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Working with combinational logic
- Introduction

Two-Level Simplification

Automating Two-Level Simplification

Multilevel Logic Networks

Time Response in Combinational Networks

Hardware Description Languages
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Two-Level Simplification

Design Examples
Two-bit comparator
Two-bit binary adder
BCD increment-by-1 function

Formalizing the Process of Boolean Minimization
Algorithm for two-level simplification
Application of the step-by-step algorithm

K-Maps Revisited : Five- and Six-Variable Functions
Five-variable K-maps
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Design Examples –
Two-bit comparator

The behavior of two-bit comparator

We need 4-variable K-maps

for each of 3 output functions

<Block diagram> <Truth table>
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Design Examples –
Two-bit comparator (cont’d)

<K-map for Feq> <K-map for Flt> <K-map for Fgt>

Flt = A’B’D + B’CD + A’C
Fgt = AC’ + ABD’ + BC’D’

Feq = A’B’C’D’ + A’BC’D + AB’CD’ + ABCD

= A’C’ ( B’D’ + BD ) + AC ( B’D’ + BD )

= ( A’C’ + AC ) ( B’D’ + BD )

= ( A     C )’ ( B     D )’

= ( A ≡ C ) (B ≡ D )

+ +
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Design Examples –
Two-bit binary adder

The behavior of two-bit binary adder

<Block diagram> <Truth table>

X represents 

the most significant bit.
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Design Examples –
Two-bit binary adder (cont’d)

two 2-element groups (three literals), 
one 4-element group (two literals) :

X = AC + BCD + ABD

two 4-element groups (two literals) :

Z = BD’ + B’D = B     D+
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Design Examples –
Two-bit binary adder (cont’d)

two 2-element groups (three literals) : 
A’B’C , AB’C’

four single-element groups (four literals) : 
A’BC’D , A’BCD’ , ABC’D’ , ABCD

A’B’C + AB’C’ = B’ ( A’C + AC’ ) = B’ ( A     C )
ABC’D’ + ABCD =  AB ( C     D )’A’BC’D + A’BCD’ = A’B ( C     D )

Factoring

A’B ( C     D ) + AB ( C     D )’ = B ( A     C     D )

Y = B’ ( A     C ) + B ( A     C     D )

If only AND, OR, and NOT gates are allowed : 

Y = A’B’C + AB’C’ + AC’D’ + A’CD’ + A’BC’D + ABCD

+
+

+
+++ +

+++ 5 gates, 7 literals

7 gates, 20 literals
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Design Examples –
Two-bit binary adder (cont’d)

<Two alternative implementations of Y>
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Design Examples –
BCD increment-by-1 function

Truth table → Fig. 2.32

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

<W>

W = BCD + AD’
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Design Examples –
BCD increment-by-1 function

<W> <X>

<Y> <Z>

W = BCD + AD’

X  = BD’ + BC’ + B’CD

Y  = A’C’D + CD’

Z  = D’
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Formalizing the Process of Boolean 
Minimization

Definition of Terms
Implicant

A single element of the on-set or any group of elements that can be 
combined together in a K-map

Prime implicant
An implicant that cannot be combined with another one to eliminate a 
literal

Essential prime implicant
A prime implicant that alone covers an element of on-sets
must be part of the minimized expression as they are needed for any 
and all covers

Objective
Grow implicant into prime implicants (minimize literals per term)
Cover the ON-set with as few prime implicants as possible
(minimize number of product terms)
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Illustrating the Definitions

Prime Implicant : A’B’D, BC’, AC, A’C’D, AB, B’CD

minimum cover : A’B’D, BC’, AC

Prime Implicant : BD, ABC’, ACD, A’BC, A’C’D

minimum cover : ABC’, ACD, A’BC, A’C’D

Prime Implicant : BD, CD, AC, B’C

minimum cover : BD, AC, B’C

Essential

Essential

Redundant
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Two-level Simplification Algorithm

A procedure for finding a minimum sum-of products expression 
from a K-map

Step 1 : Choose an element from the on-set
Step 2 : Find all of the “Maximal” groups of 1s and Xs adjacent to 
that element (This forms prime implicants)
Repeat Steps 1, 2 until all prime implicants have been found
Step 3 : Visit an element of the on-set

To find essential prime implicants
Repeat Step 3 until all essential prime implicants have been found

Step 4 : If there remain 1s uncovered by essential primes,
Select a minimum number of prime implicants that cover them
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Application of the Step-by-step Algorithm

First 2 primes 
around A’BC’D’

1 prime is added 
around A’BC’D

Minimum cover (3 primes): 
A’B, AB’D’, AC’D 

Example K-map

1 prime is added 
around ABC’D

3 primes are added 
around AB’C’D’

Essential
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K-maps Revisited : Five-Variable Function 
Example

F(A,B,C,D,E) = ∑ m(2,5,7,8,10,13,15,17,19,21,23,24,29,31)
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Automating Two-Level Simplification

