
III - Working with
Combinational Logic Contemporary Logic Design 1

Ch 3. Working with Combinational
Logic

III - Working with
Combinational Logic Contemporary Logic Design 2

Working with combinational logic
- Introduction

Two-Level Simplification

Automating Two-Level Simplification

Multilevel Logic Networks

Time Response in Combinational Networks

Hardware Description Languages

III - Working with
Combinational Logic Contemporary Logic Design 3

Two-Level Simplification

Design Examples
Two-bit comparator
Two-bit binary adder
BCD increment-by-1 function

Formalizing the Process of Boolean Minimization
Algorithm for two-level simplification
Application of the step-by-step algorithm

K-Maps Revisited : Five- and Six-Variable Functions
Five-variable K-maps

III - Working with
Combinational Logic Contemporary Logic Design 4

Design Examples –
Two-bit comparator

The behavior of two-bit comparator

We need 4-variable K-maps

for each of 3 output functions

<Block diagram> <Truth table>

III - Working with
Combinational Logic Contemporary Logic Design 5

Design Examples –
Two-bit comparator (cont’d)

<K-map for Feq> <K-map for Flt> <K-map for Fgt>

Flt = A’B’D + B’CD + A’C
Fgt = AC’ + ABD’ + BC’D’

Feq = A’B’C’D’ + A’BC’D + AB’CD’ + ABCD

= A’C’ (B’D’ + BD) + AC (B’D’ + BD)

= (A’C’ + AC) (B’D’ + BD)

= (A C)’ (B D)’

= (A ≡ C) (B ≡ D)

+ +

III - Working with
Combinational Logic Contemporary Logic Design 6

Design Examples –
Two-bit binary adder

The behavior of two-bit binary adder

<Block diagram> <Truth table>

X represents

the most significant bit.

III - Working with
Combinational Logic Contemporary Logic Design 7

Design Examples –
Two-bit binary adder (cont’d)

two 2-element groups (three literals),
one 4-element group (two literals) :

X = AC + BCD + ABD

two 4-element groups (two literals) :

Z = BD’ + B’D = B D+

III - Working with
Combinational Logic Contemporary Logic Design 8

Design Examples –
Two-bit binary adder (cont’d)

two 2-element groups (three literals) :
A’B’C , AB’C’

four single-element groups (four literals) :
A’BC’D , A’BCD’ , ABC’D’ , ABCD

A’B’C + AB’C’ = B’ (A’C + AC’) = B’ (A C)
ABC’D’ + ABCD = AB (C D)’A’BC’D + A’BCD’ = A’B (C D)

Factoring

A’B (C D) + AB (C D)’ = B (A C D)

Y = B’ (A C) + B (A C D)

If only AND, OR, and NOT gates are allowed :

Y = A’B’C + AB’C’ + AC’D’ + A’CD’ + A’BC’D + ABCD

+
+

+
+++ +

+++ 5 gates, 7 literals

7 gates, 20 literals

III - Working with
Combinational Logic Contemporary Logic Design 9

Design Examples –
Two-bit binary adder (cont’d)

<Two alternative implementations of Y>

III - Working with
Combinational Logic Contemporary Logic Design 10

Design Examples –
BCD increment-by-1 function

Truth table → Fig. 2.32

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

<W>

W = BCD + AD’

III - Working with
Combinational Logic Contemporary Logic Design 11

Design Examples –
BCD increment-by-1 function

<W> <X>

<Y> <Z>

W = BCD + AD’

X = BD’ + BC’ + B’CD

Y = A’C’D + CD’

Z = D’

III - Working with
Combinational Logic Contemporary Logic Design 12

Formalizing the Process of Boolean
Minimization

Definition of Terms
Implicant

A single element of the on-set or any group of elements that can be
combined together in a K-map

Prime implicant
An implicant that cannot be combined with another one to eliminate a
literal

Essential prime implicant
A prime implicant that alone covers an element of on-sets
must be part of the minimized expression as they are needed for any
and all covers

