6.5 Stationary Random Processes

* A discrete-time or continuous-time random process X(t) is stationary if

$$F_{X(t_1),...,X(t_k)}(x_1,...,x_k) = F_{X(t_1+\tau),...,X(t_k+\tau)}(x_1,...,x_k)$$

for all time shifts τ , all k, and all choices of sample times t_1, \ldots, t_k .

Jointly stationary

For two processes X(t) and Y(t), the joint cdf's of $X(t_1),...,X(t_k)$ and $Y(t_1'),...,Y(t_j')$ do not depend on the placement of the time origin for all k and j and all choices of sampling times $t_1,...,t_k$ and $t_1',...,t_j'$ The first-order cdf of a stationary random process must be independent of time.

The second-order cdf of a stationary random process can depend only on the time difference between the samples.

$$F_{X(t_1),X(t_2)}(x_1,x_2) = F_{X(0),X(t_2-t_1)}(x_1,x_2)$$
 for all t_1,t_2

Function of (t_2-t_1)

$$\begin{split} C_X(t_1,t_2) &= E[\{X(t_1) - m_X(t_1)\}\{X(t_2) - m_X(t_2)\}] \\ &= R_X(t_1,t_2) - m_X(t_1) m_X(t_2) \\ &= R_X(t_2 - t_1) - m^2 \\ &= C_X(t_2 - t_1) \quad \text{for all} \quad t_1,t_2. \end{split}$$

❖ Ex. 6.27

Is the sum process a discrete-time stationary process?

- > sol) $S_n = X_1 + X_2 + ... + X_n$, where X_i are an iid sequence and n is time index.
- cf) S_n : independent increment stationary increment

$$m_S(n) = nm_I$$
 $VAR[S_n] = n\sigma^2$

<u>Note</u>: Stationary process → Constant mean and variance.

: Cannot be a stationary process.

❖ Ex. 6.28

- \triangleright Random process (telegraph signal) X(t) that assumes the values ± 1 .
- $> X(0) = \pm 1$ with probability of $\frac{1}{2}$.
- \triangleright X(t) changes polarity with each occurrence of an event in a Poisson process of rate α .
- Show that X(t) is a stationary random process. Show that X(t) settles into a stationary behavior as $t \to \infty$ even if $P[X(0) = \pm 1] \neq \frac{1}{2}$.

> sol) Need to show

$$P[X(t_1) = a_1, ..., X(t_k) = a_k]$$

= $P[X(t_1 + \tau) = a_1, ..., X(t_k + \tau) = a_k]$
for any k , any $t_1 < \cdots < t_k$ and any $a_i = \pm 1$

> The independent increments property of the Poisson process.

$$P[X(t_1) = a_1, ..., X(t_k) = a_k] = P[X(t_1) = a_1]$$

$$\times P[X(t_2) = a_2 | X(t_1) = a_1] \cdots P[X(t_k) = a_k | X(t_{k-1}) = a_{k-1}]$$

> cf) the sum process

$$P[S_{n_1} = y_1, S_{n_2} = y_2, ..., S_{n_k} = y_k] = P[S_{n_1} = y_1]$$

$$\times P[S_{n_2} - S_{n_1} = y_2 - y_1] \cdots P[S_{n_k} - S_{n_{k-1}} = y_k - y_{k-1}]$$

$$= P[S_{n_1} = y_1] P[S_{n_2-n_1} = y_2 - y_1] \cdots P[S_{n_k-n_{k-1}} = y_k - y_{k-1}]$$

 \therefore The values of the random telegraph at the times t_1, \ldots, t_k is determined by the number of occurrences of the Poisson process in the time intervals (t_i, t_{i+1}) .

