugate locations ±jωn, then the 
magnitude response exhibits zero tranmission at ω=ωmagnitude response exhibits zero tranmission at ω ωn.

(notch in the magnitude response occurs at ω=ωn, 
notch frequency)notch frequency)
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12.4 First-Order and Second-Order Filter 

◈ Second-Order Filter Functions – LPN, HPN
Functions
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12.4 First-Order and Second-Order Filter 

◈ Second-Order Filter Functions – All-pass case
Functions

Allpass Filter : Two transmission zeros are in the right half of the s 
plane at the mirror image locations of the polesplane, at the mirror image locations of the poles

10/31/2007 (c) 2007 DK Jeong 36/76



12.4 First-Order and Second-Order Filter 

◈ Problem 12.19

Use the information displayed in below figure to design a first order op amp RC

Functions

Use the information displayed in below figure to design a first-order op amp-RC 

low-pass filter having a 3-dB frequency of 10 kHz, a dc gain magnitude of 10, 

and an input resistance of 10kΩand an input resistance of 10kΩ
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12.4 First-Order and Second-Order Filter 

◈ Problem 12.19 (cont.)
Functions

Rin = R1 = 10kΩ

DC gain = -R2/R1 = -10
→ R2 = 10R1 = 100kΩ

R2C=1/w0
→ C = 1/w0R2 = 0.159nF
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12.4 First-Order and Second-Order Filter 

◈ Problem 12.28

Use the information given in below figure to find the transfer function of a

Functions

Use the information given in below figure to find the transfer function of a 

second-order high-pass filter with natural modes at -0.5±j√3/2 and a high 

frequency gain of unityfrequency gain of unity.
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12.4 First-Order and Second-Order Filter 

◈ Problem 12.28 (cont.)
Functions

,1)2/3()2/1( 22
0 =−=ω 2/12/0 =Qω
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2
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2
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|T(j∞)| = a2 = 1. Thus,
2s
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12.5 The Second-Order LCR Resonator

◈ The Resonator Natural Modes

The natural modes can be determined by applying an excitation 
that does not change the natural structure of the circuit
In fig(b) the resonator is excited with a current source I.
: An independent ideal current source is equivalent to an open 
circuit → does not alter the natural structure of the resonatorcircuit → does not alter the natural structure of the resonator
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12.5 The Second-Order LCR Resonator

◈ The Resonator Natural Modes

The natural modes can be determined by applying an excitation 

Figure 12.17  (a) The second-order parallel LCR resonator. (b, c) Two ways of exciting the resonator of (a) without changing its nat
ural structure: resonator poles are those poles of Vo/I and Vo/Vi.

that does not change the natural structure of the circuit
In fig(b) the resonator is excited with a current source I.
: An independent ideal current source is equivalent to an open: An independent ideal current source is equivalent to an open 
circuit → does not alter the natural structure of the resonator
An alternative way of exciting the parallel LCR resonator is shown in 
Fi ( )Fig. (c)
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12.5 The Second-Order LCR Resonator

◈ The Resonator Natural Modes (cont.)

C
s

CYI
Vo

1)1(11
11

2
===

Equating the denominator to the standard form [s2+s(ω0/Q)+ ω0
2]
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ss
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12.5 The Second-Order LCR Resonator

◈ Realization of Transmission Zeros
Find out where to inject the input voltage signal Vi so that the 
transfer function Vo/Vi is the desired one

Any of the nodes labeled x, y, or z can be disconnected from 
ground and connected to Vi forming of a voltage dividerground and connected to Vi forming of a voltage divider.

)()(
)(

)(
)()( 2

sZsZ
sZ

sV
sVsT o

+
==
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12.5 The Second-Order LCR Resonator

◈ Realization of Transmission Zeros (cont.)

