
VII - Finite State Machines Contemporary Logic Design 1

Ch 7. Finite State Machines



VII - Finite State Machines Contemporary Logic Design 2

Finite State Machines

Sequential circuits
primitive sequential elements
combinational logic

Models for representing sequential circuits
finite-state machines (Moore and Mealy)

Basic sequential circuits revisited
shift registers
counters

Design procedure
state diagrams
state transition table
next state functions



VII - Finite State Machines Contemporary Logic Design 3

Counters 

Sequential logic circuit that proceed through a well defined 
sequence of states

3-bit binary up-counter
000, 001, 010, 011, 100, 101, 110, 111; and return to 000

Decade counter
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001; and 
return to 0000 (binary-coded decimal)

Gray-code counter
Only a single bit of the counter changes at a time to avoid circuit 
hazard
0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 
1110, 1010, 1011, 1001, 1000 and repeat



VII - Finite State Machines Contemporary Logic Design 4

Counters (cont’d)

Ring counters
Shift registers can also be used as a kind of primitive counter
Uses minimal hardware for its implementation
Not efficient state encoding



VII - Finite State Machines Contemporary Logic Design 5

Counters (cont’d)

Johnson counter (aka Mobius counter)
Requires only one inverter more than the basic ring counter
Can sequence through twice as many states



VII - Finite State Machines Contemporary Logic Design 6

Counter Design Procedure

3-bit binary up-counter
Describe state transition diagram and table



VII - Finite State Machines Contemporary Logic Design 7

Counter Design Procedure (cont’d)

3-bit binary up-counter
Design combinational logic through K-map methods

D Q D Q D Q

OUT1 OUT2 OUT3

CLK

"1"



VII - Finite State Machines Contemporary Logic Design 8

More complex counter example

Complex counter
repeats 5 states in sequence
not a binary number representation

Step 1: derive the state transition diagram
count sequence: 000, 010, 011, 101, 110

Step 2: derive the state transition table from the state transition diagram

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 – – –
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 – – –
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 – – –

note the don't care conditions that arise from the unused state codes

010

000 110

101

011



VII - Finite State Machines Contemporary Logic Design 9

C+ <= A

B+ <= B’ + A’C’

A+ <= BC’

More complex counter example (cont’d)

Step 3: K-maps for next state functions

0 0

X 1

0 X

X 1A

B

CC+

1 1

X 0

0 X

X 1A

B

CB+

0 1

X 1

0 X

X 0A

B

CA+

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0



VII - Finite State Machines Contemporary Logic Design 10

Self-starting counters

Start-up states
at power-up, counter may be in an unused or invalid state
designer must guarantee that it (eventually) enters a valid state

Self-starting solution
design counter so that invalid states eventually transition to a valid state
may limit exploitation of don't cares

implementation
on previous slide

010

000 110

101

011

001111

100

010

000 110

101

011

001 111

100



VII - Finite State Machines Contemporary Logic Design 11

Self-starting counters (cont’d)

Re-deriving state transition table from don't care assignment

0 0

1 1

0 0

1 1A

B

CC+

1 1

1 0

0 1

0 1A

B

CB+

0 1

0 1

0 0

0 0A

B

CA+

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

010

000 110

101

011

001111

100



VII - Finite State Machines Contemporary Logic Design 12

Abstraction of state elements

Divide circuit into combinational logic and state
Localize the feedback loops and make it easy to break cycles
Implementation of storage elements leads to various forms of sequential 
logic

Combinational
Logic

Storage Elements

Outputs

State OutputsState Inputs

Inputs



VII - Finite State Machines Contemporary Logic Design 13

In = 0

In = 1

In = 0In = 1

100

010

110

111001

Finite state machine representations

States: determined by possible values in sequential storage elements
Transitions: change of state
Clock: controls when state can change by controlling storage 
elements

Sequential logic
sequences through a series of states
based on sequence of values on input signals
clock period defines elements of sequence



VII - Finite State Machines Contemporary Logic Design 14

Example finite state machine diagram

Combination lock from introduction to course
5 states
5 self-transitions
6 other transitions between states
1 reset transition (from all states) to state S1

reset
S3

closed

closed
mux=C1 equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open



VII - Finite State Machines Contemporary Logic Design 15

Can any sequential system be represented with a 
state diagram?

