Ch.6 Random Processes

- Random Process = Stochastic Process
 - Numerical quantities that evolve randomly in time or space.
 - > Indexed family of random variables.

6.1 Definition of a Random Process

***** For every outcome $\zeta \in S$, a function of time

$$X(t, \zeta), t \in I$$

- Realization, Sample path or Sample function of the random process
 - \rightarrow the graph of $X(t, \zeta)$ versus t for ζ fixed.

- For each fixed t_k from the index set I, $X(t_k, \zeta) = a$ random variable.
- Indexed family of random variables. $\{X(t, \zeta), t \in I\} \rightarrow \text{Random Process or Stochastic Process.}$
 - cf) discrete-time if the index set I is a countable set continuous-time if I is continuous.
- The randomness in ζ induces randomness in the observed function $X(t, \zeta)$
- Ex.6.4 cf) $f_Y(y) = \sum_k f_X(x) \left| \frac{dx}{dy} \right|_{x=x}$

6.2 Specifying a Random Process

Joint Distributions of Time Samples

$$X_1 = X(t_1, \zeta), X_2 = X(t_2, \zeta), \dots, X_k = X(t_k, \zeta)$$

 \rightarrow stochastic process is specified by the collection of k th-order joint cdf.

$$F_{X_1, X_2, ..., X_k}(x_1, x_2, ..., x_k)$$

$$= P[X_1 \le x_1, X_2 \le x_2, ..., X_k \le x_k]$$

for any k and any choice of sampling instants $t_1, ..., t_k$

Discrete-valued stochastic process, pmf specifies the stochastic process.

$$p_{X_1, X_2, ..., X_k}(x_1, x_2, ..., x_k)$$

$$= P[X_1 = x_1, X_2 = x_2, ..., X_k = x_k]$$

Continuous-valued stochastic process, pdf specifies the stochastic process.

$$f_{X_1,X_2,...,X_k}(x_1,x_2,...,x_k)$$

Independent Increments

- ❖ Two fundamental processes : Poisson process and Wiener process → independent increments, Markov.
- ❖ A random process X(t) is said to have "independent increments" if for any k and any choice of sampling instants $t_1 < t_2 < ... < t_k$, the random variables $X(t_2) X(t_1), X(t_3) X(t_2), ..., X(t_k) X(t_{k-1})$ are independent random variables

Markov Process

For any k and any choice of sampling instants

$$t_1 < t_2 < ... < t_k$$
 and for any $x_1, x_2, ..., x_k$, $f_{X(t_k)}(x_k | X(t_{k-1}) = x_{k-1}, ..., X(t_1) = x_1)$ if $X(t)$ is continuous-valued. $P[X(t_k) = x_k | X(t_{k-1}) = x_{k-1}, ..., X(t_1) = x_1]$ $= P[X(t_k) = x_k | X(t_{k-1}) = x_{k-1}]$ if $X(t)$ is discrete-valued. Then $Y(t)$ is said to be a Markov process.

then X(t) is said to be a Markov process

Note

"A random process that has independent increments is also a Markov process."

"The converse is not true."

$$\begin{split} X(t_k) &= X(t_{k-1}) + \Delta X_{k-1} \\ &= X(t_{k-2}) + \Delta X_{k-2} + \Delta X_{k-1} \\ &= X(t_1) + \Delta X_1 + \Delta X_2 + \dots + \Delta X_{k-1} \\ \Delta X_1 &= X(t_2) - X(t_1), \dots, \Delta X_{k-1} = X(t_k) - X(t_{k-1}) \\ &: \text{independent random variable} \end{split}$$

The Mean, Autocorrelation, Autocovariance

* The mean $m_X(t)$ of a random process X(t)

$$m_X(t) = E[X(t)] = \int_{-\infty}^{\infty} x f_{X(t)}(x) dx$$
 Funtion of time

* Autocorrelation $R_X(t_1,t_2)$: a function of t_1 and t_2 $R_X(t_1,t_2) = E[X(t_1)X(t_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X(t_1),X(t_2)}(x,y) dx dy$ where $f_{X(t_1),X(t_2)}(x,y)$ is the second-order pdf of X(t)