Similarly

$$P[X(t_1 + \tau) = a_1, ..., X(t_k + \tau) = a_k]$$

$$= P[X(t_1 + \tau) = a_1]P[X(t_2 + \tau) = a_2 | X(t_1 + \tau) = a_1] \cdots$$

$$\times P[X(t_k + \tau) = a_k | X(t_{k-1} + \tau) = a_{k-1}]$$

Conditional probability (ex 6.22)

$$P[X(t_{j+1}) = a_{j+1} | X(t_j) = a_j] = \begin{cases} \frac{1}{2} \left\{ 1 + e^{-2\alpha(t_{j+1} - t_j)} \right\} & \text{if } a_j = a_{j+1} \\ \frac{1}{2} \left\{ 1 - e^{-2\alpha(t_{j+1} - t_j)} \right\} & \text{if } a_j \neq a_{j+1} \end{cases}$$

$$\text{cf) } P[X(t) = \pm 1 | X(0) = \pm 1] = P[N(t) = \text{even integer}]$$

$$= \sum_{j=0}^{\infty} \frac{(\alpha t)^{2j}}{(2j)!} e^{-\alpha t} = e^{-\alpha t} \sum_{j=0}^{\infty} \frac{(\alpha t)^{2j}}{(2j)!}$$

$$= e^{-\alpha t} \frac{1}{2} (e^{-\alpha t} + e^{-\alpha t}) = \frac{1}{2} (1 + e^{-2\alpha t})$$

$$\text{where } e^{\alpha} = 1 + \alpha + \frac{1}{2!} \alpha^{2} \cdots, \quad e^{-\alpha} = 1 - \alpha + \frac{1}{2!} \alpha^{2} - \cdots$$

> cf) Poisson process

$$P[N(t) = k] = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$P[X(t_{j+1} + \tau) = a_{j+1} | X(t_j + \tau) = a_j]$$

$$= \begin{cases} \frac{1}{2} \left\{ 1 + e^{-2\alpha(t_{j+1} + \tau - t_j - \tau)} \right\} & \text{if } a_j = a_{j+1} \\ \frac{1}{2} \left\{ 1 - e^{-2\alpha(t_{j+1} + \tau - t_j - \tau)} \right\} & \text{if } a_j \neq a_{j+1} \end{cases}$$

> The joint probabilities differ only in the first term.

$$\rightarrow P[X(t_1) = a_1]$$
 and $P[X(t_1 + \tau) = a_1]$

> cf)

$$P[X(t) = 1] = P[X(t) = 1 | X(0) = 1]P[X(0) = 1]$$

$$+ P[X(t) = 1 | X(0) = -1]P[X(0) = -1]$$

$$= \frac{1}{2} \cdot \frac{1}{2} \left\{ 1 + e^{-2\alpha t} \right\} + \frac{1}{2} \cdot \frac{1}{2} \left\{ 1 - e^{-2\alpha t} \right\}$$

$$= \frac{1}{2}$$

$$P[X(t) = -1] = \frac{1}{2}$$

$$\therefore P[X(t_1) = a_1] = P[X(t_1 + \tau) = a_1] = \frac{1}{2} \quad \text{with} \quad P[X(0) = \pm 1] = \frac{1}{2}$$

If
$$P[X(0) = \pm 1] \neq \frac{1}{2} \Rightarrow P[X(t_1) = a_1] \neq P[X(t_1 + \tau) = a_1]$$

If
$$P[X(0)=1]=1$$
,
$$P[X(t)=a]=P[X(t)=a|X(0)=1]\cdot 1$$

$$=\begin{cases} \frac{1}{2}\left\{1+e^{-2\alpha t}\right\} & \text{if } a=1\\ \frac{1}{2}\left\{1-e^{-2\alpha t}\right\} & \text{if } a=-1 \end{cases}$$
 The process forgets the initial condition and settles down into steady state \rightarrow stationary behavior.
$$=P[X(t_1)=a_1] \rightarrow \frac{1}{2} \text{ as } t_1 \text{ becomes large}$$

Wide-Sense Stationary Random Processes

- Cannot determine whether a random process is stationary
- Can determine whether

$$C_X(t_1, t_2) = C_X(t_1 - t_2) \text{ for all } t_1, t_2$$

$$Function of t_1 - t_2 \text{ only }$$

$$X(t) \text{ is wide-sense stationary (WSS).}$$

- Jointly Wide-Sense Stationary
 - ① X(t) and Y(t) are both wide-sense stationary.
 - ② Cross-Covariance depends only on $t_1 t_2$

Note

- \rightarrow X(t) is Wide-Sense Stationary
 - \rightarrow auto covariance $C_X(t_1, t_2) = C_X(\tau)$ and auto correlation $R_X(t_1, t_2) = R_X(\tau)$ where $\tau = t_1 t_2$

Note

- > All stationary random processes are wide-sense stationary.
- > Some wide-sense stationary processes are not stationary.