The transmission zeros : Z2(s) = zero & Z1(s)≠zero 2( ) 1( )
or Z1(s)→infinite & Z2(s)→not infinite

The output will be zero either when Z2(s) behaves as a short circuit 
of Z (s) behaves as an open circuitof Z1(s) behaves as an open circuit.
If there is a value of s at which both Z1 and Z2 are zero, then Vo/Vi
will be finite and no transmission zero is obtained
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12.5 The Second-Order LCR Resonator

◈ Realization of the Low-Pass Function

sL    zeros ∞=
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12.5 The Second-Order LCR Resonator

◈ Realization of the High-Pass Function

I d t0
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12.5 The Second-Order LCR Resonator

◈ Realization of the Band-Pass Function

⎜
⎝
⎛

∞=
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Capacitor:
Inductor:0zeros s

s
⎝ ∞= Capacitor:s

at w0, LC-tuned circuit exhibits an infinite 
impedance
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→ no current flows 
the center freq. gain is unity
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12.5 The Second-Order LCR Resonator

◈ Realization of the Notch Function

The impedance of the LC circuit becomes 
infinite at LC/1=ωinfinite at 
→ zero transmission

The resistor does not introduce zeros

LC/10 =ω

The resistor does not introduce zeros. 

2
0

2

)( ω+sasT

The high-frequency gain a2 can be found 

( ) 2
00

2
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2 /
)(

ωω ++
=

Qss
asT

e g eque cy ga a2 ca be ou d
from the circuit to be unity
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12.5 The Second-Order LCR Resonator

◈ Realization of the Notch Function (cont.)

To place the notch frequency wn arbitrarily 
relative to wrelative to w0,

L1C1=1/wn
2

Thus the L1C1 tank circuit introduces a pair 
f ± jof zeros at ± jwn

Not to alter the natural modes,

C1+C2=C   &   L1||L2=L 
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12.5 The Second-Order LCR Resonator

◈ Realization of the Notch Function - LPN

For the LPN, wn>wo
→ L C <(L ||L )(C +C )→ L1C1<(L1||L2)(C1+C2)

This condition can be satisfied with L2
eliminated (i.e., L2= ∞ and L1=L)

Transfer function

)/1()( 1
2 LCsT +

( ) )(/1/1
)()(

21
2

1

CCLCRss
sT

+++
=

As s →∞ 
Vo/Vi=C1/(C1+C2)

Thus,
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12.5 The Second-Order LCR Resonator

◈ Realization of the Notch Function - HPN

For the HPN, wn<wo

→ L1C1>(L1||L2)(C1+C2)
Which can be satisfied by selecting C2=0

Transfer function

( ) ])||/(1[/1
)/1()(

21
2

1
2

CLLCRss
CLssT

++
+

=

As s →∞ Vo approaches Vi,
thus the high frequency gain, a2, is unity.
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12.5 The Second-Order LCR Resonator

◈ Realization of the All-pass Function

The all-pass transfer function
22 )/(2)/( QQ
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The second term is a bandpass function 
with a center-frequency gain of 2

All pass realization with a flat gain of 0.5
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12.5 The Second-Order LCR Resonator

◈ Problem 12.36

Use the circuit of below figure design a lowpass filter with ω 105 rad/s andUse the circuit of below figure, design a lowpass filter with ω0=105 rad/s and 

Q=1/√2. Utilize a 0.1uF capacitor

)/(/1)/1(
/1)( 2

00
2

0
2 ωω ++

=
++

=
Qss

a
LCCRss

LCsT

→ L = 1mH

Q = ω0CR

LC/10 =ω

Q  ω0CR
→ R = Q/ω0C = 70.7Ω
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12.6 Second-Order Active Filters Based on 
Inductor Replacement

◈ Study a family of op amp-RC circuits (various second-order 

filters)e s)

◈◈ Based on an op amp-RC resonator

◈ Obtained by replacing the inductor L, in the LCR resonator with 

an op amp-RC circuit that has an inductive input impedancean op amp RC circuit that has an inductive input impedance
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12.6 Second-Order Active Filters Based on 

