
II - Combinational Logic Contemporary Logic Design 1

Ch 2. Combinational Logic

II - Combinational Logic Contemporary Logic Design 2

Combinational logic

Define
The kind of digital system whose output behavior depends
only on the current inputs
memoryless: its outputs are independent of the historical
sequence of values presented to it as inputs
(cf.) Sequential logic

Many ways to describe combination logic
Boolean algebra expression
wired up logic gates
truth tables tabulating input and output combinations
graphical maps
program statements in a hardware description language

II - Combinational Logic Contemporary Logic Design 3

Examples of combinational logic

The equivalence circuit
X Y equal
0 0 1
0 1 0
1 0 0
1 1 1

X Y Zero One Two
0 0 1 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1

The tally circuit

Binary Adder
X Y Cout S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

X Y Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

< Half-adder>

< Full-adder>

II - Combinational Logic Contemporary Logic Design 4

Laws and theorems of Boolean logic

Basic concept
Boolean algebra is the mathematical foundation of digital systems
laws (axioms) : The property to which the operations of Boolean
algebra must adhere
Axioms can be used to prove more general laws

Boolean operations
Operation order

COMPLEMENT AND OR
Parentheses : change the default order of evaluation
examples :

()() CBCBA +•=+• A)1
() ()CBCBA •+=•+ A 2)

II - Combinational Logic Contemporary Logic Design 5

Axioms of Boolean algebra

A Boolean algebra consists of
a set of elements B
binary operations { + , • }
and a unary operation { ’ }
such that the following axioms hold (Huntington's postulates):

1. the set B contains at least two elements: a, b
2. closure: a + b is in B a • b is in B
3. identity: a + 0 = a a • 1 = a
4. complementarity: a + a’ = 1 a • a’ = 0
5. commutativity: a + b = b + a a • b = b • a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c

(redundant) = a + b + c = a • b • c

II - Combinational Logic Contemporary Logic Design 6

Axioms/theorems of Boolean algebra

Operations with 0 and 1:
1. X • 1 = X 1D. X + 0 = X
2. X + 1 = 1 2D. X • 0 = 0

Idempotent theorem:
3. X + X = X 3D. X • X = X

Involution theorem:
4. (X’)’ = X

Theorem of complementarity:
5. X + X’ = 1 5D. X • X’ = 0

Commutative law:
6. X + Y = Y + X 6D. X • Y = Y • X

Associative law:
7. (X + Y) + Z = X + (Y + Z) 7D. (X • Y) • Z = X • (Y • Z)

= X + Y + Z = X • Y • Z

II - Combinational Logic Contemporary Logic Design 7

Axioms/theorems of Boolean algebra (cont’d)

Distributive law:
8. X • (Y + Z) = (X • Y) + (X • Z) 8D. X + (Y • Z) = (X + Y) • (X + Z)

Simplification theorems:
9. X • Y + X • Y’ = X 9D. (X + Y) • (X + Y’) = X
10. X + X • Y = X 10D. X • (X + Y) = X
11. (X + Y’) • Y = X • Y 11D. (X • Y’) + Y = X + Y

DeMorgan’s law:
12. (X + Y + Z +...)’ 12D. (X • Y • Z • ...)’

= X’ • Y’ • Z’ •... = X’ + Y’ + Z’ +...

General form:
13. {f(X1, X2, ... , Xn, 0, 1, +, •)}’ = {f(X1’, X2’, ... , Xn’, 1, 0, •, +)}

II - Combinational Logic Contemporary Logic Design 8

Duality:
14. (X + Y + Z + ...)D 14D. (X • Y • Z • ...)D

--> X • Y • Z • ... --> X + Y + Z + ...
General form:

15. {f(X1,X2,...,Xn,0,1,+,•)}D --> f(X1,X2,...,Xn,1,0,•,+)
Theorem for multiplying and factoring

16. (X + Y) • (X’ + Z) 16D. X • Y + X’ • Z
= X • Z + X’ • Y = (X + Z) • (X’ + Y)

Consensus theorem:
17. X • Y + Y • Z + X’ • Z 17D. (X + Y) • (Y + Z) • (X’ + Z)

= X • Y + X’ • Z = (X + Y) • (X’ + Z)

Axioms/theorems of Boolean algebra (cont’d)

II - Combinational Logic Contemporary Logic Design 9

Verifying the Boolean theorems using the axioms of Boolean
algebra:

e.g., the Uniting theorem(9): X • Y + X • Y’ = X?

e.g., the Simplification theorem(10): X + X • Y = X?

