Ch.6 Random Processes

» Random Process = Stochastic Process

» Numerical quantities that evolve randomly in time or space.
» Indexed family of random variables.



6.1 Definition of a Random Process

< For every outcome ¢ < S, a function of time

X, 0), tel

< Realization, Sample path or Sample function of the
random process

— the graph of X(t, {) versus t for £ fixed.



>




» For each fixed t, from the index set I,
X(t,, £) = a random variable.
» Indexed family of random variables.
{X(, ¢), t € I} = Random Process or Stochastic Process.

cf) discrete-time If the index set | Is a countable set
continuous-time if | Is continuous.

» The randomness in ¢ induces randomness in the observed
function X(t, ¢)

» EX.6.4
cf) fY (y)= Z fx (X)

dx
dy

X:Xk



6.2 Specifying a Random Process

< Joint Distributions of Time Samples
X, =X(t,40), X,=X({,,¢),..., X, =X({.,¢)

— stochastic process is specified by the collection of k th-order
joint cdf.

Fo « (X, X ,.., %)
S EAYEIEEIAY 1 Vs R

=P[X, <X, Xy, <X,y Xy S X ]

for any k and any choice of sampling instants t,,...,t,



< Discrete-valued stochastic process,
pmf specifies the stochastic process.

Py x,x, (Xis Xgsees X))
=P[X, =X, X, =X,,..., X, =X ]

< Continuous-valued stochastic process,
pdf specifies the stochastic process.

1Exl,xz,...,xk (X5 X505 Xy )



Independent Increments

< Two fundamental processes : Poisson process and
Wiener process — independent increments, Markov.

< A random process X(1) Is said to have

“Independent increments” if for any k and any choice of

sampling instants t,<t,<...<t,, the random variables

X(ty) = X(t)), X(t;) = X(t,),..., X(t) — X(t,.,) are
Independent random variables



Markov Process

< For any k and any choice of sampling instants
t<t,<...<t and forany x;,X,, ..., X,

Frer X X () =X poenns X(£) = X))
= fx(tk)(xk‘ Xt _)=X_) if X(t)is continuous-valued.
PIX (t) =% | X (t) =X ppeees X (1) =X

=P[X(t,)= Xk‘ X({_)=X_] if X(t)isdiscrete-valued.

then X(1) is said to be a Markov process



» Note

“A random process that has independent increments is
also a Markov process.”

“The converse Is not true.”
X(t)=X({_)+AX
= X (tk—z) +AX ko T AX k-1
= X(1,)+AX, +AX, +---+ AX,
AXI — X(tz)_ X (tl)a ceos Axk—l — X(tk)_ X(tk—l)
:Independent random variable



The Mean, Autocorrelation, Autocovariance

< The mean m, (t) of a random process X(t)
my (1) = E[X (0] = [ Xfy ) ()X

Funtion of time

< Autocorrelation Ry (t,,t,) : a function of t, and t,
Ry (t,1,) = EDX ()X )] = [ [ Xyfe ) (X V)XY

where Ty, xq,)(XY) is the second-order pdf of X(t)



< Autocovariance C, (t;,1,)

Cx (b, 1) = E[{X () =My (1) § {X (1) =My (L) ]
=Ry (t,,t,) —my (t,)m, (1,)

< Variance of X(t)

VAR[X®] = E[(X(® — my (1)*] = Cx (1,



% Correlation coefficient
Cy (,1,)
JCx (t,t)4/Cyx (5,

Py (1,1,) =

\/

*%* Cf)
» The mean, autocorrelation, and autocovariance functions are
only partial descriptions of a random process.

» It is possible for two quite different random processes to have
the same mean, autocorrelation, and autocovariance function.



“ EX. 6.7
» X(t) = cos(awt + ®), O is uniformly distributed in the interval (-7z, 7)

m, (t) = E[cos(at + O)]
:Lj” cos(awt+6)dgd =0
2 o7

C, (t,,t,) =R, (t,,t,) = E[cos(at, + ®)cos(wt, + O)]

= i _7; %{cos(a)(t1 —t,)) +cos(a(t, +1,)+26)}do

= % cos(a(t, —t,))



Cx (tlstz) %COS(&)(tI _tz ))

Py (t,1,) =

Sttty L
2

= cos(a(t, —1,))



Gaussian Random Processes
< X, = X(t), X,=X(t,),..., X, = X(t,) are jointly Gaussian r.v.’s
for all k and all choices of t,,...,t,.