* Autocovariance $C_X(t_1, t_2)$

$$C_X(t_1, t_2) = E[\{X(t_1) - m_X(t_1)\}\{X(t_2) - m_X(t_2)\}]$$

= $R_X(t_1, t_2) - m_X(t_1)m_X(t_2)$

 \diamond Variance of X(t)

VAR[
$$X(t)$$
] = E[$(X(t) - m_X(t))^2$] = $C_X(t, t)$

Correlation coefficient

$$\rho_X(t_1, t_2) = \frac{C_X(t_1, t_2)}{\sqrt{C_X(t_1, t_1)} \sqrt{C_X(t_2, t_2)}}$$

- cf)
 - ➤ The mean, autocorrelation, and autocovariance functions are only partial descriptions of a random process.
 - ➤ It is possible for two quite different random processes to have the same mean, autocorrelation, and autocovariance function.

❖ Ex. 6.7

 $> X(t) = \cos(\omega t + \Theta), \Theta$ is uniformly distributed in the interval $(-\pi, \pi)$

$$\begin{split} m_X(t) &= E[\cos(\omega t + \Theta)] \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(\omega t + \Theta) d\theta = 0 \\ C_X(t_1, t_2) &= R_X(t_1, t_2) = E[\cos(\omega t_1 + \Theta)\cos(\omega t_2 + \Theta)] \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} \{\cos(\omega (t_1 - t_2)) + \cos(\omega (t_1 + t_2) + 2\theta)\} d\theta \\ &= \frac{1}{2} \cos(\omega (t_1 - t_2)) \end{split}$$

$$\rho_X(t_1, t_2) = \frac{C_X(t_1, t_2)}{\sqrt{C_X(t_1, t_1)}\sqrt{C_X(t_2, t_2)}} = \frac{\frac{1}{2}\cos(\omega(t_1 - t_2))}{\frac{1}{2}}$$
$$= \cos(\omega(t_1 - t_2))$$

Gaussian Random Processes

- * $X_1 = X(t_1), X_2 = X(t_2), ..., X_k = X(t_k)$ are jointly Gaussian r.v.'s for all k and all choices of $t_1, ..., t_k$.
- The joint pdf of jointly Gaussian r.v.'s

$$f_{X_1, X_2, ..., X_k}(x_1, ..., x_k) = \frac{e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T K^{-1}(\mathbf{x} - \mathbf{m})}}{(2\pi)^{k/2} |K|^{1/2}}$$

where
$$\mathbf{m} = \begin{bmatrix} m_X(t_1) \\ \vdots \\ m_X(t_k) \end{bmatrix}$$
 $K = \begin{bmatrix} C_X(t_1, t_1) & C_X(t_1, t_2) & \dots & C_X(t_1, t_k) \\ C_X(t_2, t_1) & C_X(t_2, t_2) & \dots & C_X(t_2, t_k) \\ \vdots & & \vdots & & \vdots \\ C_X(t_k, t_1) & \dots & & C_X(t_k, t_k) \end{bmatrix}$

* Ex. 6.8: iid Gaussian sequence

- \triangleright Mean m, Variance σ^2
- $\geq \{C_X(t_i, t_j)\} = \{\sigma^2 \delta_{ij}\} = \sigma^2 I$

 $\delta_{ii} = 1$ when i = j and 0 otherwise.

