6.5 Stationary Random Processes

< A discrete-time or continuous-time random process X(¢)
is stationary if

FX(II),...,X(tk)(xlﬂ s Xy ) = FX(t1+T),...,X(tk+r) (X500 X;)

for all time shifts , all £, and all choices of sample

times ¢,,....t,



< Jointly stationary

For two processes X (¢) and Y(z),
the joint cdf's of X (z)),...,X(z,) and Y(),....Y(t)
do not depend on the placement of the time origin

for all £ and j and all choices of sampling times
t,....t,and ¢,...,t'

.., j



< The first-order cdf of a stationary random process must
be independent of time.
= Fy(%) = Fyg(®) = Fy(x) all =
— my(t) = E[X(£)]=m for all ¢.
VAR[X(Y)] = E[(X(t) —m)?] = > for all .

< The second-order cdf of a stationary random process
can depend only on the time difference between the
samples.

FX(tl),X(tz)(x19x2) = FX(O),X(tZ—tl)(x19x2) for all 7,1,



. .

,Function of (t,-t,)

Cy (1) = E[{X(8)—my (¢} {X () —my(2,)}]
=R, (1,,t,)—my (¢t)my (,)
=R, (t,~t,)—m’
=C,(t,—t,) forall ¢,z.,.




% EX. 6.27

Is the sum process a discrete-time stationary process?

»sol) S =X, +X,+...+ X , where X are an iid sequence and » is
time index.

cf) S, : independent increment

- IR I

stationary increment
myn)=nm, VAR[S ]=no’

Note : Stationary process — Constant mean and variance.
. Cannot be a stationary process.



< EX. 6.28

» Random process (telegraph signal) X(¢) that assumes the values
+1.

» X(0) = %1 with probability of -.

» X(f) changes polarity with each occurrence of an event in a
Poisson process of rate «.

» Show that X(¢) is a stationary random process.

Show that X(¢) settles into a stationary behavior as t — o even
if PLX(0)==1] = Va.



> sol) Need to show
PIX()=a,...X(t)=a,]
=P X(t,+7)=aqa,....X(t, +17)=qa,]
forany k,any ¢, <---<t, andany a, =+1

» The independent increments property of the Poisson process.
PlX(t)=a,..,X(t)=a]=PX({t)=qa]
XP[X(tz) — a2‘X(t1) — al]“'P[X(tk) = ak‘X(tk—l) — ak—l]



» cf) the sum process

P[S, =y1,8, =Vy--8, = ]=PS, =yl
xP[S, =S, =y,=n]---PLS, =S, =yl
=P[S, =n]PLS, ., =y, =yl PlS, . =YVl
"." The values of the random telegraph at the times «,,..., ¢,

is determined by the number of occurrences of the Poisson
process in the time intervals (z, ¢.,).



» Similarly
Pl Xt +1)=a,...X({t +7)=a,]
=P[X(t,+7)=aJP[X(t, +T) = a,| X (t, +T) = a,] -
xP[X(t +7)= ak‘X(tk_1 +7)=a,_]

» Conditional probability (ex 6.22)

(1 Y .
4% if a =a.
2 J j+l

1 (st .
—1-e =ty if a za.
2 J Jj+l

PlX(t,,)=a

X(tj):aj]:<

j+l




> of) P[X (1) = 11X (0) = +1]= P[N(r) = even integer]

(@ s (at)”
2ot T & o
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» cf) Poisson process
(A"

— At
e

PIN(t)=k]=




PlX(t,,,+71)=a,,|X({ +7)=qa,]
(1 —2a(tj+1+r—tj—z') .
5{1+e } if a,=a,,
=4
1 —2a(t;, +1-1;-7) .
E{l—e } if a,#a,,

» The joint probabilities differ only in the first term.
— P[X(#)) =a;] and P[X(¢+7) = q]




> cf)
P[X(1)=1]=P[X(r)=1X(0)=1]P[X(0)=1]
+ P[X (1) =11X(0) =—1]P[X (0) =—1]
11

{1+e‘2“’}+53{1—e‘2m}

1
2

P[X(t)=-1]= %

LPIX(t)=a,]=PX(t,+7)=q,] =% with P[X(0) =+1] :%



> If  PLX(0)=+1]# % — P[X(t)=a]#P[X(t +7)=a,]

If P[X(0)=1]=1,
PlX(t)=a]=PX())=dX(0)=1]-1

1 gl
5 { I+e } if a=1 The process forgets the
=< | initial condition
2ot : _ and settles down into
" { I-e } It a=-1 ~ steady state

‘ | ~ — stationary behavior.
:P[X(tl):al]—>5 as ¢, becomes large



Wide-Sense Stationary Random Processes

» Cannot determine whether a random process is stationary

» Can determine whether
— my(t)=m for all 7.
— Cy (1, 1,)=Cy(t;—t,) forall ¢, ¢,

L. Function of t,-t, only

— X(t) is wide-sense stationary (WSS).