Objective
Grow implicant into prime implicants (minimize literals per term)
Cover the ON-set with as few prime implicants as possible
(minimize number of product terms)

III - Working with
Combinational Logic Contemporary Logic Design 13

Illustrating the Definitions

Prime Implicant : A’B’D, BC’, AC, A’C’D, AB, B’CD

minimum cover : A’B’D, BC’, AC

Prime Implicant : BD, ABC’, ACD, A’BC, A’C’D

minimum cover : ABC’, ACD, A’BC, A’C’D

Prime Implicant : BD, CD, AC, B’C

minimum cover : BD, AC, B’C

Essential

Essential

Redundant

III - Working with
Combinational Logic Contemporary Logic Design 14

Two-level Simplification Algorithm

A procedure for finding a minimum sum-of products expression
from a K-map

Step 1 : Choose an element from the on-set
Step 2 : Find all of the “Maximal” groups of 1s and Xs adjacent to
that element (This forms prime implicants)
Repeat Steps 1, 2 until all prime implicants have been found
Step 3 : Visit an element of the on-set

To find essential prime implicants
Repeat Step 3 until all essential prime implicants have been found

Step 4 : If there remain 1s uncovered by essential primes,
Select a minimum number of prime implicants that cover them

III - Working with
Combinational Logic Contemporary Logic Design 15

Application of the Step-by-step Algorithm

First 2 primes
around A’BC’D’

1 prime is added
around A’BC’D

Minimum cover (3 primes):
A’B, AB’D’, AC’D

Example K-map

1 prime is added
around ABC’D

3 primes are added
around AB’C’D’

Essential

III - Working with
Combinational Logic Contemporary Logic Design 16

K-maps Revisited : Five-Variable Function
Example

F(A,B,C,D,E) = ∑ m(2,5,7,8,10,13,15,17,19,21,23,24,29,31)

III - Working with
Combinational Logic Contemporary Logic Design 17

Automating Two-Level Simplification

Quine-McCluskey Method
Finding prime implicants
Finding the minimum cover

Espresso Method
Algorithm used in Espresso
Example

Realizing S-o-P and P-o-S Logic Networks
DeMorgan’s law and pushing bubbles
Four conversion examples

III - Working with
Combinational Logic Contemporary Logic Design 18

Quine-McCluskey Method
Finding Prime Implicants

Example Function : F = ∑ m(4,5,6,8,9,10,13) + d(0,7,15)
Stage 1 : Find all prime implicants
Step 1 : Fill Column 1 with ON-set and
DC-set minterm indices, grouped by
the number of 1s
Step 2 : Apply the Uniting theorem –
Compare the elements in the 1st group
against each element in the 2nd

e.g. 0000 vs. 0100 yields 0-00
0000 vs. 1000 yields -000
When used in a combination, mark with a
check (Implicant)
If cannot be combined, mark with a star
(Prime implicant)

Repeat until no further combinations
can be made

III - Working with
Combinational Logic Contemporary Logic Design 19

Quine-McCluskey Method
Finding Prime Implicants (cont’d)

Prime implicants found by the Quine-
McCluskey method :

0-00 = A’C’D’ -000 = B’C’D’

100- = AB’C’ 10-0 = AB’D’

1-01 = AC’D 01-- = A’B

-1-1 = BD

III - Working with
Combinational Logic Contemporary Logic Design 20

Quine-McCluskey Method
Finding the Minimum Cover

Stage 2 : Find the minimum cover – find the smallest collection of
prime implicants that cover the complete on-set of the function
through the prime implicant chart

(a) Initial prime implicant chart (b) Essential prime implicants

rows = prime implicants,
cols = ON-set elements
If an ON-set element is covered by
the prime implicant, place a “X.”

If column has a single X, the
implicant associated with the row is
essential.
And it must be in the minimum cover.

III - Working with
Combinational Logic Contemporary Logic Design 21

Quine-McCluskey Method
Finding the Minimum Cover (cont’d)

(c) Covered minterms (d) Final configuration

Eliminate all columns covered by
essential primes.
Eliminate all rows covered by a set
of essential primes.