I = identity matrix.

$$f_{X_1,...,X_k}(x_1, x_2,...,x_k) = \frac{1}{(2\pi\sigma^2)^{k/2}} \exp\left\{-\sum_{i=1}^k (x_i - m)^2 / 2\sigma^2\right\}$$
$$= f_X(x_1) f_X(x_2) ... f_X(x_k)$$

Multiple Random Processes

- For a pair of random processes X(t) and Y(t), we must specify all possible joint density functions of $X(t_1),...,X(t_k)$ and $Y(t_1'),...,Y(t_j')$ for all k,j, and all choices of $t_1,...,t_k$ and $t_1',...,t_j'$
- The processes X(t) and Y(t) are said to be independent if the vector r.v.'s $(X(t_1),...,X(t_k))$ and $(Y(t'_1),...,Y(t'_j))$ are independent for all k, j, and all choices of $t_1,...,t_k$ and $t'_1,...,t'_j$

- * The cross-correlation $R_{X,Y}(t_1,t_2)$ of X(t) and Y(t)
 - $ightharpoonup R_{X,Y}(t_1, t_2) = E[X(t_1) Y(t_2)]$
 - $\rightarrow X(t)$ and Y(t) are orthogonal if $R_{X,Y}(t_1,t_2)=0$ for all t_1 and t_2
- * The cross-covariance $C_{X,Y}(t_1,t_2)$ of X(t) and Y(t)
 - $C_{X,Y}(t_1, t_2) = E[\{X(t_1) m_X(t_1)\} \{Y(t_2) m_Y(t_2)\}]$ $= R_{X,Y}(t_1, t_2) m_X(t_1)m_Y(t_2)$
 - $\rightarrow X(t)$ and Y(t) are uncorrelated if $C_{X,Y}(t_1,t_2)=0$ for all t_1 and t_2

6.3 Examples of Discrete-Time Random Processes

- ❖ iid Random Process X_n
 - \succ Consisting of a sequence of independent, identically distributed random variables with common cdf $F_X(x)$, mean m, and variance σ^2

$$F_{X_1,...,X_k}(x_1, x_2,...,x_k) = P[X_1 \le x_1, X_2 \le x_2,..., X_k \le x_k]$$

$$= F_X(x_1) F_X(x_2) ... F_X(x_k)$$

: the joint cdf for any time instants $n_1, n_2, ..., n_k$

Mean of an iid process

$$m_X(n) = E[X_n] = m$$
 for all n
 \downarrow Constant

Autocovariance

- If
$$n_1 \neq n_2$$

$$C_X(n_1, n_2) = E[(X_{n_1} - m)(X_{n_2} - m)]$$

$$= E[X_{n_1} - m]E[X_{n_2} - m] = 0$$

- If
$$n_1 = n_2 = n$$

$$C_X(n_1, n_2) = E[(X_n - m)^2] = \sigma^2$$

$$\therefore C_X(n_1, n_2) = \sigma^2 \delta_{n_1, n_2}$$
 where $\delta_{n_1, n_2} = 1$ if $n_1 = n_2$ and 0 otherwise

Autocorrelation function

$$R_X(n_1, n_2) = C_X(n_1, n_2) + m^2$$

Sum Processes: The Binomial Counting and Random Walk Processes

 \diamond Sum of a sequence of iid random variables, $X_1, X_2...$

$$S_n = X_1 + X_2 + ... + X_n = S_{n-1} + X_n, \quad n = 1, 2, ... \text{ (time)}$$

$$f_{S_n}(s) = F^{-1} \{ \Phi_{X_1}(\omega) \cdots \Phi_{X_n}(\omega) \}$$

- \triangleright Note : S_n is independent of the past when S_{n-1} is known.
 - $\rightarrow S_n$ is a Markov process.

❖ Ex. 6.13

- $\geq I_i$: Sequence of independent Bernoulli random variables.
- $\gt S_n$: Sum Process $\to S_n$ is the counting process for successes
 - \rightarrow Gives the number of successes in the first n Bernoulli trials.
- \triangleright Sample function for S_n corresponding to a particular sequence of I_i 's is given in Fig. 6.4.