» Jointly Wide-Sense Stationary
@ X(r) and Y(¢) are both wide-sense stationary.
@ Cross-Covariance depends only on ¢, — ¢,




< Note
» X(1) is Wide-Sense Stationary
— auto covariance C, (¢, t,) = Cy(7) and
auto correlation R, (¢,, t,) =R, (7)
where r=¢,—1t,

< Note
» All stationary random processes are wide-sense stationary.
» Some wide-sense stationary processes are not stationary.



< EXx. 6.29
» X : Consist of two interleaved sequences of independent r.v.’s.
For n even, Pl X, =J_r1]=%

For n odd, P| X, _1 i, PlX, :—3]:L
31 10 10

» X is not stationary since its pmf varies with #.

> m,(n)=0
E[X.JE[X.]=0 for i#j

l J

C,(,Jj)=
x(5:J) {E[Xl.z]:l for i=j
— X : Wide -Sense Stationary.



Properties of Autocorrelation Function of WSS Process

< Average power of the process.
» R, (0)=E[X?(t)] for all z.

< Even function of ¢
» Ry(7) = E[X(z +7) X(2)] = E[X(£) X( +7)] = Ry (-7)

< Measure of the rate of change of a random process.
» The change in the process from time ¢ to ++7:
PlX(t+2)- X(0)|> &)= Pl(X(t+7)- X(1))* > &°]

El(X @+ - X)) ] _ 2R (0) =R (2)}

2 2
E E




» cf) Markov inequality

P[X > a]< ElA

a

» Observation:
If R,(0)—R,(7)is small, the probability of a large change in X(z)
in z seconds is smail.

cf) R, (0)—R,(7) is small
— R, (7) drops off slowly.



“* R,(7)Is maximum at =0
» Proof)
@ E[XY)? < E[X?]E[Y?] for any two r.v.'s X and Y.
- Can be proved using the approach used to prove |p|<1. - HW
@ Ry(1)* = E[X(t + DX(D)]* < E[X? (t + D)]E[X*()] = Rx(0)?

> Thus
R, (7)< R, (0)

cf) Ry (0) is positive . R, (0) = E[X?(?)]



< If R, (0)=R,(d), then R, (7) is periodic with period d and
X(¢) is mean square periodic.
E[(X(t +d) —X(t))7]=0
pf) E[(X(t+r+d)-X(t+7)XQ@)T
<E[(X(t+7+d)—-X(t+7))E[X ()]
—>{Ry(r+d) _RX(T)}Z <2{R,(0)—R,(d)}R(0)
. R,(0)=R,(d) > R.H.S. is zero
R, (r)=R,(r+d) forall = —» R, (r) is periodic with period d.

» Mean square periodic:
E[(X(t+d)~X(#))']=2{R,(0)~ R, (d)} =0



% Let X(¢)=m + N(¢), where N(¢) is a zero-mean process
for which R, (7) > 0 as 7 — o,

then
R, (t)=E[(m+N({+71))(m+ N(1))]
=m’ +2mE[N(t)]+ R, (7)
=m’+R,(r) > m’ asS t—>w
» Note

R, (7) approaches the square of the mean of X(¥) as t — .



< Summary: Three type of components
@ R, (r)—>0 as ‘T‘—)OO
@ Ry, (1) =Ry, (7t +d)
@ R,,(r)>m’> as M—)oo



WSS Gaussian Random Processes

< If a Gaussian random process is wide-sense stationary,
then it is also stationary.

Proof)

» The joint pdf of a Gaussian random process is completely
determined by the mean m, (r) and autocovariance C, (¢, ,).

» X(1) is wide sense stationary — its mean is constant its
autocovariance is only the function of the difference of the
sampling times ¢, —¢, — the joint pdf of X(¢) depends only on
this set of differences — invariant with respect to time shifts

» Thus the process is also stationary



Cyclostationary Random Processes

N/
0‘0

F)((z1 VX (1) X (1) (X5 X550005X;)
= FX(tl+mT),X(t2+mT),...,X(tk+mT) (X5 X555 X;)

For all £, m and all choices of sampling times ¢,,...,z,

< Wide-Sense Cyclostationary.
:If the mean and autocovariance functions are invariant with
respect to shifts in the time origin by integer multiples of T
my (t+mT)=m,(t)
C,(t,+mT,t,+mT)=C,(1,t,)



< Note
» If X(¢) is cyclostationary, then X(¢) is also wide-sense
cyclostationary.