◈ The Antoniou Inductance-Simulation Circuit
Inductor Replacement

Invented by A. Antoniou
If the circuit is fed at its input (node 1) with a voltage source V1 and 
th i t t i d t d I (f id l )the input current is denoted I1, (for ideal op amps)

Zin=V1/I1=sC4R1R3R5/R2 L=C4R1R3R5/R2in 1 1 4 1 3 5 2 4 1 3 5 2
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12.6 Second-Order Active Filters Based on 

◈ The Antoniou Inductance-Simulation Circuit (cont.)
Inductor Replacement

Assuming ideal op amps.
The design of this circuit is usually based on selecting

2R1=R2=R3=R5=R           L=CR2

Convenient values are selected for C and R to yield the desired 
inductance value Linductance value L
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12.4 First-Order and Second-Order Filter 

◈ Problem 12.40

Design the Antoniou inductance simulation circuit to realize an inductance of

Functions

Design the Antoniou inductance-simulation circuit to realize an inductance of 

0.1H

L = C4R1R3R5/R2
choose R1=R2=R3=R5=10K Ω

→ L= 108C4H

L=0.1H

→ C4=1nFC4 1nF
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12.6 Second-Order Active Filters Based on 

◈ The Op Amp-RC Resonator
Inductor Replacement

Figure 12.21  (a) An LCR resonator. (b) An op amp–RC resonator obtained by replacing the inductor L in the LCR resonator of (a) wi

10/31/2007 (c) 2007 DK Jeong
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th a simulated inductance realized by the Antoniou circuit of Fig. 12.20(a). (c) Implementation of the buffer amplifier K.
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12.6 Second-Order Active Filters Based on 

◈ The Op Amp-RC Resonator (cont.)
Inductor Replacement

Replacing the inductor L with a simulated inductance realized by the 
A t i i it d d tAntoniou circuit → second-order resonator.
Pole frequency

//1/1 RRRRCCLC
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12.6 Second-Order Active Filters Based on 

◈ The Op Amp-RC Resonator (cont.)
Inductor Replacement

Pole Q factor

5314266660 / RRRCRCRRCQ ==ω

Usually selects 
C4=C6=C and R1=R2=R3=R5=R,

hi h lt iwhich results in

RRQ
CR
/

/10

=
=ω

RRQ /6=

Select a practically convenient value for C → determine the value of 
R to realize a given ω0 → determine the value of R6 to realize a 
given Qg
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12.6 Second-Order Active Filters Based on 

◈ Realization of the Various Filter types
Inductor Replacement

Low-pass function : inject Vi to node y
given Q

High-pass function : inject Vi to node y

disconnect node z from ground and 
connect it to the signal source Vi
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12.6 Second-Order Active Filters Based on 

◈ Realization of the Various Filter types (cont.)
Inductor Replacement
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12.6 Second-Order Active Filters Based on 

◈ Realization of the Various Filter types (cont.)
Inductor Replacement

In all cases the output can be taken as the voltage across the 
i it Vresonance circuit, Vr.

Connecting a load there would change the filter characteristics.
→ The problem can be solved by utilizing a buffer amplifier.p y g p
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12.6 Second-Order Active Filters Based on 

◈ The All- Pass circuit
Inductor Replacement

An all-pass function with a flat gain of unity

AP = 1 (BP with a center frequency gain of 2) → complementaryAP = 1 – (BP with a center frequency gain of 2) → complementary

All-pass circuit with unity flat gain is the complement of the p y g p
bandpass circuit a center-frequency of 2.