$$S_n = \sum_{i=1}^n I_i \rightarrow S_n$$
 is a binomial random variable with parameters n and $p = P[I = 1]$

$$S_n = \sum_{i=1}^n I_i \rightarrow S_n$$
 is a binomial random variable with parameters n and $p = P[I = 1]$
$$P[S_n = j] = \binom{n}{j} p^j (1-p)^{n-j} \quad \text{for } 0 \le j \le n \text{ and zero otherwise}$$

$$\triangleright E[S_n] = np$$

$$E[S_n] = np$$
 $VAR[S_n] = np(1-p)$

Grows linearly with time

Independent increments:

two time intervals having no overlapping

$$n_0 < n \le n_1$$
 and $n_2 < n \le n_3$ where $n_1 \le n_2$

$$S_{n_1} - S_{n_0} = X_{n_0+1} + \dots + X_{n_1}$$

$$S_{n_3} - S_{n_2} = X_{n_2+1} + \dots + X_{n_3}$$

 \rightarrow no common X_n 's in the above

two random variables $S_{n_1} - S_{n_0}$ and $S_{n_3} - S_{n_2}$

If X_n is independent then

the increments $(S_{n_1} - S_{n_0})$ and $(S_{n_3} - S_{n_2})$

are independent r.v.'s.

- For n' > n, $S_{n'} S_n = \text{sum of } n' n \text{ iid r.v.'s}$ \rightarrow the same distribution as $S_{n'-n'}$ the sum of the first (n'-n)X's
- $P[S_{n'} S_n = y] = P[S_{n'-n} = y] \rightarrow \text{stationary increments}$
- ➤ Note: the increments in intervals of the same length have the same distribution regardless of when the interval begins.

\bullet The joint pmf/pdf of S_n for any number of time instants

 $\succ X_n$'s (iid): integer valued $\rightarrow S_n$: integer valued.

$$P[S_{n_1} = y_1, S_{n_2} = y_2, S_{n_3} = y_3]$$

$$= P[S_{n_1} = y_1, S_{n_2} - S_{n_1} = y_2 - y_1, S_{n_3} - S_{n_2} = y_3 - y_2]$$

$$\therefore S_{n_2} = S_{n_1} + X_{n_1+1} + \dots + X_{n_2} = y_1 + X_{n_1+1} + \dots + X_{n_2} = y_2$$

$$S_{n_2} - S_{n_1} = X_{n_1+1} + \dots + X_{n_2} = y_2 - y_1$$

independent and stationary increments

$$P[S_{n_1} = y_1, S_{n_2} = y_2, S_{n_3} = y_3]$$
Stationary increments
$$P[S_{n_1} = y_1, S_{n_2} = y_2, S_{n_3} = y_3]$$

$$= P[S_{n_1} = y_1]P[S_{n_2} - S_{n_1} = y_2 - y_1]P[S_{n_3} - S_{n_2} = y_3 - y_2]$$

$$= P[S_{n_1} = y_1]P[S_{n_2-n_1} = y_2 - y_1]P[S_{n_3-n_2} = y_3 - y_2]$$

Generalization

 \triangleright For integer-valued \underline{X}_n

$$P[S_{n_1} = y_1, S_{n_2} = y_2, ..., S_{n_k} = y_k]$$

$$= P[S_{n_1} = y_1]P[S_{n_2-n_1} = y_2 - y_1] \cdots P[S_{n_k-n_{k-1}} = y_k - y_{k-1}]$$

 \triangleright For continuous-valued X_n

$$f_{S_{n_1},S_{n_2},...,S_{n_k}}(y_1, y_2,..., y_k)$$

$$= f_{S_{n_1}}(y_1) f_{S_{n_2-n_1}}(y_2 - y_1) \cdots f_{S_{n_k-n_{k-1}}}(y_k - y_{k-1})$$