Quine-McCluskey Method
Finding prime implicants
Finding the minimum cover

Espresso Method
Algorithm used in Espresso
Example

Realizing S-o-P and P-o-S Logic Networks
DeMorgan’s law and pushing bubbles
Four conversion examples
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Quine-McCluskey Method
Finding Prime Implicants

Example Function : F = ∑ m(4,5,6,8,9,10,13) + d(0,7,15)
Stage 1 : Find all prime implicants
Step 1 : Fill Column 1 with ON-set and 
DC-set minterm indices, grouped by 
the number of 1s
Step 2 : Apply the Uniting theorem –
Compare the elements in the 1st group 
against each element in the 2nd

e.g. 0000 vs. 0100 yields 0-00
0000 vs. 1000 yields -000
When used in a combination, mark with a 
check (Implicant)
If cannot be combined, mark with a star 
(Prime implicant)

Repeat until no further combinations 
can be made
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Quine-McCluskey Method
Finding Prime Implicants (cont’d)

Prime implicants found by the Quine-
McCluskey method : 

0-00 = A’C’D’ -000 = B’C’D’

100- = AB’C’ 10-0 = AB’D’

1-01 = AC’D 01-- = A’B

-1-1 = BD
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Quine-McCluskey Method
Finding the Minimum Cover

Stage 2 : Find the minimum cover – find the smallest collection of 
prime implicants that cover the complete on-set of the function 
through the prime implicant chart

(a) Initial prime implicant chart (b) Essential prime implicants

rows = prime implicants, 
cols = ON-set elements
If an ON-set element is covered by 
the prime implicant, place a “X.”

If column has a single X, the 
implicant associated with the row is 
essential. 
And it must be in the minimum cover. 
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Quine-McCluskey Method
Finding the Minimum Cover (cont’d)

(c) Covered minterms (d) Final configuration

Eliminate all columns covered by 
essential primes.
Eliminate all rows covered by a set 
of essential primes.

Find minimum set of rows that cover 
the remaining columns.
F = AB’D’ + AC’D + A’B 
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EspressoMethod
Algorithm Used in Espresso

1. EXPAND : Expand implicants to their maximum size
Implicants covered by an expanded implicant are removed from further 
consideration
Quality of results depends on the order and direction of implicant
expansion

2. IRREDUNDANT COVER
An irredundant cover is extracted from the expanded implicants

3. REDUCE : Reduce prime implicants to the smallest size that still 
cover ON-set
4. Repeat sequence REDUCE/ EXPAND/ IRREDUNDANT COVER

Continue repeating these steps as long as generated cover improves on 
the last solution
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EspressoMethod
Example

(a) Initial prime implicant (b) Result of REDUCE step

Initial set of primes after executing 
step 1 and 2 for the first time

4 primes, irredundant cover,            
but not the minimum cover

The result of the REDUCE step : 
C’D and CD’ are reduced (therefore, 
they are no longer primes)
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EspressoMethod
Example (cont’d)

(c) Result of EXPAND step (d) Result of IRREDUNDANT COVER step

The result of the second iteration 
of EXPAND

Espresso guarantees that it never 
generates the same cover twice

The extracted IRREDUNDANT 
COVER result

Only 3 prime implicants : an 
improvement on the original result
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DeMorgan’s Law and Pushing Bubbles

Realizing S-o-P and P-o-S Logic Networks 

(AB)’ = (A’ + B’)       AB = (A’ + B’)’

(A + B)’ = (A’B’)       A + B = (A’B’)’

< OR/NAND equivalence >

< AND/NOR equivalence >
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AND/OR Conversion to NAND/NAND 
Networks

Initial AND/OR network Conversion at the 1st level

1st-level AND gates are 
converted to their NAND 
equivalents

And complement the inputs 
to OR gates to conserve 
the circuits logic function

Conversion at the 2nd level

2nd level OR gate with 
complemented inputs is 
replaced by NAND gate



III - Working with 
Combinational Logic Contemporary Logic Design 27

AND/OR Conversion to NOR/NOR 
Networks

Initial AND/OR network Complemented inputs are 
created at the two AND 
gates

Two AND gates with 
complemented inputs are 
replaced by NOR gates

2nd level OR gate is 
converted to NOR gate 
after introducing a 
matching inverter

“Conserving Bubbles” : 
When a new inversion is introduced, it must 
be balanced by a complementary inversion
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OR/AND Conversion to NOR/NOR 
Networks

Similar with “AND/OR Conversion to NAND/NAND Networks”
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OR/AND Conversion to NAND/NAND 
Networks

Similar with “AND/OR Conversion to NOR/NOR Networks”
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Multilevel Logic Networks –
Multilevel Conversion to NAND Gates

F = A(B + CD) + BC’
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Multilevel Conversion to NOR Gates

F = A(B + CD) + BC’
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Non-Alternating NAND/NOR Multilevel 
Networks F = AX + X’ + D     

X = BC

(a) Original Circuits (b) Add Double Bubbles to Invert All 
Inputs of OR Gate

(c) Add Double Bubbles to Invert 
Output of AND Gate

(d) Insert Inverters to Eliminate 
Double Bubbles on a Wire
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&