< The joint pdf of jointly Gaussian r.v.’s
—%(x—m)T K~ (x-m)

e
f (X X, ) =
X3 Xg o Xy V90000 N k/2 1/2
27)"" K

() (Cy(t,t) Cy(tut) ... Cytut)]
where m = Xsl K = Cx(‘izatl) Cx(tzzatz) Cx(tzzatk)

- : : :

My (b)) C,(tt) .. Cy(toty)]




< EX. 6.8: 1id Gaussian sequence

» Mean m, Variance o?

> G, )} = {o°g) = o
d;=1 when i=] and 0 otherwise.
| = identity matrix.

(272'(72)k/2 i=1

= T (X)) Ty (%) .. Ty (%)

k
fxl,...,xk (X5 Xy5eees X)) = : eXP{_Z(Xi - m)2/262}



L)

L)

Multiple Random Processes

For a pair of random processes X(t) and Y(t),
we must specify all possible joint density functions of
X(t),....X(,) and Y(t),...,Y(t;) forall k, j,

and all choices of t,....,t, and t,....,t

The processes X (t) and Y (t) are said to be independent
If the vector r.v.'s (X(t)),..., X(t,)) and (Y(t),...,Y(t}))
are independent for all k, J, and all choices of t,...,t,

and t/,...,t;



< The cross-correlation Ry (t;,t,) of X(t) and Y(t)
» RX,Y (t,, ) = E[X(1)) Y(t,)]
— X(1) and Y(t) are orthogonal if
Ryy(t,t,)=0 forallt, andt,

“ The cross-covariance Cyy (t;,t,) of X(t) and Y(t)
7 Cyy (ty, ) = E[{X(t) —my (t)} {Y(t) —my () }]
=Ry y (t;, 1) = my (t)my (L)
— X(t) and Y(t) are uncorrelated if
Cyy(t,t))=0 forallt andt,



6.3 Examples of Discrete-Time Random Processes

< 1ld Random Process X,

» Consisting of a sequence of independent, identically distributed
random variables with common cdf F, (x), mean m, and
variance o?

> FXID___,Xk(xl,xz,...,xk) =P[X, <X, X, <X, X, <X, ]

= Fy (X)) Fy (%) .. By (%)
. the joint cdf for any time instants n,,n,,..., N,

» Mean of an iid process
m, (n)=E[X,]=m for all n
L. Constant



» Autocovariance
-1fn,#n,
Cy(n,n,)= E[(an _m)(xn2 —m)]
=E[X, —m]E[X, —-m]=0
- If n,=n,=n
Cy (ny,ny) =E[(X,—m)*] = o°
-Cy(n,n,) = 0'25%“2

where o6, . =11f n, =n, and 0 otherwise

n,n,

» Autocorrelation function
Rx (ny,ny) = Cx (N, ny) + m?



Sum Processes . The Binomial Counting and Random Walk Processes

< Sum of a sequence of iid random variables, X,, X,...
Sp=X{+ X, +...+ X, =S,_;+ X, n=1,2, ... (time)

Xn_——’G-.) "Sn:Sn—1+Xn

Unit
delay

Sn—l

fy, (5)=F {0, ()@, (@)}

» Note : S, is independent of the past when S, _, is known.
— S, IS a Markov process.



“ EX. 6.13
» |, : Sequence of independent Bernoulli random variables.
» S, 1 Sum Process — S, is the counting process for successes
— Gives the number of successes in the first n Bernoulli trials.
» Sample function for S, corresponding to a particular sequence
of I;'s is given in Fig. 6.4.

S :§n‘| _y Sy s a binomial random variable with
N Lyl L -
= parameters nand p =P[l = 1]

n) . _
P[Sn:j]:(_jp’(l—p)”‘ for 0<j<n
J and zero otherwise
» E[S,]=np

> — Grows linearly with time
> VAR[S,] = np(1 — p)



< Independent increments:

two time intervals having no overlapping
no<n<n,and n,<n<n; wheren,<n,

Snl —Sno =Xn0+1+"‘+ an
Sn3 —Snz = anﬂ + et Xn3
— no common X,.'s in the above

If X, Isindependent then
the increments (S, —S, ) and (S, -S,)

are independentr.v.'s.



» For n">n, S,—S = sumof n'—n iidr.v.'s
— the same distribution as S,,__,
the sum of the first (n"—n)X's

> PIS,—-S,=Yy]=P[S,_, =Yy] — stationary increments

n-n

» Note : the increments in intervals of the same length have the
same distribution regardless of when the interval begins.



