Ch 7. Finite State Machines

Finite State Machines

- Sequential circuits
- primitive sequential elements
- combinational logic
- Models for representing sequential circuits
- finite-state machines (Moore and Mealy)
- Basic sequential circuits revisited
- shift registers
- counters
- Design procedure
- state diagrams
- state transition table
- next state functions

Counters

- Sequential logic circuit that proceed through a well defined sequence of states
- 3-bit binary up-counter
- 000, 001, 010, 011, 100, 101, 110, 111; and return to 000
- Decade counter
- 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001; and return to 0000 (binary-coded decimal)
- Gray-code counter
- Only a single bit of the counter changes at a time to avoid circuit hazard
- 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000 and repeat

Counters (cont'd)

- Ring counters
- Shift registers can also be used as a kind of primitive counter
- Uses minimal hardware for its implementation
- Not efficient state encoding

Figure 7.1 Four-bit simple ring counter.

Counters (cont'd)

- Johnson counter (aka Mobius counter)
- Requires only one inverter more than the basic ring counter
- Can sequence through twice as many states

Figure 7.2 Four-bit Johnson counter.

Figure 7.3 Timing waveforms for 4-bit Johnson counter.

Counter Design Procedure

- 3-bit binary up-counter
- Describe state transition diagram and table

Present State					Next State			
				C	B	A	$C+$	
$B+$	$A+$							
0	0	0	0	0	0	1	1	
1	0	0	1	0	1	0	2	
2	0	1	0	0	1	1	3	
3	0	1	1	1	0	0	4	
4	1	0	0	1	0	1	5	
5	1	0	1	1	1	0	6	
6	1	1	0	1	1	1	7	
7	1	1	1	0	0	0	0	

Figure 7.4 State transition diagram and table for a 3-bit binary up-counter.

Counter Design Procedure (cont'd)

- 3-bit binary up-counter
- Design combinational logic through K-map methods

Figure 7.5 K-maps for up-counter flip-flops.

More complex counter example

- Complex counter
- repeats 5 states in sequence
- not a binary number representation
- Step 1: derive the state transition diagram
- count sequence: 000, 010, 011, 101, 110
- Step 2: derive the state transition table from the state transition diagram

				Present State			Next State	
C	B	A	C+	B+	A+			
0	0	0	0	1	0			
0	0	1	-	-	-			
0	1	0	0	1	1			
0	1	1	1	0	1			
1	0	0	-	-	-			
1	0	1	1	1	0			
1	1	0	0	0	0			
1	1	1	-	-	-			

More complex counter example (cont'd)

- Step 3: K-maps for next state functions

$$
\begin{aligned}
& C+<=\mathrm{A} \\
& \mathrm{~B}+<=\mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \\
& \mathrm{A}+<=\mathrm{BC}^{\prime}
\end{aligned}
$$

Present State				Next State	
C	B	A	$\mathrm{C}+$		$\mathrm{B}+$
$\mathrm{A}+$					
0	0	0	0	1	0
0	0	1	1	1	0
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	1	0	0

Self-starting counters

- Start-up states
- at power-up, counter may be in an unused or invalid state
- designer must guarantee that it (eventually) enters a valid state
- Self-starting solution
- design counter so that invalid states eventually transition to a valid state
- may limit exploitation of don't cares

Self-starting counters (cont'd)

- Re-deriving state transition table from don't care assignment

Present State				Next State	
C	B	A	C+	$\mathrm{B}+$	$\mathrm{A}+$
0	0	0	0	1	0
0	0	1	1	1	0
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	1	0	0

Abstraction of state elements

- Divide circuit into combinational logic and state
- Localize the feedback loops and make it easy to break cycles
- Implementation of storage elements leads to various forms of sequential logic

Finite state machine representations

- States: determined by possible values in sequential storage elements
- Transitions: change of state
- Clock: controls when state can change by controlling storage elements
- Sequential logic
- sequences through a series of states
- based on sequence of values on input signals
- clock period defines elements of sequence

Example finite state machine diagram

- Combination lock from introduction to course
- 5 states
- 5 self-transitions
- 6 other transitions between states
- 1 reset transition (from all states) to state S1

Can any sequential system be represented with a state diagram?

- Shift register
- input value shown on transition arcs
- output values shown within state node

FSM design procedure

- Step 1. Understand the problem
- Describe a finite state machine in an unambiguous manner
- Step 2. Obtain an abstract representation of the FSM
- State diagram
- Step 3. Perform state minimization
- Certain paths through the state machine can be eliminated
- Step 4. Perform state assignment
- Counter: the state and the output are identical
- General FSM: good state encoding often leads to a simpler implementation
- Step 5. Implement the finite state machine
- Using Boolean equations or K-maps

Counter/shift-register model

- Values stored in registers (flip-flops) represent the state of the circuit
- Next state is function of current state and inputs
- Outputs are the state
- Combinational logic implements the function for next state

General state machine model

- Values stored in registers represent the state of the circuit
- Next state is function of current state and inputs
- Outputs are
- function of current state and inputs (Mealy machine)
- function of current state only (Moore machine)
- Combinational logic implements the functions for next state and outputs

State machine model (cont'd)