Find minimum set of rows that cover
the remaining columns.
F = AB’D’ + AC’D + A’B

III - Working with
Combinational Logic Contemporary Logic Design 22

EspressoMethod
Algorithm Used in Espresso

1. EXPAND : Expand implicants to their maximum size
Implicants covered by an expanded implicant are removed from further
consideration
Quality of results depends on the order and direction of implicant
expansion

2. IRREDUNDANT COVER
An irredundant cover is extracted from the expanded implicants

3. REDUCE : Reduce prime implicants to the smallest size that still
cover ON-set
4. Repeat sequence REDUCE/ EXPAND/ IRREDUNDANT COVER

Continue repeating these steps as long as generated cover improves on
the last solution

III - Working with
Combinational Logic Contemporary Logic Design 23

EspressoMethod
Example

(a) Initial prime implicant (b) Result of REDUCE step

Initial set of primes after executing
step 1 and 2 for the first time

4 primes, irredundant cover,
but not the minimum cover

The result of the REDUCE step :
C’D and CD’ are reduced (therefore,
they are no longer primes)

III - Working with
Combinational Logic Contemporary Logic Design 24

EspressoMethod
Example (cont’d)

(c) Result of EXPAND step (d) Result of IRREDUNDANT COVER step

The result of the second iteration
of EXPAND

Espresso guarantees that it never
generates the same cover twice

The extracted IRREDUNDANT
COVER result

Only 3 prime implicants : an
improvement on the original result

III - Working with
Combinational Logic Contemporary Logic Design 25

DeMorgan’s Law and Pushing Bubbles

Realizing S-o-P and P-o-S Logic Networks

(AB)’ = (A’ + B’) AB = (A’ + B’)’

(A + B)’ = (A’B’) A + B = (A’B’)’

< OR/NAND equivalence >

< AND/NOR equivalence >

III - Working with
Combinational Logic Contemporary Logic Design 26

AND/OR Conversion to NAND/NAND
Networks

Initial AND/OR network Conversion at the 1st level

1st-level AND gates are
converted to their NAND
equivalents

And complement the inputs
to OR gates to conserve
the circuits logic function

Conversion at the 2nd level

2nd level OR gate with
complemented inputs is
replaced by NAND gate

III - Working with
Combinational Logic Contemporary Logic Design 27

AND/OR Conversion to NOR/NOR
Networks

Initial AND/OR network Complemented inputs are
created at the two AND
gates

Two AND gates with
complemented inputs are
replaced by NOR gates

2nd level OR gate is
converted to NOR gate
after introducing a
matching inverter

“Conserving Bubbles” :
When a new inversion is introduced, it must
be balanced by a complementary inversion

III - Working with
Combinational Logic Contemporary Logic Design 28

OR/AND Conversion to NOR/NOR
Networks

Similar with “AND/OR Conversion to NAND/NAND Networks”

III - Working with
Combinational Logic Contemporary Logic Design 29

OR/AND Conversion to NAND/NAND
Networks

Similar with “AND/OR Conversion to NOR/NOR Networks”

III - Working with
Combinational Logic Contemporary Logic Design 30

Multilevel Logic Networks –
Multilevel Conversion to NAND Gates

F = A(B + CD) + BC’

III - Working with
Combinational Logic Contemporary Logic Design 31

Multilevel Conversion to NOR Gates

F = A(B + CD) + BC’

III - Working with
Combinational Logic Contemporary Logic Design 32

Non-Alternating NAND/NOR Multilevel
Networks F = AX + X’ + D

X = BC

(a) Original Circuits (b) Add Double Bubbles to Invert All
Inputs of OR Gate

(c) Add Double Bubbles to Invert
Output of AND Gate

(d) Insert Inverters to Eliminate
Double Bubbles on a Wire

III - Working with
Combinational Logic Contemporary Logic Design 33

&

&
+2x2 AOI gate

symbol

&

&
+3x2 AOI gate

symbol

NAND NAND Invert

possible implementation

A
B

C
D

Z

AND OR Invert

logical concept

A
B

C
D

Z

AND-OR-Invert Gates

AOI function: three stages of logic — AND, OR, Invert
multiple gates "packaged" as a single circuit block