< X(v) is a cyclostationary process with period T.
— X(7) is stationarized by observing a randomly phase-

shifted version of X(7)
<+ X(f) = X(t+ ©), ® uniform in [0, 71,
where O is independent of X(7).

— If X(¢) is a cyclostationary, X, (¢) is a stationary
random process.



< If X(¢) is a wide-sense cyclostationary random process,
then X, (¢) is a wide-sense stationary random process

E[X .(1)] = % jOT m, (£)dt

Ry (7) = %J-OT R, (t+7,t)dt



6.6 Continuity, Derivatives and Integrals of Random Processes

» The system having dynamics: described by linear differential egs.
» Each sample function of a random process: deterministic signal

» Input to the system: Sample function of continuous-time random
process

Output of the system: A sample function of another random
process

» Probabilistic methods for addressing the continuity,
differentiability and integrability of random processes

cf) A random process: the ensemble of sample functions



Mean Square Continuity

<+ X(t, ) : A particular deterministic sample function for
each point ¢ in S of random process

< The continuity of the sample function at a point ¢, for
each point ¢ :
If given any ¢> 0 there exists a 6> 0 such that [r—1¢| <o
implies that |X(z, ) — X(¢,, O)| < &

> }i_ng(t,é/)zX(to»é/)



< All sample functions of the random process are
continuous at ¢,, then the random process is continuous

< The continuity of random process in a probabilistic sense
is considered.

< Mean square continuity: l.i.m.X (t) = X (¢,)

2 The random process X(¢) |c rnnh, us at the point ¢ !”
the mean square sense |f

E[(X(t)-X(t,))’]—>0 as t—t,

< Note: Mean square continuity does not imply that all the

sample functions are continuous



< Considering the mean square difference:
E[(X(t)_X(to))z] = RX(tnt)_RX(toat)_RX(tato)+RX(toato)

Therefore, if R, (¢, t,) is continuous in both ¢, and ¢, at
the point (z,, #,), then X(¢) is mean square continuous at
the point ¢,.

< If X(¢) is mean square continuous at ¢,, then the mean
function m, (r) must be continuous at «,.

limm, (t) =m, (t,)




> Proof
0< VAR[X (1) — X (4,)]= E[(X () - X (t,))°1- E[ X (¢) - X (¢,)T

~LE[(X @) - X (1)) ]12 E[LX (@) = X 1) =[my () —m, ()]

If X(¢) is mean square continuous, L.H.S. — 0 as ¢ — ¢,, then
RH.S. — 0, i.e.,, m(t) = my(¢,)

< Note: If X(¢) is mean square continuous at ¢, then we
can interchange the order of the limit and the
expectation

lim E[ X (£)] = E[l.li.rtn.X(t)}

t—>t,



< For the WSS random process X(¢),
E[(X(t, +7) = X(2,))"]1=2(R; (0)— R (7))

. If R.(7) is continuous at =0, then the WSS random
process X(¢) is mean square continuous at every point ¢,.



Mean Square Derivatives

< The derivative of a deterministic function
hm X(t_l_gaé/)_X(taé/)

e—0 E

: this limit may exist for some sample functions and it may fail to
exist for other sample functions

<+ Mean Square Derivative
. X(+e,0)-X@, ) dX(t
X'(5) = 1im. U &6) = X(e) _ X ()
e—0 E dl‘
Provided that the mean square limit exists, that is,

lim E (X(tJrg’g)_X(t’g)—X'(t)j _0

g—0 E




< Note: The existence of the mean square derivative does
not imply the existence of the derivative for all sample
functions.

< The mean square derivative of X(¢) at the point ¢ exists if
82
Ot,0t,
exists at the point (¢, £,) = (¢, 1)

KX(tlatz)

Proof) Use the Cauchy criterion



< If the random process X(¢) is WSS
2 2

0
R.(t,t,)=——R (t, —t
81386 X(l 2) 5f18t2 X(l 2)

", d 0’
6t1( dZ' X(l 2)j 62’2 X( )

The mean square derivative of a WSS random process
X(¢) exists if R,(7) has derivatives up to order two at =0.