A i l d f bt i i th l t f i liA simple procedure for obtaining the complement of a given linear 
circuit : Interchanging input and ground in a linear circuit generates 
a circuit whose transfer function is the complement of that of the 
original circuit.
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12.6 Second-Order Active Filters Based on 

◈ Problem 12.44

Design the all pass circuit of below figure to provide a phase shift of 180(degree)

Inductor Replacement

Design the all-pass circuit of below figure to provide a phase shift of 180(degree)

at f=1 KHz and to have Q=1. Use 1-nF capacitors.
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12.6 Second-Order Active Filters Based on 

◈ Problem 12.44 (cont.)
Phase shift = 180O at f = f

Inductor Replacement

Phase shift = 180 at f = f0

→ f0 = 1kHz = R2/(2πC4C6R1R3R5) 

L t R R R R R C C C 1 F thLet R1=R2=R3=R5=R, C4=C6=C=1nF, then

f0 = 2π/(CR)2

R = 1/2πf0C = 159.16k Ω = R1 = R2 = R3 = R5

w0/Q = 1/R6C6

R Q/(C ) 159 16kΩ→ R6=Q/(C6w0) = 159.16kΩ
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12.7 Second-Order Active Filters Based on the 

◈ Derivation of the Two-Integrator-Loop Biquad
Two-Integrator-Loop Topology

To derive the two-integrator-loop biquadratic circuit, start from the 
second-order high-pass transfer function

2V

Cross-multiplying the equation and dividing both sides by s2
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12.7 Second-Order Active Filters Based on the 

◈ Derivation of the Two-Integrator-Loop Biquad(cont)
Two-Integrator-Loop Topology

A complete block diagram realization

From the output of the summer, obtained high-pass transfer function

From the output of the first integrator, obtained bandpass function
i

hp
hp V

V
T =

)/( ω KVs

From the output of the second integrator, obtained lowpass function
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12.7 Second-Order Active Filters Based on the 

◈ Circuit Implementation – KHN biquad
Two-Integrator-Loop Topology

The Kerwin-Huelsman-Newcomb circuit(KHN biquad)

Integrator : Miller integrator circuit having CR=1/w0

Summer : Op-amp summing circuit
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12.7 Second-Order Active Filters Based on the 

◈ Circuit Implementation – KHN biquad
Two-Integrator-Loop Topology

Design procedure
1) Select suitable C and R for CR=1/ω0

2) Determine the values of the resistors
associated with the summer from
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12.7 Second-Order Active Filters Based on the 

◈ Circuit Implementation – Tow-Thomas Biquad
Two-Integrator-Loop Topology

All three op amp are used in a single-ended mode.
All the coefficients of the summer have the same sign.
High pass function is no longer availableHigh-pass function is no longer available.
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12.7 Second-Order Active Filters Based on the 

◈ Circuit Implementation – Tow-Thomas Biquad
Two-Integrator-Loop Topology

Feedforward scheme is employed to realize the finite transmission p y
zeros required for the notch and all-pass functions
The virtual ground at the input of each of the three op amps permits 
the input signal to be fed to all three op ampsthe input signal to be fed to all three op amps.
Transfer functions is

2
2

311
2 )/(1)//1)(/1()/( RRCRRrRCsCCsVo +−+

10/31/2007 (c) 2007 DK Jeong

22
2311

)/(1)/1(
)())(()(

CRQCRssVi

o

++
=

73/76



12.6 Second-Order Active Filters Based on 

◈ Problem 12.49

Design the KHN circuit to realize a bandpass filter with a center frequency of

Inductor Replacement

Design the KHN circuit to realize a bandpass filter with a center frequency of 

1kHz and a 3-dB bandwidth of 50Hz. Use 10-nF capacitors.
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12.6 Second-Order Active Filters Based on 

◈ Problem 12.49 (cont.)
B=w /Q

Inductor Replacement

B=w0/Q
→ Q=(2π103)/(2π50)=50

Choose C=10nF
→ R=1/w0C=15.92kΩ

Use R1=Rf=10kΩ, 1 f
R3/R2=2Q-1=39

Choose R2=10kΩ → R3=390kΩ
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12.8 Single-Amplifier Biquadratic Active Filters

◈ the Sallen-and-Key circuits (p. 1132)
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