III - Working with
Combinational Logic Contemporary Logic Design 34

&

&
+

A’

B’
A

B

F

Conversion to AOI Forms

General procedure to place in AOI form
compute the complement of the function in sum-of-products form
by grouping the 0s in the Karnaugh map

Example: XOR implementation
A xor B = A’ B + A B’
AOI form:

F = (A’ B’ + A B)’

III - Working with
Combinational Logic Contemporary Logic Design 35

each implemented in a single 2x2 AOI gate

Examples of Using AOI Gates

Example:
F = A B + A C’ + B C’
F = (A’ B’ + A’ C + B’ C)’
Implemented by 2-input 3-stack AOI gate

F = (A + B) (A + C’) (B + C’)
F = [(A’ + B’) (A’ + C) (B’ + C)]’
Implemented by 2-input 3-stack OAI gate

Example: 4-bit equality function
Z = (A0 B0 + A0’ B0’)(A1 B1 + A1’ B1’)(A2 B2 + A2’ B2’)(A3 B3 + A3’ B3’)

III - Working with
Combinational Logic Contemporary Logic Design 36

high if A0 ≠ B0
low if A0 = B0

if all inputs are low
then Ai = Bi, i=0,...,3

output Z is high

conservation of bubbles

A0
B0

A1
B1

A2
B2

A3
B3

&

&
+

&

&
+

&

&
+

&

&
+

NOR Z

Examples of Using AOI Gates (cont’d)

Example: AOI implementation of 4-bit equality function

III - Working with
Combinational Logic Contemporary Logic Design 37

Time Response in Combinational Networks

Time response tells us about a circuit’s dynamic behavior
Transient output changes: glitches
Logical error caused by glitches: a hazard

It is important to visualize the behavior of a circuit as a function
of time

Simulation tools can offer the time-based behavior of circuits

Gate Delays
Defined in terms of minimum (best case), typical (average), and
maximum (worst case) times.
Worst-case delay should always be considered
There are trade-offs between delay and power

III - Working with
Combinational Logic Contemporary Logic Design 38

Time Response in Combinational Networks

Example

F(A,B,C) = Σm(0,4,5,7)
1 0

0 0

0 1

1 1C

B

A

= AC + B’C’

A=1

B'=1

C
F

C

F=?

III - Working with
Combinational Logic Contemporary Logic Design 39

Timing Waveforms

A pulse shaper
At a glance, A A’ = 0
Delays matter

D remains high for three
gate delays after A
changes from low to high

F is not always ‘0’

the pulse is exactly three
inverter-delays wide

III - Working with
Combinational Logic Contemporary Logic Design 40

Analysis of a Pulse-Shaper Circuit

Another Pulse-Shaper
example

III - Working with
Combinational Logic Contemporary Logic Design 41

Hardware Description Languages

Describe behavior
describe what module does, not how
synthesis generates circuit for module

Describe structure
textual replacement for schematic
hierarchical composition of modules from primitives

Describe timing
describe delay

Describe concurrency
Describe hardware at varying levels of abstraction
Enable simulation

event-driven simulation

III - Working with
Combinational Logic Contemporary Logic Design 42

HDLs

ABEL (circa 1983) - developed by Data-I/O
targeted to programmable logic devices
not good for much more than state machines

ISP (circa 1977) - research project at CMU
simulation, but no synthesis

Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
similar to C
fairly efficient and easy to write
IEEE standard

VHDL (circa 1987) - DoD sponsored standard
similar to Ada (emphasis on re-use and maintainability)
very general but verbose
IEEE standard