&
+2x2 AOI gate

symbol

&

&
+3x2 AOI gate

symbol

NAND NAND Invert

possible implementation

A
B

C
D

Z

AND OR Invert

logical concept

A
B

C
D

Z

AND-OR-Invert Gates

AOI function:  three stages of logic — AND, OR, Invert
multiple gates "packaged" as a single circuit block
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&

&
+

A’

B’
A

B

F

Conversion to AOI Forms

General procedure to place in AOI form
compute the complement of the function in sum-of-products form
by grouping the 0s in the Karnaugh map

Example:  XOR implementation
A xor B = A’ B  +  A B’
AOI form:

F = (A’ B’ +  A B)’
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each implemented in a single 2x2 AOI gate

Examples of Using AOI Gates

Example: 
F = A B + A C’ + B C’
F = (A’ B’ + A’ C + B’ C)’
Implemented by 2-input 3-stack AOI gate

F = (A + B) (A + C’) (B + C’)
F = [(A’ + B’) (A’ + C) (B’ + C)]’
Implemented by 2-input 3-stack OAI gate

Example: 4-bit equality function
Z = (A0 B0 + A0’ B0’)(A1 B1 + A1’ B1’)(A2 B2 + A2’ B2’)(A3 B3 + A3’ B3’)
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high if A0 ≠ B0
low   if A0 = B0

if all inputs are low
then Ai = Bi, i=0,...,3

output Z is high

conservation of bubbles

A0
B0

A1
B1

A2
B2

A3
B3

&

&
+

&

&
+

&

&
+

&

&
+

NOR Z

Examples of Using AOI Gates (cont’d)

Example:  AOI implementation of 4-bit equality function
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Time Response in Combinational Networks

Time response tells us about a circuit’s dynamic behavior
Transient output changes: glitches
Logical error caused by glitches: a hazard

It is important to visualize the behavior of a circuit as a function 
of time

Simulation tools can offer the time-based behavior of circuits

Gate Delays
Defined in terms of minimum (best case), typical (average), and 
maximum (worst case) times.
Worst-case delay should always be considered
There are trade-offs between delay and power
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Time Response in Combinational Networks

Example

F(A,B,C) = Σm(0,4,5,7)
1 0

0 0

0 1

1 1C

B

A

= AC + B’C’

A=1

B'=1

C
F

C

F=?
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Timing Waveforms

A pulse shaper
At a glance, A A’ = 0
Delays matter

D remains high for three 
gate delays after A 
changes from low to high

F is not always ‘0’

the pulse is exactly three 
inverter-delays wide
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Analysis of a Pulse-Shaper Circuit

Another Pulse-Shaper 
example
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Hardware Description Languages

Describe behavior
describe what module does, not how
synthesis generates circuit for module

Describe structure
textual replacement for schematic
hierarchical composition of modules from primitives

Describe timing
describe delay

Describe concurrency
Describe hardware at varying levels of abstraction
Enable simulation

event-driven simulation
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HDLs

ABEL (circa 1983) - developed by Data-I/O
targeted to programmable logic devices
not good for much more than state machines

ISP (circa 1977) - research project at CMU
simulation, but no synthesis

Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
similar to C
fairly efficient and easy to write
IEEE standard

VHDL (circa 1987) - DoD sponsored standard
similar to Ada (emphasis on re-use and maintainability)
very general but verbose
IEEE standard
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Describing Structure

module xor_gate (a, b, z);
input     a, b;
output    z;
wire      abar, bbar, t1, t2;

inverter invA (abar, a);
inverter invB (bbar, b);
and_gate and1 (t1, a, bbar);
and_gate and2 (t2, b, abar);
or_gate  or1 (z, t1, t2);

endmodule

XOR gate : 

five gates and connecting wires

Each gate is an instance
of another module
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Describing Behavior

module xor_gate (a, b, z);
input     a, b;
output    z;
reg z;

always @(a or b) begin
z = a ^ b;

end

endmodule

always block: specifies when and how the module behave
sensitivity list: specifies when the block is executed ( triggered 
by which signals )

always block

sensitivity  list
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Delay

The delay statement postpones the assignment of a new value 
to output

delay statements only make sense within a behavioral description

module xor_gate (a, b, z);
input     a, b;
output    z;

assign #6 z = a ^ b;

endmodule

module xor_gate (a, b, z);
input     a, b;
output    z;
reg z;

always @(a or b) begin
#6 z = a ^ b;

end

endmodule

delay 
statement
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Event-Driven Simulation
module test-bench (x, y);
output  x, y;
reg x, y;

initial begin
x = 0; y = 0;
#10;
x = 0; y = 1;
#10;
x = 1; y = 0;
#10;
x = 1; y = 1;
#10;
$finish

end

endmodule

module both_together (z);
output    z;
wire      w1, w2;

test-bench tb1(w1, w2);
xor_gate xor1(w1, w2, z);

always @(z) begin
$display(“At time: %d with
inputs:%b and %b, the output
is: %b”, $time, w1, w2, z);

end 

endmodule

< Schematic of an XOR gate connected to a stimulus generator >
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