 \star Ex. 6.16 the joint pmf for the binomial counting process at times n_1 and n_2

$$P[S_{n_1} = y_1, S_{n_2} = y_2] = P[S_{n_1} = y_1]P[S_{n_2-n_1} = y_2 - y_1]$$

$$= \binom{n_2 - n_1}{y_2 - y_1} p^{y_2 - y_1} (1 - p)^{n_2 - n_1 - y_2 + y_1} \binom{n_1}{y_1} p^{y_1} (1 - p)^{n_1 - y_1}$$

$$= \binom{n_2 - n_1}{y_2 - y_1} \binom{n_1}{y_1} p^{y_2} (1 - p)^{n_2 - y_2}$$

❖ Mean, variance and autocovariance of sum process S_n = Sum of n iid r.v.'s

$$m_S(n) = E[S_n] = nE[X] = nm$$

 $VAR[S_n] = n VAR[X] = n\sigma^2$

cf)
$$VAR[X_1 + X_2 + \dots + X_n]$$

= $VAR[X_1] + \dots + VAR[X_n] + \sum \sum COV(X_i, X_j)$

iid
$$\rightarrow \text{COV}(X_i, X_j) = 0$$
 for $i \neq j$

autocovariance

$$\begin{split} C_S(n,k) &= E[(S_n - E[S_n])(S_k - E[S_k])] \\ &= E\Big[(S_n - nm)(S_k - km)\Big] \\ &= E\Big[\left\{\sum_{i=1}^n (X_i - m)\right\} \left\{\sum_{j=1}^k (X_j - m)\right\}\Big] \\ &= \sum_{i=1}^n \sum_{j=1}^k E[(X_i - m)(X_j - m)] \\ C_S(n,k) &= \sum_{i=1}^{\min(n,k)} C_X(i,i) = \min(n,k)\sigma^2 \\ \text{cf) } C_X(i,j) &= \sigma^2 \delta_{i,j} : \text{ autocovariance of the iid process } X_n \end{split}$$

$$C_{S}(n,k) = E[(S_{n} - nm)(S_{k} - km)]$$

$$= E[(S_{n} - nm)\{(S_{n} - nm) + (S_{k} - km) - (S_{n} - nm)]]$$

$$= E[(S_{n} - nm)^{2}] + E[(S_{n} - nm)(S_{k} - S_{n} - (k - n)m)]$$

$$= E[(S_{n} - nm)^{2}] + E[(S_{n} - nm)]E[(S_{k} - S_{n} - (k - n)m)]$$

$$\therefore C_{S}(n,k) = E[(S_{n} - nm)^{2}]$$

$$= VAR[S_{n}] = n\sigma^{2}$$

$$S_{n} \text{ and the increment } S_{k} - S_{n} \text{ are independent } for k > = n$$

6.4 Examples of Continuous-Time Random Processes

Poisson Process

- \nearrow N(t): the number of event occurrences in the time interval [0, t] \rightarrow Nondecreasing, integer valued, continuous-time random process.
- The interval [0, t] is divided into n subintervals of very short duration $\delta = t/n$
 - ① The probability of more than one event occurrence in a subinterval ≪ the probability of observing one or zero events
 - → Bernoulli trial.

- ② An event occurrence in a subinterval is independent of each other. → independence of Bernoulli trial.
 - $\therefore N(t)$: approximated by the binomial counting process.
- > A sample path of the Poisson counting process.

- \triangleright The probability of an event occurrence in each subinterval = p
- \rightarrow the expected number of event occurrences in the interval [0, t] = np (n sub-intervals)
- $\triangleright \lambda$: The rate of event occurrence \rightarrow the average number of events in the interval $[0, t] = \lambda t$

$$\therefore \lambda t = np$$

cf) For a large n and a very small p

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \cong \frac{\alpha^k}{k!} e^{-\alpha} \quad \text{for } k = 0,1,\dots$$
 : Eq. (3.31) with $\alpha = np = \lambda t$

The number of event occurrence N(t) in the interval [0, t]: the Poisson process

$$P[N(t) = k] = \frac{(\lambda t)^k}{k!} e^{-\lambda t} \quad \text{for } k = 0,1,\dots$$

- \rightarrow a Poisson distribution with mean λt
- Note The Poisson process N(t)'s properties (from the underlying binomial process)
- ① Independent increment
- 2 Stationary increment

- > The properties of independent and stationary increments
- \rightarrow the distribution for the number of occurrences in any interval of length t.

$$P[N(t) = k] = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

 \triangleright The joint pmf for N(t) at any number of points.