< For a Gaussian random process X (¢), if X'(¢) exists,
then X'(¥) must be a Gaussian random process



< Mean of X'(¢)

ELX'(¢0)] = E[l.i.m.X (1+e)- X ﬂ _ umEV (1+2)=X (0}
e—0 E e—0 Poy
i) mm@0) _d
0 P dt

< The cross-correlation between X(¢) and X'(¢)

Ry v (t,t,) = E|:X(tl)l.i.r(1)1, Xt +6)-X(1,)

E

— lim R, (1,1, +&)— R, (¢,1,) _ %
e—0 E atz

RX (tlatz)



< The autocorrelation of X'(7)
Rx@JQ=E®im{XﬁfHﬂ_X@J}TQQ}

e—0 E

RX,X’ (tl &, tz) o RX,X’ (tl,tz)

= lim
c—0 E
9,
=—R, ,.(t,t
atl X,X(l 2)
2
RX(tlﬂtZ)

"ot or,




< For the WSS random process X(¢)

RX,X' (7)= iRX (t,—t,)= _% (7)

o,

0

RX,(T):G_Z‘{GZ‘ R, (t, - 2)}__8_ v (7)



Mean Square Integrals

< Imply the integral of a random process in the sense of
mean square convergence

< The integral of the random process X(7)

» The mean square limit of the sequence 7, as the width of the
subintervals approaches zero:

I,=2 X(t)A,
k=1

vn)=| X(¢)dr' =11m. Y X (¢,)A,

A —0



» Conditions that ensure the existence of the mean square
integral

2
E {ZX(tj)Aj—Zk:X(tk)Ak} —0 asA,A, >0
J

: The Cauchy criterion

» Expanding the square inside the expected value

E{ZZXU DX (A ].Ak} =Y Y R, (t,,t,)A A,

J J



» The limit of the right hand side approaches a double integral
im SN R (¢,,6)A A, :f [ Ry (u,v)dudv
P 0 ¥

A A, —(0 =
Jo=k J

< The mean square integral of X(¢) exists if the double
integral of the autocorrelation function exists

< If X(¢) is a mean square continuous random process,
then its integral exists.



< The mean and autocorrelation function of Y(¢)

m, (t) = E[: X (t’)a’t’] — L E[x @)l

= J;tl J;tzR v (u,v)dudv




6.7 Time Averages of Random Processes and Ergodic Theorems

< To estimate the mean m,(¢) of a random process X(¢, <),
. 1<
mX(t) :_ZX(ta é)
N3

where N is the number of repetitions of the experiment

< In estimating the mean or autocorrelation functions from
the time average of a single realization

1 er
(X)), = Xt



< Ergodic theorems : when time averages converge to the
ensemble average (expected value)

cf) Strong law of large numbers :
. if X is an iid discrete-time random process with finite mean
E[X ] =m, then

P( hm— ZX m—' =1

n—>00n

|
e (X)), =— X(t &)dt vyields a single number
271 +-
= consider process for which m . (¢) = m



< An ergodic theorem for the time average of wide-sense
stationary processes

» X(t) : WSS process

1 7
E{(X(0)),1= E{E ITX(t)dt}

1 ¢

VAR[(X (1)), ]

E[(X(0)), —m)’]

1 ¢r 1 ¢r ' '
EHE j_T (X(t)- m)a’t}{ﬁ j_T (X () —m)dt H



it s0=1-1r
s &
s /
/
/
/
=T / T ot
// u=t-—1t /u+du=r—r*
2T =r-1'
7 //
Vi -T s

'_TT C, (t,t")dtdt’

'_TT C,(t—1")dtdt’

(2T u)C, (u)du

j a ——)c (u)du

= (X (1)), willapproach m inthe mean square sense,
i.e., E[(X(r), —m)’1—0 ifandonlyif

T-w 2T 2T

lim —— f;( —”jc (u)du =0




< Discrete-time random process

T

1
X ) = X
< ”>T 2T+1 Z n

n=-T

1 T
<Xn+an>T o M1 ZX;Han

< If X is WSS
E[(X,) ]=m
VAR[X,) 1= : 2ZT [1—]()6)((/()
= 2T+1,5,  2T+1

> ( VAR[<X >,] — 0 : mean square sense )



Home work

< Ch. 6 Problems

<+ 3,5,7,10,15,18,21,24,29,34,

<+ 37,40,44,48,52,55,59,63,67,69,
<+ 71,74,79,83,87,89