Ex. 6.29

 $\succ X_n$: Consist of two interleaved sequences of independent r.v.'s.

For
$$n$$
 even, $P[X_n = \pm 1] = \frac{1}{2}$
For n odd, $P\left[X_n = \frac{1}{3}\right] = \frac{9}{10}$, $P[X_n = -3] = \frac{1}{10}$

- $\succ X_n$ is not stationary since its pmf varies with n.
- $m_X(n) = 0$ $[E[X_i]E[X_i] = 0$

$$C_X(i,j) = \begin{cases} E[X_i]E[X_j] = 0 & \text{for } i \neq j \\ E[X_i^2] = 1 & \text{for } i = j \end{cases}$$

 $\rightarrow X_n$: Wide - Sense Stationary.

Properties of Autocorrelation Function of WSS Process

- Average power of the process.
 - $ightharpoonup R_X(0) = E[X^2(t)]$ for all t.
- \bullet Even function of τ

- Measure of the rate of change of a random process.
 - \triangleright The change in the process from time t to $t+\tau$:

$$P[|X(t+\tau) - X(t)| > \varepsilon] = P[(X(t+\tau) - X(t))^{2} > \varepsilon^{2}]$$

$$\leq \frac{E[(X(t+\tau) - X(t))^{2}]}{\varepsilon^{2}} = \frac{2\{R_{X}(0) - R_{X}(\tau)\}}{\varepsilon^{2}}$$

> cf) Markov inequality

$$P[X \ge a] \le \frac{E[X]}{a}$$

> Observation:

If $R_X(0) - R_X(\tau)$ is small, the probability of a large change in X(t) in τ seconds is small.

cf) $R_X(0) - R_X(\tau)$ is small $\rightarrow R_X(\tau)$ drops off slowly.

- $R_X(\tau)$ is maximum at $\tau = 0$
 - Proof)
 - ① $E[XY]^2 \le E[X^2]E[Y^2]$ for any two r.v.'s X and Y.
 - Can be proved using the approach used to prove $|\rho| \le 1$. HW
 - ② $R_X(\tau)^2 = E[X(t+\tau)X(t)]^2 \le E[X^2(t+\tau)]E[X^2(t)] = R_X(0)^2$
 - > Thus

$$\left| R_X(\tau) \right| \le R_X(0)$$

cf) $R_X(0)$ is positive $R_X(0) = E[X^2(t)]$

❖ If $R_X(0) = R_X(d)$, then $R_X(\tau)$ is periodic with period d and X(t) is mean square periodic.

$$E[(X(t+d)-X(t))^2]=0$$

pf)
$$E[(X(t+\tau+d)-X(t+\tau))X(t)]^2$$

 $\leq E[(X(t+\tau+d)-X(t+\tau))^2]E[X^2(t)]$
 $\to \{R_X(\tau+d)-R_X(\tau)\}^2 \leq 2\{R_X(0)-R_X(d)\}R_X(0)$

- $\therefore R_{X}(0) = R_{X}(d) \rightarrow \text{R.H.S.}$ is zero
- $\therefore R_X(\tau) = R_X(\tau + d)$ for all $\tau \to R_X(\tau)$ is periodic with period d.
 - Mean square periodic:

$$E[(X(t+d)-X(t))^{2}] = 2\{R_{X}(0)-R_{X}(d)\} = 0$$

Let X(t) = m + N(t), where N(t) is a zero-mean process for which $R_N(\tau) \to 0$ as $\tau \to \infty$, then

$$R_X(\tau) = E[(m+N(t+\tau))(m+N(t))]$$

$$= m^2 + 2mE[N(t)] + R_N(\tau)$$

$$= m^2 + R_N(\tau) \rightarrow m^2 \text{ as } \tau \rightarrow \infty$$

> Note

 $R_X(\tau)$ approaches the square of the mean of X(t) as $\tau \to \infty$.