For
$$t_1 < t_2$$

$$P[N(t_{1}) = i, N(t_{2}) = j] = P[N(t_{1}) = i]P[N(t_{2}) - N(t_{1}) = j - i]$$

$$= P[N(t_{1}) = i]P[N(t_{2} - t_{1}) = j - i]$$

$$= \frac{(\lambda t_{1})^{i} e^{-\lambda t_{1}}}{i!} \cdot \frac{[\lambda (t_{2} - t_{1})]^{j-i} e^{-\lambda (t_{2} - t_{1})}}{(j - i)!}$$

 \triangleright The autocovariance of N(t)

For
$$t_1 \le t_2$$

$$C_{N}(t_{1}, t_{2}) = E[(N(t_{1}) - \lambda t_{1})(N(t_{2}) - \lambda t_{2})]$$

$$= E[(N(t_{1}) - \lambda t_{1})\{N(t_{2}) - N(t_{1}) - \lambda t_{2} + \lambda t_{1} + (N(t_{1}) - \lambda t_{1})\}]$$

$$= E[N(t_{1}) - \lambda t_{1}]E[N(t_{2}) - N(t_{1}) - \lambda (t_{2} - t_{1})] + VAR[N(t_{1})]$$

$$= VAR[N(t_{1})] = \lambda t_{1}$$

$$= \lambda \min(t_{1}, t_{2})$$

cf) Poisson r.v.
$$p_k = \frac{\alpha^k e^{-\alpha}}{k!} \Rightarrow E[X] = \alpha$$
, $VAR[X] = \alpha$

- ➤ The inter-event time T: time between event occurrences in a Poisson process.
- The time interval [0, t]
- $\delta = t/n$
- n Bernoulli trials

$$P[T > t] = P[\text{no events in } t \text{ seconds}]$$

$$= (1 - p)^{n}$$

$$= \left(1 - \frac{\lambda t}{n}\right)^{n} \Rightarrow e^{-\lambda t} \text{ as } n \to \infty$$

 \triangleright Note : T is an exponential r.v. with parameter λ

- cf) N(t) : approximated by binomial counting process.
 - T : independent geometric random variables (memoryless r.v.)
 - \rightarrow exponential r.v. as n goes infinite

$$P[T=t] = (1-p)^n p$$

- ➤ The sequence of inter-event times in a Poisson process is composed of independent r.v.'s.
- Note: "The inter-event times in a Poisson process form an iid sequence of exponential random variables with mean $1/\lambda$.

> S_n : the time at which the nth event occurs in a Poisson process $S_n = T_1 + T_2 + ... + T_n$; iid exponential interarrival times.

> cf)
$$\Phi_X(\omega) = \frac{\lambda}{\lambda - j\omega}$$
: The Characteristic function of a single exponential r.v.
$$\Phi_{S_n}(\omega) = \left\{\frac{\lambda}{\lambda - j\omega}\right\}^n \to \text{m-Erlang r.v.}$$

$$\therefore f_{S_n}(y) = \frac{(\lambda y)^{n-1}}{(n-1)!} \lambda e^{-\lambda y}, \quad y \ge 0$$

ightharpoonup cf) $f_X(x) = \lambda e^{-\lambda x}$: exponential r.v.

> Arrivals occurs "at random".

Assumption : only one arrival in [0, t].

X : the arrival time of the single customer.

For 0 < x < t, N(x): the number of events upto time x.

