Ch 7. Finite State Machines

Finite State Machines

Sequential circuits

- primitive sequential elements
- combinational logic
- Models for representing sequential circuits
 - finite-state machines (Moore and Mealy)
- Basic sequential circuits revisited
 - shift registers
 - counters
- Design procedure
 - state diagrams
 - state transition table
 - next state functions

Counters

- Sequential logic circuit that proceed through a well defined sequence of states
 - 3-bit binary up-counter
 - 000, 001, 010, 011, 100, 101, 110, 111; and return to 000
 - Decade counter
 - 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001; and return to 0000 (binary-coded decimal)
 - Gray-code counter
 - Only a single bit of the counter changes at a time to avoid circuit hazard
 - 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000 and repeat

Counters (cont'd)

Ring counters

- Shift registers can also be used as a kind of primitive counter
- Uses minimal hardware for its implementation
- Not efficient state encoding

Figure 7.1 Four-bit simple ring counter.

Counters (cont'd)

- Johnson counter (aka Mobius counter)
 - Requires only one inverter more than the basic ring counter
 - Can sequence through twice as many states

Figure 7.2 Four-bit Johnson counter.

Figure 7.3 Timing waveforms for 4-bit Johnson counter.

Counter Design Procedure

- 3-bit binary up-counter
 - Describe state transition diagram and table

Figure 7.4 State transition diagram and table for a 3-bit binary up-counter.

Counter Design Procedure (cont'd)

- 3-bit binary up-counter
 - Design combinational logic through K-map methods

Figure 7.5 K-maps for up-counter flip-flops.

More complex counter example

- Complex counter
 - repeats 5 states in sequence
 - not a binary number representation
- Step 1: derive the state transition diagram
 - count sequence: 000, 010, 011, 101, 110
- Step 2: derive the state transition table from the state transition diagram

NII - Finite State Machines don't care conditions that arise from the unused state codes

More complex counter example (cont'd)

Step 3: K-maps for next state functions

Self-starting counters

Start-up states

- at power-up, counter may be in an unused or invalid state
- designer must guarantee that it (eventually) enters a valid state
- Self-starting solution
 - design counter so that invalid states eventually transition to a valid state
 - may limit exploitation of don't cares

Self-starting counters (cont'd)

Re-deriving state transition table from don't care assignment

Abstraction of state elements

- Divide circuit into combinational logic and state
- Localize the feedback loops and make it easy to break cycles
- Implementation of storage elements leads to various forms of sequential logic

Finite state machine representations

- States: determined by possible values in sequential storage elements
- Transitions: change of state
- Clock: controls when state can change by controlling storage elements
- Sequential logic
 - sequences through a series of states
 - based on sequence of values on input signals
 - clock period defines elements of sequence

Example finite state machine diagram

- Combination lock from introduction to course
 - 5 states
 - 5 self-transitions
 - Gother transitions between states
 - 1 reset transition (from all states) to state S1

Can any sequential system be represented with a state diagram?

- Shift register
 - input value shown on transition arcs
 - output values shown within state node

FSM design procedure

- Step 1. Understand the problem
 - Describe a finite state machine in an unambiguous manner
- Step 2. Obtain an abstract representation of the FSM
 - State diagram
- Step 3. Perform state minimization
 - Certain paths through the state machine can be eliminated
- Step 4. Perform state assignment
 - Counter: the state and the output are identical
 - General FSM: good state encoding often leads to a simpler implementation
- Step 5. Implement the finite state machine
 - Using Boolean equations or K-maps

Counter/shift-register model

- Values stored in registers (flip-flops) represent the state of the circuit
- Next state is function of current state and inputs
- Outputs are the state
- Combinational logic implements the function for next state

General state machine model

- Values stored in registers represent the state of the circuit
- Next state is function of current state and inputs
- Outputs are
 - function of current state and inputs (Mealy machine)
 - function of current state only (Moore machine)
- Combinational logic implements the functions for next state and outputs

State machine model (cont'd)

- States: S₁, S₂, ..., S_k
- Inputs: $I_1, I_2, ..., I_m$
- Outputs: O₁, O₂, ..., O_n
- Transition function: $F_s(S_i, I_i)$

Comparison of Mealy and Moore machines

- Mealy machines tend to have less states
 - □ different outputs on arcs (n²) rather than states (n)
- Moore machines are safer to use
 - outputs change at clock edge (always one cycle later)
 - in Mealy machines, input change can cause output change as soon as logic is done – a big problem when two machines are interconnected – asynchronous feedback may occur if one isn't careful
- Mealy machines react faster to inputs
 - □ react in same cycle don't need to wait for clock
 - in Moore machines, more logic may be necessary to decode state into outputs – more gate delays after clock edge