Distributive law (8) X • (Y + Y’) = X
Complementarity theorem (5) X • (1) = X
Identity (1D) X = X

Identity (1D) X • 1 + X • Y = X
Distributive law (8) X(1 + Y) = X
Commutative law (6) X(Y + 1) = X
Identity (2) X(1) = X
Identity (1) X = X

Axioms/theorems of Boolean algebra (cont’d)

II - Combinational Logic Contemporary Logic Design 10

Duality and DeMorgan’s law

Duality
a dual of a Boolean expression is derived by replacing
• by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
any theorem that can be proven is thus also proven for its dual!
a meta-theorem (a theorem about theorems)
allow to derive new theorems
: (e.g.) the dual of the Uniting theorem(9), X • Y + X • Y’ = X, is
(X + Y) • (X + Y’) = X. The proof of the dual follows step-by-step, simply
using the duals of the laws used in the original proof.

(X + Y) • (X + Y’) = X?
X + (Y •Y’) = X Distributive law (8D)

X + 0 = X Complementarity theorem (5D)
X = X Identity (1)

II - Combinational Logic Contemporary Logic Design 11

Duality and DeMorgan’s law

DeMorgan’s law
Give a procedure for complementing a complex function
The complemented expression is derived by replacing
All literals by their complements, 0 by 1, 1 by 0, • by + and + by •
(e.g.) the complement of Z = ABC + ABC + ABC + ABC
Z = (ABC + ABC + ABC + ABC)
Z = ABC • ABC • ABC • ABC
Z = (A + B + C) (A + B + C) (A + B + C) (A + B + C)

II - Combinational Logic Contemporary Logic Design 12

X Y 16 possible functions (F0–F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0
X and Y X Y

X or Y

not Y not X 1

X
Y F

X xor Y

X nor Y
not (X or Y)

X = Y X nand Y
not (X and Y)

Possible logic functions of two variables

There are 16 possible functions of 2 input variables:

NOT (X implies Y)
NOT (Y implies X) Y implies X

X implies Y

II - Combinational Logic Contemporary Logic Design 13

Cost of different logic functions

Different functions are easier or harder to implement
each has a cost associated with the number of switches needed
0 (F0) and 1 (F15): require 0 switches, directly connect output to
low/high
X (F3) and Y (F5): require 0 switches, output is one of inputs
X’ (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate
X nor Y (F4) and X nand Y (F14): require 4 switches
X or Y (F7) and X and Y (F1): require 6 switches
X = Y (F9) and X ⊕ Y (F6): require 16 switches

thus, because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice

II - Combinational Logic Contemporary Logic Design 14

X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y

X
Y

Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y’ + X’ Y
X or Y but not both

("inequality", "difference")

X xnor Y = X Y + X’ Y’
X and Y are the same

("equality", "coincidence")

NAND

NOR

XOR
X ⊕ Y

XNOR
X = Y

Realizing Boolean formulas (logic gates)

II - Combinational Logic Contemporary Logic Design 15

Complex logic function can be constructed from more primitive
functions by wiring up logic gates
example : 2-bit adder

Realizing Boolean formulas (logic blocks and
hierarchy)

Half Adder
A

B

S

C
HA

Full Adder
Cin

A
B

S
Cout

FA

FA

A0
B0

A1
B1

2 bit Adder

S0

S1

Cout

HA

C0 =0

C1

Cout

II - Combinational Logic Contemporary Logic Design 16

Time behavior and waveforms

Waveform: represent signal propagation over time
x-axis: the time step
y-axis: the logical value

Unit delay model: considering the delay through any gate as taking
exactly one time unit for a simplifying assumption

Time

A0

A1
B0
B1
C0

C1
S0
S1

C2

HA

Full Adder

Cin

A

B

S

Cout
HA

II - Combinational Logic Contemporary Logic Design 17

Minimizing the number of gates and wires

A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

two-level realization
(Z1=ABC’+A’C+B’C)

XOR gate (lowest gate count
but the worst delay;
Z3= (AB)⊕C

multi-level realization
(simple gates but long path;
Z2=TC’+T’C, T=AB)

Different implementations of one function

Z=A’B’C+A’BC+AB’C+
ABC’