Shift register
input value shown
on transition arcs
output values shown
within state node

100 110

111

011

101010000

001

1

1

1

1

0

0

0
0

1

1

1

0

0

1

00

D Q D Q D QIN

OUT1 OUT2 OUT3

CLK



VII - Finite State Machines Contemporary Logic Design 16

FSM design procedure

Step 1. Understand the problem
Describe a finite state machine in an unambiguous manner

Step 2. Obtain an abstract representation of the FSM
State diagram

Step 3. Perform state minimization
Certain paths through the state machine can be eliminated

Step 4. Perform state assignment
Counter: the state and the output are identical
General FSM: good state encoding often leads to a simpler 
implementation

Step 5. Implement the finite state machine
Using Boolean equations or K-maps



VII - Finite State Machines Contemporary Logic Design 17

Counter/shift-register model

Values stored in registers (flip-flops) represent the state of the 
circuit
Next state is function of current state and inputs
Outputs are the state
Combinational logic implements the function for next state

Inputs Next State

Current State
Outputs

next state
logic



VII - Finite State Machines Contemporary Logic Design 18

General state machine model

Values stored in registers represent the state of the circuit
Next state is function of current state and inputs
Outputs are

function of current state and inputs (Mealy machine)
function of current state only (Moore machine)

Combinational logic implements the functions for next state 
and outputs

Inputs
Outputs

Next State

Current State

output
logic

next state
logic



VII - Finite State Machines Contemporary Logic Design 19

State machine model (cont’d)

States: S1, S2, ..., Sk

Inputs: I1, I2, ..., Im
Outputs: O1, O2, ..., On

Transition function: Fs(Si, Ij)
Output function: Fo(Si) or Fo(Si, Ij)

Inputs
Outputs

Next State

Current State

output
logic

next state
logic

Clock

Next State

State

0 1 2 3 4 5



VII - Finite State Machines Contemporary Logic Design 20

Comparison of Mealy and Moore machines
Mealy machines tend to have less states

different outputs on arcs (n2) rather than states (n)
Moore machines are safer to use

outputs change at clock edge (always one cycle later)
in Mealy machines, input change can cause output change as soon as 
logic is done – a big problem when two machines are interconnected –
asynchronous feedback may occur if one isn’t careful

Mealy machines react faster to inputs
react in same cycle – don't need to wait for clock
in Moore machines, more logic may be necessary to decode state into 
outputs – more gate delays after clock edge



VII - Finite State Machines Contemporary Logic Design 21

Comparison of Mealy and Moore machines 
(cont’d)

Moore

Mealy

Synchronous Mealy

state feedback

inputs

outputsreg

combinational 
logic for 
next state logic for

outputs

inputs outputs

state feedback

reg
combinational 

logic for
next state

logic for
outputs

inputs outputs

state feedback

reg
combinational 

logic for
next state

logic for
outputs



VII - Finite State Machines Contemporary Logic Design 22

D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

current next
reset input state state output
1 – – A
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1

Specifying outputs for a Moore machine

Output is only function of state
specify in state bubble in state diagram
example: sequence detector for 01 or 10



VII - Finite State Machines Contemporary Logic Design 23

current next
reset input state state output
1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B C 1
0 0 C B 1
0 1 C C 0

B

A

C

0/1

0/0

0/0

1/1

1/0

1/0

reset/0

Specifying outputs for a Mealy machine

Output is function of state and inputs
specify output on transition arc between states
example: sequence detector for 01 or 10



VII - Finite State Machines Contemporary Logic Design 24

Registered Mealy machine (really Moore)

Synchronous (or registered) Mealy machine
registered state AND outputs
avoids ‘glitchy’ outputs
easy to implement in PLDs

Moore machine with no output decoding
outputs computed on transition to next state rather than after entering
view outputs as expanded state vector

Inputs
Outputs

Current State

output
logic

next state
logic



VII - Finite State Machines Contemporary Logic Design 25

Vending
Machine

FSM

N

D

Reset

Clock

OpenCoin
Sensor

Release
Mechanism

Example: vending machine

Release item after 15 cents are deposited
Single coin slot for dimes, nickels
No change



VII - Finite State Machines Contemporary Logic Design 26

Example: vending machine (cont’d)

Suitable abstract representation
tabulate typical input sequences:

3 nickels
nickel, dime
dime, nickel
two dimes

draw state diagram:
inputs: N, D, reset
output: open chute

assumptions:
assume N and D asserted
for one cycle
each state has a self loop
for N = D = 0 (no coin)

S0

Reset

S2

D

S6
[open]

D

S4
[open]

D

S1

N

S3

N

S5
[open]

N

S8
[open]

D

S7
[open]

N



VII - Finite State Machines Contemporary Logic Design 27

Example: vending machine (cont’d)

Minimize number of states - reuse states whenever possible

symbolic state table

present inputs next output
state D N state open
0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D