Summary: Three type of components

①
$$R_{X1}(\tau) \rightarrow 0$$
 as $|\tau| \rightarrow \infty$

②
$$R_{X2}(\tau) = R_{X2}(\tau + d)$$

③
$$R_{X3}(\tau) \rightarrow m^2$$
 as $|\tau| \rightarrow \infty$

WSS Gaussian Random Processes

If a Gaussian random process is wide-sense stationary, then it is also stationary.

Proof)

- The joint pdf of a Gaussian random process is completely determined by the mean $m_X(t)$ and autocovariance $C_X(t_1, t_2)$.
- ightharpoonup X(t) is wide sense stationary ightharpoonup its mean is constant its autocovariance is only the function of the difference of the sampling times $t_i t_j \to$ the joint pdf of X(t) depends only on this set of differences \to invariant with respect to time shifts
- Thus the process is also stationary

Cyclostationary Random Processes

$$F_{X(t_1),X(t_2),...,X(t_k)}(x_1,x_2,...,x_k)$$

$$=F_{X(t_1+mT),X(t_2+mT),...,X(t_k+mT)}(x_1,x_2,...,x_k)$$

For all k, m and all choices of sampling times t_1, \ldots, t_k

Wide-Sense Cyclostationary.

:If the mean and autocovariance functions are invariant with respect to shifts in the time origin by integer multiples of T

$$m_X(t+mT) = m_X(t)$$

 $C_X(t_1+mT,t_2+mT) = C_X(t_1,t_2)$

Note

- ightharpoonup If X(t) is cyclostationary, then X(t) is also wide-sense cyclostationary.
- \star X(t) is a cyclostationary process with period T.
 - \rightarrow X(t) is stationarized by observing a randomly phase-shifted version of X(t)
- * $X_S(t) = X(t + \Theta)$, Θ uniform in [0, T], where Θ is independent of X(t).
 - \rightarrow If X(t) is a cyclostationary, $X_S(t)$ is a stationary random process.

* If X(t) is a wide-sense cyclostationary random process, then $X_S(t)$ is a wide-sense stationary random process

$$E[X_s(t)] = \frac{1}{T} \int_0^T m_X(t) dt$$

$$R_{X_s}(\tau) = \frac{1}{T} \int_0^T R_X(t+\tau,t) dt$$

6.6 Continuity, Derivatives and Integrals of Random Processes

- > The system having dynamics: described by linear differential eqs.
- > Each sample function of a random process: deterministic signal
- Input to the system: Sample function of continuous-time random process
 - Output of the system: A sample function of another random process
- Probabilistic methods for addressing the continuity, differentiability and integrability of random processes
- cf) A random process: the ensemble of sample functions

Mean Square Continuity

- * $X(t, \zeta)$: A particular deterministic sample function for each point ζ in S of random process
- ***** The continuity of the sample function at a point t_0 for each point ζ :
 - If given any $\varepsilon > 0$ there exists a $\delta > 0$ such that $|t t_0| < \delta$ implies that $|X(t, \zeta) X(t_0, \zeta)| < \varepsilon$
 - $\lim_{t \to t_0} X(t, \zeta) = X(t_0, \zeta)$

- \diamond All sample functions of the random process are continuous at t_0 , then the random process is continuous
- The continuity of random process in a probabilistic sense is considered.
- ❖ Mean square continuity: $\lim_{t\to t_0} X(t) = X(t_0)$
- * The random process X(t) is continuous at the point t_0 in the mean square sense if

$$E[(X(t)-X(t_0))^2] \rightarrow 0$$
 as $t \rightarrow t_0$

Note: Mean square continuity does not imply that all the sample functions are continuous Considering the mean square difference:

$$E[(X(t)-X(t_0))^2] = R_X(t,t) - R_X(t_0,t) - R_X(t,t_0) + R_X(t_0,t_0)$$

Therefore, if $R_X(t_1, t_2)$ is continuous in both t_1 and t_2 at the point (t_0, t_0) , then X(t) is mean square continuous at the point t_0 .