II - Combinational Logic Contemporary Logic Design 18

Two-level logic

Canonical form
Standard form for a Boolean expression
Unique algebraic signature of the function
Two alternative forms

sum-of-products
product-of-sums

Incompletely specified function
consider one more set: don’t care set

II - Combinational Logic Contemporary Logic Design 19

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

F = 001 011 101 110 111

+ A’BC

Sum-of-products canonical forms

Also known as disjunctive normal form
Also known as minterm expansion

+ AB’C + ABC’ + ABCA’B’C

II - Combinational Logic Contemporary Logic Design 20

short-hand notation for
minterms of 3 variables

A B C minterms
0 0 0 A’B’C’ m0
0 0 1 A’B’C m1
0 1 0 A’BC’ m2
0 1 1 A’BC m3
1 0 0 AB’C’ m4
1 0 1 AB’C m5
1 1 0 ABC’ m6
1 1 1 ABC m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

= m1 + m3 + m5 + m6 + m7
= A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form ≠ minimal form
F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’

= (A’B’ + A’B + AB’ + AB)C + ABC’
= ((A’ + A)(B’ + B))C + ABC’
= C + ABC’
= ABC’ + C
= AB + C

Sum-of-products canonical form (cont’d)

Product term (or minterm)
ANDed product of literals – input combination for which output is true
each variable appears exactly once, true or inverted (but not both)

II - Combinational Logic Contemporary Logic Design 21

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F = 000 010 100
F = (A + B + C)

F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Product-of-sums canonical form

Also known as conjunctive normal form
Also known as maxterm expansion

(A + B’ + C) (A’ + B + C)

II - Combinational Logic Contemporary Logic Design 22

A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C’ M1
0 1 0 A+B’+C M2
0 1 1 A+B’+C’ M3
1 0 0 A’+B+C M4
1 0 1 A’+B+C’ M5
1 1 0 A’+B’+C M6
1 1 1 A’+B’+C’ M7

short-hand notation for
maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

= M0 • M2 • M4
= (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)
(A + B + C) (A’ + B + C)

= (A + C) (B + C)

Product-of-sums canonical form (cont’d)

Sum term (or maxterm)
ORed sum of literals – input combination for which output is false
each variable appears exactly once, true or inverted (but not both)

II - Combinational Logic Contemporary Logic Design 23

canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Four alternative two-level implementations
of F

II - Combinational Logic Contemporary Logic Design 24

Waveforms for the four alternatives

Waveforms are essentially identical
except for timing hazards (glitches)
delays almost identical (modeled as a delay per level, not type of
gate or number of inputs to gate)

II - Combinational Logic Contemporary Logic Design 25

S-o-P, P-o-S, and DeMorgan’s theorem

Sum-of-products
F’ = A’B’C’ + A’BC’ + AB’C’

Apply DeMorgan’s
(F’)’ = (A’B’C’ + A’BC’ + AB’C’)’
F = (A + B + C) (A + B’ + C) (A’ + B + C)

Product-of-sums
F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Apply DeMorgan’s
(F’)’ = ((A + B + C’)(A + B’ + C’)(A’ + B + C’)(A’ + B’ + C)(A’ + B’ + C’))’
F = A’B’C + A’BC + AB’C + ABC’ + ABC

II - Combinational Logic Contemporary Logic Design 26

Conversion between canonical forms

Minterm to maxterm conversion
use maxterms whose indices do not appear in minterm expansion
e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

Maxterm to minterm conversion
use minterms whose indices do not appear in maxterm expansion
e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7)

Minterm expansion of F to minterm expansion of F’
use minterms whose indices do not appear
e.g., F(A,B,C) = Σm(1,3,5,6,7) F’(A,B,C) = Σm(0,2,4)

Maxterm expansion of F to maxterm expansion of F’
use maxterms whose indices do not appear
e.g., F(A,B,C) = ΠM(0,2,4) F’(A,B,C) = ΠM(1,3,5,6,7)

II - Combinational Logic Contemporary Logic Design 27

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should
never be encountered in practice
– "don’t care" about associated
output values, can be exploited
in minimization

Incompletely specified functions

Example: binary coded decimal increment by 1
BCD digits encode the decimal digits 0 – 9
in the bit patterns 0000 – 1001

don’t care (DC) set of W

on-set of W

II - Combinational Logic Contemporary Logic Design 28

Notation for incompletely specified functions

Don’t cares and canonical forms
so far, only represented on-set
also represent don’t-care-set
need two of the three sets (on-set, off-set, dc-set)

Canonical representations of the BCD increment by 1 function:

Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
Z = Σ [m(0,2,4,6,8) + d(10,11,12,13,14,15)]

Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15
Z = Π [M(1,3,5,7,9) • D(10,11,12,13,14,15)]

II - Combinational Logic Contemporary Logic Design 29

Simplification of two-level combinational logic

Finding a minimal sum of products or product of sums realization
Algebraic simplification

not an algorithmic/systematic procedure
how do you know when the minimum realization has been found?