VII - Finite State Machines Contemporary Logic Design 28

present state inputs next state output
Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 0
1 0 1 1 0
1 1 – – –

1 1 – – 1 1 1

Example: vending machine (cont’d)

Uniquely encode states



VII - Finite State Machines Contemporary Logic Design 29

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

D1 = Q1 + D + Q0 N

OPEN = Q1 Q0

Example: Moore implementation

Mapping to logic
0 0 1 1

0 1 1 1

X X 1 X

1 1 1 1

Q1D1

Q0

N
D

0 1 1 0

1 0 1 1

X X 1 X

0 1 1 1

Q1D0

Q0

N
D

0 0 1 0

0 0 1 0

X X 1 X

0 0 1 0

Q1Open

Q0

N
D



VII - Finite State Machines Contemporary Logic Design 30

Equivalent Mealy and Moore state diagrams

Moore machine
outputs associated with state

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

N’ D’ + Reset

D

D

N

N+D

N

N’ D’

Reset’

N’ D’

N’ D’

Reset

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0

Mealy machine
outputs associated with transitions



VII - Finite State Machines Contemporary Logic Design 31

Example: Mealy implementation

0¢

10¢

5¢

15¢

Reset/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0
present state inputs next state output

Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 1
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 1
1 0 1 1 1
1 1 – – –

1 1 – – 1 1 1

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1Open

Q0

N
D



VII - Finite State Machines Contemporary Logic Design 32

Example: Mealy implementation

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

make sure OPEN is 0 when reset
– by adding AND gate



VII - Finite State Machines Contemporary Logic Design 33

Vending machine: Moore to synch. Mealy

OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in 
Moore implementation
This can be corrected by retiming, i.e., move flip-flops and logic through each 
other to improve delay
OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
Implementation now looks like a synchronous Mealy machine

it is common for programmable devices to have FF at end of logic



VII - Finite State Machines Contemporary Logic Design 34

Vending machine: Mealy to synch. Mealy

OPEN.d = Q1Q0 + Q1N + Q1D + Q0D
OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D

0 0 1 0

0 0 1 1

1 0 1 1

0 1 1 1

Q1Open.d

Q0

N
D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1Open.d

Q0

N
D



VII - Finite State Machines Contemporary Logic Design 35

D Q

Q
B

A

clock

out

D Q

Q

D Q

Qclock

outA

B

Mealy and Moore examples

Recognize A,B = 0,1
Mealy or Moore?

B

A out



VII - Finite State Machines Contemporary Logic Design 36

D Q

Q

D Q

Q

D Q

Q

D Q

Q

A

B

clock

out

D Q

Q

D Q

Q

A

B

clock

out

Mealy and Moore examples (cont’d)

Recognize A,B = 1,0 then 0,1
Mealy or Moore?



VII - Finite State Machines Contemporary Logic Design 37

Example: reduce-1-string-by-1

Remove one 1 from every string of 1s on the input

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

1/00/0

0/0

1/1

zero

one1

Moore Mealy



VII - Finite State Machines Contemporary Logic Design 38

Finite state machines summary

Models for representing sequential circuits
abstraction of sequential elements
finite state machines and their state diagrams
inputs/outputs
Mealy, Moore, and synchronous Mealy machines

Finite state machine design procedure
deriving state diagram
deriving state transition table
determining next state and output functions
implementing combinational logic


	Ch 7. Finite State Machines
	Finite State Machines
	Counters 
	Counters (cont’d)
	Counters (cont’d)
	Counter Design Procedure
	Counter Design Procedure (cont’d)
	More complex counter example
	More complex counter example (cont’d)
	Self-starting counters
	Self-starting counters (cont’d)
	Abstraction of state elements
	Finite state machine representations
	Example finite state machine diagram
	Can any sequential system be represented with a state diagram?
	FSM design procedure
	Counter/shift-register model
	General state machine model
	State machine model (cont’d)
	Comparison of Mealy and Moore machines
	Comparison of Mealy and Moore machines (cont’d)
	Specifying outputs for a Moore machine
	Specifying outputs for a Mealy machine
	Registered Mealy machine (really Moore)
	Example: vending machine
	Example: vending machine (cont’d)
	Example: vending machine (cont’d)
	Example: vending machine (cont’d)
	Example: Moore implementation
	Equivalent Mealy and Moore state diagrams
	Example: Mealy implementation
	Example: Mealy implementation
	Vending machine: Moore to synch. Mealy
	Vending machine: Mealy to synch. Mealy
	Mealy and Moore examples
	Mealy and Moore examples (cont’d)
	Example: reduce-1-string-by-1
	Finite state machines summary