❖ If X(t) is mean square continuous at t_0 , then the mean function $m_X(t)$ must be continuous at t_0 .

$$\lim_{t \to t_0} m_X(t) = m_X(t_0)$$

Proof

$$0 \le VAR[X(t) - X(t_0)] = E[(X(t) - X(t_0))^2] - E[X(t) - X(t_0)]^2$$

$$\therefore E[(X(t) - X(t_0))^2] \ge E[X(t) - X(t_0)]^2 = [m_V(t) - m_V(t_0)]^2$$

If X(t) is mean square continuous, L.H.S. $\to 0$ as $t \to t_0$, then R.H.S. $\to 0$, i.e., $m_X(t) \to m_X(t_0)$

Note: If X(t) is mean square continuous at t_0 , then we can interchange the order of the limit and the expectation

$$\lim_{t \to t_0} E[X(t)] = E \left[\underset{t \to t_0}{\text{1.i.m.}} X(t) \right]$$

 \bullet For the WSS random process X(t),

$$E[(X(t_0 + \tau) - X(t_0))^2] = 2(R_X(0) - R_X(\tau))$$

: If $R_X(\tau)$ is continuous at $\tau = 0$, then the WSS random process X(t) is mean square continuous at every point t_0 .

Mean Square Derivatives

The derivative of a deterministic function

$$\lim_{\varepsilon \to 0} \frac{X(t+\varepsilon,\zeta) - X(t,\zeta)}{\varepsilon}$$

: this limit may exist for some sample functions and it may fail to exist for other sample functions

Mean Square Derivative

$$X'(t) \equiv \lim_{\varepsilon \to 0} \frac{X(t+\varepsilon,\zeta) - X(t,\zeta)}{\varepsilon} \equiv \frac{dX(t)}{dt}$$

Provided that the mean square limit exists, that is,

$$\lim_{\varepsilon \to 0} E \left[\left(\frac{X(t+\varepsilon,\zeta) - X(t,\zeta)}{\varepsilon} - X'(t) \right)^{2} \right] = 0$$

- Note: The existence of the mean square derivative does not imply the existence of the derivative for all sample functions.
- \diamond The mean square derivative of X(t) at the point t exists if

$$\frac{\partial^2}{\partial t_1 \partial t_2} R_X(t_1, t_2)$$

exists at the point $(t_1, t_2) = (t, t)$

Proof) Use the Cauchy criterion

 \bullet If the random process X(t) is WSS

$$\frac{\partial^2}{\partial t_1 \partial t_2} R_X(t_1, t_2) = \frac{\partial^2}{\partial t_1 \partial t_2} R_X(t_1 - t_2)$$

$$= \frac{\partial}{\partial t_1} \left(-\frac{d}{d\tau} R_X(t_1 - t_2) \right) = -\frac{\partial^2}{\partial \tau^2} R_X(\tau)$$

The mean square derivative of a WSS random process X(t) exists if $R_X(\tau)$ has derivatives up to order two at $\tau=0$.

* For a Gaussian random process X(t), if X'(t) exists, then X'(t) must be a Gaussian random process

 \bullet Mean of X'(t)

$$E[X'(t)] = E\left[\lim_{\varepsilon \to 0} \frac{X(t+\varepsilon) - X(t)}{\varepsilon}\right] = \lim_{\varepsilon \to 0} E\left[\frac{X(t+\varepsilon) - X(t)}{\varepsilon}\right]$$
$$= \lim_{\varepsilon \to 0} \frac{m_X(t+\varepsilon) - m_X(t)}{\varepsilon} = \frac{d}{dt} m_X(t)$$