Computer-aided design tools
precise solutions require very long computation times, especially for
functions with many inputs (> 10)
heuristic methods employed – "educated guesses" to reduce amount of
computation and yield good if not best solutions

Hand methods still relevant
to understand automatic tools and their strengths and weaknesses
ability to check results (on small examples)

II - Combinational Logic Contemporary Logic Design 30

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A’B’+AB’ = (A’+A)B’ = B’

The essence of Boolean simplification

Key tool to simplification: the Uniting theorem
A (B’ + B) = A

Essence of simplification of two-level logic
find two element subsets of the ON-set where only one variable
changes its value – this single varying variable can be eliminated
and a single product term used to represent both elements

II - Combinational Logic Contemporary Logic Design 31

1-cube
X

0 1

Boolean cubes

Visual technique for identifying when the uniting theorem
can be applied
n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W
X

Y
Z

0000

1111

1000

0111

II - Combinational Logic Contemporary Logic Design 32

A B G

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes)
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping truth tables onto Boolean cubes

Uniting theorem combines two "faces" of a cube
into a larger "face“
adjacency plane

circled elements of the on-set that are directly adjacent
each adjacency plane corresponds to a product term

Example:

A

B

11

00

01

10

G

II - Combinational Logic Contemporary Logic Design 33

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(A'+A)BCin

AB(Cin'+Cin)

A(B+B')Cin

Cout = BCin+AB+ACin

the on-set is completely covered by
the combination (OR) of the subcubes
of lower dimensionality - note that “111”
is covered three times

Three variable example

Binary full-adder carry-out logic

A

B C

000

111

101

II - Combinational Logic Contemporary Logic Design 34

F(A,B,C) = Σm(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable
i.e., 3 dimensions – 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher dimensional cubes

Sub-cubes of higher dimension than 1

A

B C

000

111

101

100

001

010

011
110

II - Combinational Logic Contemporary Logic Design 35

m-dimensional cubes in an n-dimensional
Boolean space

In a 3-cube (three variables):
a 0-dimensional plane, i.e., a single node, yields a term in 3 literals

example : 101 = AB’C
a 1-dimensional plane, i.e., a line of two nodes, yields a term in 2 literals

example : 100-101 = AB’
a 2-dimensional plane, i.e., a plane of four nodes, yields a term in 1 literal

example : 100-101-111-110 = A
a 3-dimensional plane, i.e., a cube of eight nodes, yields a constant
logic "1"

In general,
an m-dimensional adjacency plane within an n-cube (m < n) yields a term
with n – m literals

II - Combinational Logic Contemporary Logic Design 36

A B F

0 0 1

0 1 0

1 0 1

1 1 0

Karnaugh maps

The problem for humans
difficulty of visualizing adjacencies in more than 3 dimensional
cubes

Karnaugh maps
Alternative reformulation of the truth table
at least for expressions up to six variables
wrap–around at edges
on-set elements with only one variable changing value are
adjacent unlike the situation in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

II - Combinational Logic Contemporary Logic Design 37

Karnaugh maps (cont’d)

Numbering scheme based on Gray–code
e.g., 00, 01, 11, 10
only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C
0

1
6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B 13 = 1101= ABC’D

II - Combinational Logic Contemporary Logic Design 38

Adjacencies in Karnaugh maps

Wrap from first to last column
Wrap top row to bottom row

000 010

001 011

110 100

111 101C

B

A

A

B C

000

111

101

100

001

010

011
110

II - Combinational Logic Contemporary Logic Design 39

Karnaugh map examples

2-variable maps
F = AB’ + AB = A

G = A’B’ + AB’ = B’

1 1

0 0B

A

B’