N(t) - N(x): the increment in the interval (x, t].

$$P[X \le x] = P[N(x) = 1 | N(t) = 1]$$

$$= \frac{P[N(x) = 1 \text{ and } N(t) = 1]}{P[N(t) = 1]}$$

$$= \frac{P[N(x) = 1 \text{ and } N(t) - N(x) = 0]}{P[N(t) = 1]}$$

$$= \frac{P[N(x) = 1]P[N(t) - N(x) = 0]}{P[N(t) = 1]}$$

$$= \frac{\lambda x e^{-\lambda x} \cdot e^{-\lambda (t - x)}}{\lambda t e^{-\lambda t}}$$
Poisson distribution with $k = 1$

$$= \frac{x}{t} \rightarrow \text{the arrival time is uniformly distributed in the interval } [0, t].$$

> Note

If the number of arrivals in the interval [0, t] is k, then the individual arrival times are distributed independently and uniformly in the interval

Wiener Process and Brownian Motion

- \triangleright The symmetric random walk process (i.e., p=1/2)
 - cf) D_n : the iid process of ± 1 random variables and

$$S_n = D_1 + D_2 + \dots + D_n$$

- \rightarrow one-dimensional random walk (steps with magnitude h).
- \triangleright Magnitude of each step = h at every δ seconds.
 - \rightarrow at time t,

$$X_{\delta}(t) = h(D_1 + D_2 + \dots + D_{[t/\delta]}) = hS_n$$

where $n = t/\delta$ (intervals for t sec)

$$VAR[X_{\delta}(t)] = hE[S_n] = 0$$

$$VAR[X_{\delta}(t)] = h^2nVAR[D_n] = h^2n$$

$$where \ VAR[D_n] = VAR[2I_n - 1] = 2^2 \ VAR[I_n] = 4p(1-p)$$

$$cf) \ D_n = +1 \ or \ -1 \ while \ I_n = 1 \ or \ 0$$

$$\therefore VAR[D_n] = 4 \cdot 1/2 \cdot (1 - 1/2) = 1$$

$$variance \ of \ Bernoulli \ trial$$

$$vi.e., \ n \to \infty$$

$$Variance \ of \ Bernoulli \ trial$$

$$vi.e., \ n \to \infty$$

$$Variance \ of \ Bernoulli \ trial$$

$$vi.e., \ n \to \infty$$

$$VAR[X(t)] = 0$$

$$VAR[X(t)] = (\sqrt{\alpha\delta})^2 (t/\delta) = \alpha t$$

- \rightarrow Continuous time process X(t): Wiener random process.
- ① Begins at the origin
- 2 Zero mean for all time
- ③ Variance increases linearly with time.
- **4** Used to model Brownian motion.

As $\delta \to 0$, X(t) approaches the sum of an infinite number of random variable.

$$n = \frac{t}{\delta} \to \infty, X_{\delta}(t) \to X(t)$$

$$X(t) = \lim_{\delta \to 0} hS_n = \lim_{n \to 0} \sqrt{\alpha t} \frac{S_n}{\sqrt{n}}$$

$$(\because h = \sqrt{\alpha \delta})$$

The pdf of $X(t) \rightarrow$ pdf of Gaussian r.v. with mean zero and variance αt

$$f_{X(t)}(x) = \frac{1}{\sqrt{2\pi\alpha t}} e^{-x^2/2\alpha t}$$
 by CLT

➤ The property of independent and stationary increments from the random walk process. (:sum of iid r.v.'s)

$$f_{X(t_1),...,X(t_k)}(x_1,...,x_k) = f_{X(t_1)}(x_1) f_{X(t_2-t_1)}(x_2 - x_1) \cdots f_{X(t_k-t_{k-1})}(x_k - x_{k-1})$$

$$= \frac{\exp\left\{-\frac{1}{2} \left[\frac{x_1^2}{\alpha t_1} + \frac{(x_2 - x_1)^2}{\alpha (t_2 - t_1)} + \cdots + \frac{(x_k - x_{k-1})^2}{\alpha (t_k - t_{k-1})}\right]\right\}}{\sqrt{(2\pi\alpha)^k t_1(t_2 - t_1) \cdots (t_k - t_{k-1})}}$$

- > H.W.
 - Autocovariance of X(t)

$$C_X(t_1, t_2) = \alpha \min(t_1, t_2)$$

- ➤ Note: The Wiener Process and the Poisson Process have the same covariance function despite the fact that the two processes have very different sample functions.
 - ✓ Mean and autocovariance represent only partial information