III - Working with
Combinational Logic Contemporary Logic Design 43

Describing Structure

module xor_gate (a, b, z);
input a, b;
output z;
wire abar, bbar, t1, t2;

inverter invA (abar, a);
inverter invB (bbar, b);
and_gate and1 (t1, a, bbar);
and_gate and2 (t2, b, abar);
or_gate or1 (z, t1, t2);

endmodule

XOR gate :

five gates and connecting wires

Each gate is an instance
of another module

III - Working with
Combinational Logic Contemporary Logic Design 44

Describing Behavior

module xor_gate (a, b, z);
input a, b;
output z;
reg z;

always @(a or b) begin
z = a ^ b;

end

endmodule

always block: specifies when and how the module behave
sensitivity list: specifies when the block is executed (triggered
by which signals)

always block

sensitivity list

III - Working with
Combinational Logic Contemporary Logic Design 45

Delay

The delay statement postpones the assignment of a new value
to output

delay statements only make sense within a behavioral description

module xor_gate (a, b, z);
input a, b;
output z;

assign #6 z = a ^ b;

endmodule

module xor_gate (a, b, z);
input a, b;
output z;
reg z;

always @(a or b) begin
#6 z = a ^ b;

end

endmodule

delay
statement

III - Working with
Combinational Logic Contemporary Logic Design 46

Event-Driven Simulation
module test-bench (x, y);
output x, y;
reg x, y;

initial begin
x = 0; y = 0;
#10;
x = 0; y = 1;
#10;
x = 1; y = 0;
#10;
x = 1; y = 1;
#10;
$finish

end

endmodule

module both_together (z);
output z;
wire w1, w2;

test-bench tb1(w1, w2);
xor_gate xor1(w1, w2, z);

always @(z) begin
$display(“At time: %d with
inputs:%b and %b, the output
is: %b”, $time, w1, w2, z);

end

endmodule

< Schematic of an XOR gate connected to a stimulus generator >

	Ch 3. Working with Combinational Logic
	Working with combinational logic�- Introduction
	Two-Level Simplification
	Design Examples –�Two-bit comparator
	Design Examples –�Two-bit comparator (cont’d)
	Design Examples –�Two-bit binary adder
	Design Examples –�Two-bit binary adder (cont’d)
	Design Examples –�Two-bit binary adder (cont’d)
	Design Examples –�Two-bit binary adder (cont’d)
	Design Examples – �BCD increment-by-1 function
	Design Examples – �BCD increment-by-1 function
	Formalizing the Process of Boolean Minimization
	Illustrating the Definitions
	Two-level Simplification Algorithm
	Application of the Step-by-step Algorithm
	K-maps Revisited : Five-Variable Function Example
	Automating Two-Level Simplification
	Quine-McCluskey Method�Finding Prime Implicants
	Quine-McCluskey Method�Finding Prime Implicants (cont’d)
	Quine-McCluskey Method�Finding the Minimum Cover
	Quine-McCluskey Method�Finding the Minimum Cover (cont’d)
	Espresso Method�Algorithm Used in Espresso
	Espresso Method�Example
	Espresso Method�Example (cont’d)
	Realizing S-o-P and P-o-S Logic Networks
	AND/OR Conversion to NAND/NAND Networks
	AND/OR Conversion to NOR/NOR Networks
	OR/AND Conversion to NOR/NOR Networks
	OR/AND Conversion to NAND/NAND Networks
	Multilevel Logic Networks –�Multilevel Conversion to NAND Gates
	Multilevel Conversion to NOR Gates
	Non-Alternating NAND/NOR Multilevel Networks
	AND-OR-Invert Gates
	Conversion to AOI Forms
	Examples of Using AOI Gates
	Examples of Using AOI Gates (cont’d)
	Time Response in Combinational Networks
	Time Response in Combinational Networks
	Timing Waveforms
	Analysis of a Pulse-Shaper Circuit
	Hardware Description Languages
	HDLs
	Describing Structure
	Describing Behavior
	Delay
	Event-Driven Simulation