 \diamond The cross-correlation between X(t) and X'(t)

$$R_{X,X'}(t_1,t_2) = E \left[X(t_1) \underset{\varepsilon \to 0}{\text{l.i.m.}} \frac{X(t_2 + \varepsilon) - X(t_2)}{\varepsilon} \right]$$

$$= \lim_{\varepsilon \to 0} \frac{R_X(t_1,t_2 + \varepsilon) - R_X(t_1,t_2)}{\varepsilon} = \frac{\partial}{\partial t_2} R_X(t_1,t_2)$$

\bullet The autocorrelation of X'(t)

$$\begin{split} R_{X'}(t_1, t_2) &= E \Bigg[\underset{\varepsilon \to 0}{\text{l.i.m.}} \left\{ \frac{X(t_1 + \varepsilon) - X(t_1)}{\varepsilon} \right\} X'(t_2) \Bigg] \\ &= \lim_{\varepsilon \to 0} \frac{R_{X, X'}(t_1 + \varepsilon, t_2) - R_{X, X'}(t_1, t_2)}{\varepsilon} \\ &= \frac{\partial}{\partial t_1} R_{X, X'}(t_1, t_2) \\ &= \frac{\partial^2}{\partial t_1 \partial t_2} R_X(t_1, t_2) \end{split}$$

 \bullet For the WSS random process X(t)

$$R_{X,X'}(\tau) = \frac{\partial}{\partial t_2} R_X(t_1 - t_2) = -\frac{\partial}{\partial \tau} R_X(\tau)$$

$$R_{X'}(\tau) = \frac{\partial}{\partial t_1} \left\{ \frac{\partial}{\partial t_2} R_X(t_1 - t_2) \right\} = -\frac{\partial^2}{\partial \tau^2} R_X(\tau)$$

Mean Square Integrals

- Imply the integral of a random process in the sense of mean square convergence
- \bullet The integral of the random process X(t)
 - \triangleright The mean square limit of the sequence I_n as the width of the subintervals approaches zero:

$$I_n = \sum_{k=1}^n X(t_k) \Delta_k$$

$$Y(t) = \int_{t_0}^t X(t')dt' = \lim_{\Delta_k \to 0} \sum_k X(t_k) \Delta_k$$

Conditions that ensure the existence of the mean square integral

$$E\left[\left\{\sum_{j} X(t_j)\Delta_j - \sum_{k} X(t_k)\Delta_k\right\}^2\right] \to 0 \quad \text{as } \Delta_j, \Delta_k \to 0$$

:The Cauchy criterion

> Expanding the square inside the expected value

$$E\left[\sum_{j}\sum_{k}X(t_{j})X(t_{k})\Delta_{j}\Delta_{k}\right] = \sum_{j}\sum_{k}R_{X}(t_{j},t_{k})\Delta_{j}\Delta_{k}$$

The limit of the right hand side approaches a double integral

$$\lim_{\Delta_j, \Delta_k \to 0} \sum_j \sum_k R_X(t_j, t_k) \Delta_j \Delta_k = \int_{t_0}^t \int_{t_0}^t R_X(u, v) du dv$$

- \clubsuit The mean square integral of X(t) exists if the double integral of the autocorrelation function exists
- \star If X(t) is a mean square continuous random process, then its integral exists.

 \bullet The mean and autocorrelation function of Y(t)

$$m_{Y}(t) = E\left[\int_{t_{0}}^{t} X(t')dt'\right] = \int_{t_{0}}^{t} E[X(t')]dt'$$
$$= \int_{t_{0}}^{t} m_{X}(t')dt'$$

$$R_{Y}(t_{1}, t_{2}) = E \left[\int_{t_{0}}^{t_{1}} X(u) du \int_{t_{0}}^{t_{2}} X(v) dv \right]$$
$$= \int_{t_{0}}^{t_{1}} \int_{t_{0}}^{t_{2}} R_{X}(u, v) du dv$$