Comparison of Mealy and Moore machines (cont'd)

Specifying outputs for a Moore machine

Output is only function of state

- specify in state bubble in state diagram
- example: sequence detector for 01 or 10

Specifying outputs for a Mealy machine

- Output is function of state and inputs
 - specify output on transition arc between states
 - example: sequence detector for 01 or 10

			current	next	
_	reset	input	state	state	output
	1	_	_	А	0
	0	0	Α	В	0
	0	1	А	С	0
	0	0	В	В	0
	0	1	В	С	1
	0	0	С	В	1
	0	1	С	С	0

Registered Mealy machine (really Moore)

- Synchronous (or registered) Mealy machine
 - registered state AND outputs
 - avoids 'glitchy' outputs
 - easy to implement in PLDs
- Moore machine with no output decoding
 - outputs computed on transition to next state rather than after entering
 - view outputs as expanded state vector

Current State

Example: vending machine

- Release item after 15 cents are deposited
- Single coin slot for dimes, nickels
- No change

Example: vending machine (cont'd)

Suitable abstract representation

- tabulate typical input sequences:
 - 3 nickels
 - nickel, dime
 - dime, nickel
 - two dimes
- draw state diagram:
 - inputs: N, D, reset
 - output: open chute
- assumptions:
 - assume N and D asserted for one cycle
 - each state has a self loop for N = D = 0 (no coin)

Example: vending machine (cont'd)

Minimize number of states - reuse states whenever possible

	Reset	present state	inp D	uts N	next state	output open
	Ļ	0¢	0	0	0¢	0
			0	1	5¢	0
	(O¢)		1	0	10¢	0
			1	1	_	_
	↓N \	5¢	0	0	5¢	0
			0	1	10¢	0
	$\begin{pmatrix} 5c \end{pmatrix}$ D		1	0	15¢	0
			1	1	_	_
		10¢	0	0	10¢	0
D			0	1	15¢	0
			1	0	15¢	0
			1	1	_	_
	\bigvee N + D	15¢	-	-	15¢	1
	15¢ (open)		symbo	olic sta	ate table	

Example: vending machine (cont'd)

Uniquely encode states

present state	inputs D N		next state	output
	0	0		0
0 0	Õ	1	0 1	0 0
	1	0	1 0	0
	1	1		_
0 1	0	0	0 1	0
	0	1	1 0	0
	1	0	1 1	0
	1	1		_
1 0	0	0	1 0	0
	0	1	1 1	0
	1	0	1 1	0
	1	1		_
1 1	_	-	1 1	1

Example: Moore implementation

Mapping to logic

D0 = Q0' N + Q0 N' + Q1 N + Q1 DD1 = Q1 + D + Q0 N

OPEN = Q1 Q0

Equivalent Mealy and Moore state diagrams

- Moore machine
 - outputs associated with state

- Mealy machine
 - outputs associated with transitions

VII - Finite State Machines

Contemporary Logic Design

Example: Mealy implementation

Example: Mealy implementation

```
D0 = Q0'N + Q0N' + Q1N + Q1D

D1 = Q1 + D + Q0N

OPEN = Q1Q0 + Q1N + Q1D + Q0D
```

make sure OPEN is 0 when reset – by adding AND gate

Vending machine: Moore to synch. Mealy

- OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in Moore implementation
- This can be corrected by retiming, i.e., move flip-flops and logic through each other to improve delay
- OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
- Implementation now looks like a synchronous Mealy machine
 - it is common for programmable devices to have FF at end of logic

Vending machine: Mealy to synch. Mealy

Contemporary Logic Design

Mealy and Moore examples

- Recognize A,B = 0,1
 - Mealy or Moore?

Mealy and Moore examples (cont'd)

Recognize A,B = 1,0 then 0,1

Mealy or Moore?

Example: reduce-1-string-by-1

Remove one 1 from every string of 1s on the input

Finite state machines summary

Models for representing sequential circuits

- abstraction of sequential elements
- finite state machines and their state diagrams
- inputs/outputs
- Mealy, Moore, and synchronous Mealy machines
- Finite state machine design procedure
 - deriving state diagram
 - deriving state transition table
 - determining next state and output functions
 - implementing combinational logic