< The joint pmf/pdf of S, for any number of time instants
» X.s (iid): integer valued — S, : integer valued.
PLS, = VY159, = Y¥5,95, = Vil
= P[Sn1 — y198n2 _Snl =Y, - y198n3 _Sn2 =Y;—Y,]
VoS, =5, F X gt X =YX et X =Y,
Sp, =S =Xyt ot X =Y, Y,

n, +1

» Iindependent and stationary increments
F)[Sn1 — ylasn2 — y298n3 — y3]
Stationary = P[Sn1 = yl]P[Sn2 o Sn1 =Y, - yl]P[Sn3 o Sn2 = Y3~ yz]
increments = P[Sn1 = yl]P[Snz—n1 =Y, - yl]P[Sn3—n2 =Y;— yz]



< Generalization
» For integer-valued X,
PISy, = Y1Sn, = ¥2se5 S0, = Vi
= P[Snl = yl]P[Snz—nl =Y, yl] P[Snk_nk—l =Y ™ yk_l]

» For continuous-valued X,

fsnl,snz,...,snk (Y15 Yaoeees Yio)

= fsnl(yl)fs (yz—yl)mfs (yk_yk—l)

n-n Nk —Nk—1



< EX. 6.16 the joint pmf for the binomial counting
process at times n, and n,

PlS, = V1.5, = Y, |=PIS, = V,IPS, . =Y —¥]

— (nz B nl pyz—Y1 (1 . p)nZ_nl_y2+y1 (nI) pY1 (1 . p)nl_yl
\yz —Yi) \yU

:[nz_m [nljpyz(l_ p)nz—y2
Yo = Yi \ Y




< Mean, variance and autocovariance of sum process
S,=Sumofnidr.v.'s

m,(n) = E[S,]=nE[X]=nm
VAR[S ]=nVAR[X]=no"
cf) VAR[X,+X,+--+X,]
= VAR[X,]+--+ VAR[X,]+ ) > COV(X;,X)

iid - COV(X;,X,)=0 for iz ]



autocovariance

C,(n,k) = E[(S, — E[S,])(S, — E[S,])]
= E[(S, —nm)(S, —km)]

{Box-n}{o-m}

E[(X; =m)(X; —m)]

I
m

M=,

i=l j
min(n,k)
Cs(n,k)= > C,(i,i) =min(n,k)o”

i=1
cf) Cx (i, j) = 0?0 : autocovariance of the iid process X,



»0Or n<k — n=min(n, K)
Cs(n,k) =E[(S, —nm)(S, —km)]
= E[(S, —nm){(S, —nm)+ (S, —km)— (S, —nm)]]
= E[(S, —nm)*]+E[(S, —nm)(S, =S, —(k—n)m)]
= E[(S, —nm)*]+ E[(S, —nm)]E[(S, - S, —(k —n)m)]

: _ B 2 — | S,, and the increment
© Cs (0, k) = E[(S, —nm)’] S.— S, are independent

= VAR[S, ]= no’ for k>=n




6.4 Examples of Continuous-Time Random Processes

% Poisson Process

» N(t) : the number of event occurrences in the time interval [0, t]
— Nondecreasing, integer valued, continuous-time random
process.

» The interval [0, t] is divided into n subintervals of very short

1 CALIVIL ]

@ The probability of more than one event occurrence in a
subinterval < the probability of observing one or zero events

— Bernoulli trial.



@ An event occurrence in a subinterval is independent of each
other. — independence of Bernoulli trial.

. N(t) : approximated by the binomial counting process.

» A sample path of the Poisson counting process.

Nnt

51 —

4 -

D N W
|




» The probability of an event occurrence in each subinterval = p
— the expected number of event occurrences in the
interval [0, t]=np  (n sub-intervals)

» A . The rate of event occurrence — the average number of
events in the interval [0, t] = At

S At=np
cf) For a large n and a very small p
LR n—k a* —a _
Py = y p (1-p) ;Fe for k=0,,... :EqQ.(3.31)

with a=np=1t



» The number of event occurrence N(t) in the interval [0, t] :
the Poisson process

k
P[N(t):k]:”kt') e for k=0,,...

— a Poisson distribution with mean At

» Note

The Poisson process N(t)'s properties (from the underlying
binomial process)

@ Independent increment
@ Stationary increment



» The properties of independent and stationary increments
— the distribution for the number of occurrences in any interval

of length t.
) (!

P[N(t)=k]= " e

At

» The joint pmf for N(t) at any number of points.

For t, <t,

PIN(t,)=i,N(t,) = j]=P[N(,) =i
— P[N(t1) — |

PIN(t,)—-N(t,)=]—1]
P[N(tz _tl) — j_i]

At —t)] e M

_(y'e™
]

(J=1)!