6.7 Time Averages of Random Processes and Ergodic Theorems

* To estimate the mean $m_X(t)$ of a random process $X(t, \zeta)$,

$$\hat{m}_X(t) = \frac{1}{N} \sum_{i=1}^{N} X(t, \xi_i)$$

where N is the number of repetitions of the experiment

In estimating the mean or autocorrelation functions from the time average of a single realization

$$\langle X(t) \rangle_T = \frac{1}{2T} \int_{-T}^T X(t,\xi) dt$$

- Ergodic theorems: when time averages converge to the ensemble average (expected value)
 - cf) Strong law of large numbers:

: if X_n is an iid discrete-time random process with finite mean $E[X_n] = m$, then

$$P\left[\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_{i}=m\right]=1$$

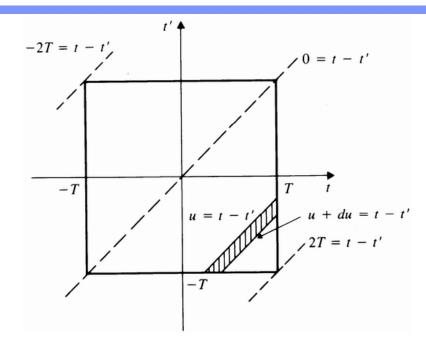
 $⟨X(t)⟩_T = \frac{1}{2T} \int_{-T}^T X(t,\xi) dt$ yields a single number ⇒ consider process for which $m_X(t) = m$

- An ergodic theorem for the time average of wide-sense stationary processes
 - $\succ X(t)$: WSS process

$$E[\langle X(t) \rangle_T] = E\left[\frac{1}{2T} \int_{-T}^T X(t) dt\right]$$
$$= \frac{1}{2T} \int_{-T}^T E[X(t)] dt = m$$

$$VAR[\langle X(t) \rangle_{T}] = E[(\langle X(t) \rangle_{T} - m)^{2}]$$

$$= E\left[\left\{\frac{1}{2T} \int_{-T}^{T} (X(t) - m) dt\right\} \left\{\frac{1}{2T} \int_{-T}^{T} (X(t') - m) dt'\right\}\right]$$



$$= \frac{1}{4T^{2}} \int_{-T}^{T} \int_{-T}^{T} C_{X}(t, t') dt dt'$$

$$= \frac{1}{4T^{2}} \int_{-T}^{T} \int_{-T}^{T} C_{X}(t - t') dt dt'$$

$$= \frac{1}{4T^{2}} \int_{-T}^{T} \int_{-T}^{T} C_{X}(t - t') dt dt'$$

$$= \frac{1}{4T^{2}} \int_{-2T}^{2T} (2T - |u|) C_{X}(u) du$$

$$= \frac{1}{2T} \int_{-2T}^{2T} (1 - \frac{|u|}{2T}) C_{X}(u) du$$

 \Rightarrow $\langle X(t) \rangle_T$ will approach m in the mean square sense, i.e., $E[(\langle X(t) \rangle_T - m)^2] \to 0$ if and only if

$$\lim_{T\to\infty}\frac{1}{2T}\int_{-2T}^{2T}\left(1-\frac{|u|}{2T}\right)C_X(u)du=0$$

Discrete-time random process

$$\langle X_n \rangle_T = \frac{1}{2T+1} \sum_{n=-T}^T X_n$$
$$\langle X_{n+k} X_n \rangle_T = \frac{1}{2T+1} \sum_{n=-T}^T X_{n+k} X_n$$

 \bullet If X_n is WSS

$$E[\langle X_n \rangle_T] = m$$

VAR[
$$\langle X_n \rangle_T$$
] = $\frac{1}{2T+1} \sum_{k=-2T}^{2T} \left(1 - \frac{|k|}{2T+1} \right) C_X(k)$

 \triangleright (VAR[$< X_n >_T$] \rightarrow 0 : mean square sense)

Home work

- Ch. 6 Problems
- **3**,5,7,10,15,18,21,24,29,34,
- **37,40,44,48,52,55,59,63,67,69,**
- 71,74,79,83,87,89