- States: $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$
- Inputs: $I_{1}, I_{2}, \ldots, I_{m}$
- Outputs: $\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{n}}$
- Transition function: $F_{s}\left(S_{i}, l_{j}\right)$
- Output function: $F_{0}\left(S_{i}\right)$ or $F_{0}\left(S_{i}, l_{j}\right)$

Comparison of Mealy and Moore machines

- Mealy machines tend to have less states
- different outputs on arcs (n^{2}) rather than states (n)
- Moore machines are safer to use
- outputs change at clock edge (always one cycle later)
- in Mealy machines, input change can cause output change as soon as logic is done - a big problem when two machines are interconnected asynchronous feedback may occur if one isn't careful
- Mealy machines react faster to inputs
- react in same cycle - don't need to wait for clock
- in Moore machines, more logic may be necessary to decode state into outputs - more gate delays after clock edge

Comparison of Mealy and Moore machines (cont'd)

- Moore

state feedback
- Mealy

- Synchronous Mealy
state feedback

state feedback

Specifying outputs for a Moore machine

- Output is only function of state
- specify in state bubble in state diagram
- example: sequence detector for 01 or 10

\(\left.$$
\begin{array}{lll|ll} & & \text { current } & \begin{array}{l}\text { next } \\
\text { reset }\end{array}
$$ \&

input \& state\end{array}\right)\) output | state |
| :--- | :--- | :--- | :--- |

Specifying outputs for a Mealy machine

- Output is function of state and inputs
- specify output on transition arc between states
- example: sequence detector for 01 or 10

		current	next	
reset	input	state	state	output
1	-	-	A	0
0	0	A	B	0
0	1	A	C	0
0	0	B	B	0
0	1	B	C	1
0	0	C	B	1
0	1	C	C	0

Registered Mealy machine (really Moore)

- Synchronous (or registered) Mealy machine
- registered state AND outputs
- avoids 'glitchy' outputs
- easy to implement in PLDs
- Moore machine with no output decoding
- outputs computed on transition to next state rather than after entering
- view outputs as expanded state vector

Current State

Example: vending machine

- Release item after 15 cents are deposited
- Single coin slot for dimes, nickels
- No change

Example: vending machine (cont'd)

- Suitable abstract representation
- tabulate typical input sequences:
- 3 nickels
- nickel, dime
- dime, nickel
- two dimes
- draw state diagram:
- inputs: N, D, reset
- output: open chute
- assumptions:
- assume N and D asserted for one cycle
- each state has a self loop

Example: vending machine (cont'd)

- Minimize number of states - reuse states whenever possible

Example: vending machine (cont'd)

- Uniquely encode states

present state Q1		inputs		next state		output
0	0	D	N	D 1	D 0	open
		0	0	0	0	0
		0	1	0	1	0
0	1	1	0	1	0	0
		0	0	0	1	0
		0	1	1	0	0
		1	0	1	1	0
1	0	0	0	1	0	0
		0	1	1	1	0
		1	0	1	1	0
1	1	1	1	-	-	-

Example: Moore implementation

- Mapping to logic

\[

\]

$$
\begin{aligned}
& \mathrm{D} 0=\mathrm{Q} 0^{\prime} \mathrm{N}+\mathrm{Q} 0 \mathrm{~N}^{\prime}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D} \\
& \mathrm{D} 1=\mathrm{Q} 1+\mathrm{D}+\mathrm{Q} 0 \mathrm{~N} \\
& \mathrm{OPEN}=\mathrm{Q} 1 \mathrm{Q} 0
\end{aligned}
$$

Equivalent Mealy and Moore state diagrams

- Moore machine
- outputs associated with state

Example: Mealy implementation

Reset'/1

Example: Mealy implementation

$$
\begin{array}{ll}
\mathrm{DO} & =\mathrm{QO} \mathrm{~N}+\mathrm{Q} 0 \mathrm{~N}^{\prime}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q1D} \\
\mathrm{D} 1 & =\mathrm{Q1}+\mathrm{D}+\mathrm{Q} 0 \mathrm{~N} \\
\text { OPEN } & =\mathrm{Q1Q0}+\mathrm{Q1N}+\mathrm{Q1D}+\mathrm{Q0D}
\end{array}
$$

make sure OPEN is 0 when reset

- by adding AND gate

Vending machine: Moore to synch. Mealy

- OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in Moore implementation
- This can be corrected by retiming, i.e., move flip-flops and logic through each other to improve delay
- OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)
= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
- Implementation now looks like a synchronous Mealy machine
- it is common for programmable devices to have FF at end of logic

Vending machine: Mealy to synch. Mealy

- OPEN.d = Q1Q0 + Q1N + Q1D + Q0D
- OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)
= Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D

Mealy and Moore examples

- Recognize $A, B=0,1$
- Mealy or Moore?

Mealy and Moore examples (cont'd)

- Recognize $A, B=1,0$ then 0,1
- Mealy or Moore?

Example: reduce-1-string-by-1

- Remove one 1 from every string of 1s on the input

Mealy

Finite state machines summary

- Models for representing sequential circuits
- abstraction of sequential elements
- finite state machines and their state diagrams
- inputs/outputs
- Mealy, Moore, and synchronous Mealy machines
- Finite state machine design procedure
- deriving state diagram
- deriving state transition table
- determining next state and output functions
- implementing combinational logic