» The autocovariance of N(t)
Fort, <t,

CN (t19t2) — E:(N(tl)_ﬂvh)(N(tz)_ﬂIz)]
= E[(N(t,) = At){N(t,) = N(t) — AL, + At + (N (t,) — At )§ ]
E[N () — AL JE[N(t,) - N(t,) - A(t, —t,)]+ VAR[N(t,)]

VARIN& )Y = At
VARKR|N(L )] = AL

Amin(t,,t,)

ake ™

k!

cf) Poissonr.v. p, = = E[X]=a, VAR[X]=«



» The Inter-event time T : time between event occurrences in a
Poisson process.

- The time interval [0, t]
- o0=1t/n
- n Bernoulli trials

P[T >t]=P[no eventsin t seconds]

=(1-p)’
2(1_£j —e™ as n—ow
n

» Note : T is an exponential r.v. with parameter A4



cf) - N(t) : approximated by binomial counting process.
- T  :independent geometric random variables
(memoryless r.v.)
— exponential r.v. as n goes infinite

PIT=t=(-p)"

» The sequence of inter-event times in a Poisson process Iis
composed of independent r.v.'s.

» Note : “The inter-event times in a Poisson process form an iid
sequence of exponential random variables with mean 1/A.



» S, . the time at which the nth event occurs in a Poisson process

Sy= T, +T,+...+T,, T; :lid exponential interarrival times.

»cf) D, ()= __ A :The Characteristic function of a single
s A— o exponential r.v.
l n
O (w) = T — m-Erlang r.v.
—J

't
A NOE ((ny_)l)'/ie Yooy>0

» cf) f,(x)=1e~*: exponential r.v.



» Arrivals occurs “at random”.
Assumption : only one arrival in [0, t].
X : the arrival time of the single customer.
For 0 <x<t, N(x) : the number of events upto time x.
N(t) — N(x) : the increment in the interval (x, t].

> P[X <x]=P[N(x)=1N(t)=1]
_P[N(x)=1 and N(t)=1]
) PIN(t) =1]
~ P[IN(x)=1 and N(t)-N(x)=0]
) PIN(t) =1]




_ PIN(X) =T]P[N (t) - N(x) = 0]
PIN(t) =1]

A(t—X)

/1xe /ep\

— At
@A Poisson distribution with k=1
X

= — — the arrival time is uniformly distributed
in the interval [0, t].

» Note

If the number of arrivals in the interval [0, t] iIs k, then the
iIndividual arrival times are distributed independently and
uniformly in the interval



Wiener Process and Brownian Motion

» The symmetric random walk process (i.e., p=1/2)
cf) D, : the iid process of 1 random variables and
S,=D,+D,+...+D,
— one-dimensional random walk (steps with magnitude h).

» Magnitude of each step = h at every ¢ seconds.
— at time t,
X{t)=h(D;+ D,+ ... +Dy5) = hS,
where N =t/6 (intervals for t sec)



> E[ X4(t)] = hE[S,] = 0
VAR[X,(t)] = h2nVAR[D,] = h?n

where VAR[D,]=VAR[2l,—1]=22 VAR[Il ] =4p(1 — p)
cf) D,=+1or—-1 whilel =1or0 "\
~VAR[D,]=4-12-(1-1/2)=1

/
»Let 650, h—0 with h=+vad (step)
and let X(t) be the resulting process.
E[X(t)]=0

VAR[X ()] = (Wad) (t/5) = ot



— Continuous time process X(t) : Wiener random process.
@ Begins at the origin

@ Zero mean for all time

® Variance increases linearly with time.

@ Used to model Brownian motion.

A

Padtihal .

S

X(1)

.




» As o0— 0, X(t) approaches the sum of an infinite number of
random variable.

n=%—>oo,x5(t)—>X(t)

> cf)

X (t)=limhs, _ Jim ot =

n—0 Jn
(- h=+ad)
» The pdf of X(t) — pdf of Gaussian r.v. with mean zero
and variance ot

1 ha LT
fx(t)(x) = Y g /2t by €




» The property of independent and stationary increments from
the random walk process. (-.-sum of iid r.v.'s )

fX(tl),...,X(tk)(XD"'? X ) = fX(tl)(Xl) fX(tz—tl)(Xz — X)) fX(tk—tk_l)(Xk —Xy_1)

2
exp{—l X +(X2_X1)2 _|_._._|_(X|<_Xk—1)2 }
L 2 oty a(t,-t) a(t, —t,,) J

\/(272'05)kt1 (tz _tl)' ' '(tk _tk—l)



> HW.
- Autocovariance of X(t)

Cx (t;,t,) = amin(t;, 1)

» Note : The Wiener Process and the Poisson Process have the
same covariance function despite the fact that the two
processes have very different sample functions.

v"Mean and autocovariance represent only partial information