A B G

0 0 1

0 1 0

1 0 1

1 1 0

A B F

0 0 0

0 1 0

1 0 1

1 1 1

0 1

0 1B

A

A

II - Combinational Logic Contemporary Logic Design 40

obtain the
complement
of the function
by covering 0s
with subcubes
(see next page)

3-variable maps
Full adder

F(A,B,C) = Σm(0,4,5,7)

1 0

0 0

0 1

1 1

Karnaugh map examples (cont’d)

C

B

A

AC

0 0

0 1

1 0

1 1Cin

B

A

AB + Bcin + ACin

+ B’C’ + AB’

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

II - Combinational Logic Contemporary Logic Design 41

F(A,B,C) = Σm(0,4,5,7)

F'(A,B,C) = Σ m(1,2,3,6)

Complement of F(A,B,C) = m(0,4,5,7)
F' simply replace 1's with 0's and vice versa

G(A,B,C) =
0 0

0 0

1 1

1 1

More Karnaugh map examples

C

B

A

1 0

0 0

0 1

1 1C

B

A

0 1

1 1

1 0

0 0C

B

A

A

= AC + B’C’

= BC’ + A’C

II - Combinational Logic Contemporary Logic Design 42

C + B’D’

find the smallest number of the largest possible
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F =

D

A

B

A
B

C
D

0000

1111

1000

0111

Karnaugh map: 4-variable example

1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

+ A’BD

II - Combinational Logic Contemporary Logic Design 43

+ B’C’D

Karnaugh maps: don’t cares

f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
without don't cares

f =

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A’D

II - Combinational Logic Contemporary Logic Design 44

Karnaugh maps: don’t cares (cont’d)

f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
f = A'D + B'C'D without don't cares
f = with don't cares

don't cares can be treated as
1s or 0s

depending on which is more
advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A'D

by using don't care as a "1"
a 2-cube can be formed
rather than a 1-cube to cover
this node

+ C'D

II - Combinational Logic Contemporary Logic Design 45

Multilevel Logic

Comparison with 2-level logic
gain: reduce the number of wires, gates and inputs to each gate
lose: add up more combined delay because of the increased levels of
logic

Example
2-level logic
Z = ADF + AEF + BDF + BEF + CDF + CEF + G

six 3-input AND gates and one 7-input OR gate
multilevel logic
Z = (AD + AE + BD + BE + CD + CE)F + G
Z = [(A + B + C)D + (A + B + C)E]F + G
Z = (A + B +C)(D + E)F + G

one 3-input OR gate, two 2-input OR gates and one 3-input AND gate

II - Combinational Logic Contemporary Logic Design 46

Chapter review

Variety of primitive logic building blocks
NOT, AND, OR, NAND, NOR, XOR and XNOR gates

Axioms and theorems of Boolean algebra
proofs by re-writing and perfect induction

Two-level logic
canonical forms: sum-of-products and product-of-sums
incompletely specified functions

Simplification
a start at understanding two-level simplification
Boolean cubes
K-Map

	Ch 2. Combinational Logic
	Combinational logic
	Examples of combinational logic
	Laws and theorems of Boolean logic
	Axioms of Boolean algebra
	Possible logic functions of two variables
	Cost of different logic functions
	Realizing Boolean formulas (logic gates)
	Realizing Boolean formulas (logic blocks and hierarchy)
	Time behavior and waveforms
	Minimizing the number of gates and wires
	Two-level logic
	Sum-of-products canonical forms
	Sum-of-products canonical form (cont’d)
	Product-of-sums canonical form
	Product-of-sums canonical form (cont’d)
	Four alternative two-level implementations�of F
	Waveforms for the four alternatives
	S-o-P, P-o-S, and DeMorgan’s theorem
	Conversion between canonical forms
	Incompletely specified functions
	Notation for incompletely specified functions
	Simplification of two-level combinational logic
	The essence of Boolean simplification
	Boolean cubes
	Mapping truth tables onto Boolean cubes
	Three variable example
	Higher dimensional cubes
	m-dimensional cubes in an n-dimensional Boolean space
	Karnaugh maps
	Karnaugh maps (cont’d)
	Adjacencies in Karnaugh maps
	Karnaugh map examples
	Karnaugh map examples (cont’d)
	More Karnaugh map examples
	Karnaugh map: 4-variable example
	Karnaugh maps: don’t cares
	Karnaugh maps: don’t cares (cont’d)
	Multilevel Logic
	Chapter review

