# 6.5 Stationary Random Processes

\* A discrete-time or continuous-time random process X(t) is stationary if

$$F_{X(t_1),...,X(t_k)}(x_1,...,x_k) = F_{X(t_1+\tau),...,X(t_k+\tau)}(x_1,...,x_k)$$

for all time shifts  $\tau$ , all k, and all choices of sample times  $t_1, \ldots, t_k$ .

### Jointly stationary

For two processes X(t) and Y(t), the joint cdf's of  $X(t_1),...,X(t_k)$  and  $Y(t_1'),...,Y(t_j')$ do not depend on the placement of the time origin for all k and j and all choices of sampling times  $t_1,...,t_k$  and  $t_1',...,t_j'$  The first-order cdf of a stationary random process must be independent of time.

The second-order cdf of a stationary random process can depend only on the time difference between the samples.

$$F_{X(t_1),X(t_2)}(x_1,x_2) = F_{X(0),X(t_2-t_1)}(x_1,x_2)$$
 for all  $t_1,t_2$ 

#### Function of $(t_2-t_1)$

$$\begin{split} C_X(t_1,t_2) &= E[\{X(t_1) - m_X(t_1)\}\{X(t_2) - m_X(t_2)\}] \\ &= R_X(t_1,t_2) - m_X(t_1) m_X(t_2) \\ &= R_X(t_2 - t_1) - m^2 \\ &= C_X(t_2 - t_1) \quad \text{for all} \quad t_1,t_2. \end{split}$$

### **❖** Ex. 6.27

Is the sum process a discrete-time stationary process?

- > sol)  $S_n = X_1 + X_2 + ... + X_n$ , where  $X_i$  are an iid sequence and n is time index.
- cf)  $S_n$ : independent increment stationary increment

$$m_S(n) = nm_I$$
  $VAR[S_n] = n\sigma^2$ 

<u>Note</u>: Stationary process → Constant mean and variance.

: Cannot be a stationary process.

#### **❖** Ex. 6.28

- $\triangleright$  Random process (telegraph signal) X(t) that assumes the values  $\pm 1$ .
- $> X(0) = \pm 1$  with probability of  $\frac{1}{2}$ .
- $\triangleright$  X(t) changes polarity with each occurrence of an event in a Poisson process of rate  $\alpha$ .
- Show that X(t) is a stationary random process. Show that X(t) settles into a stationary behavior as  $t \to \infty$  even if  $P[X(0) = \pm 1] \neq \frac{1}{2}$ .

> sol) Need to show

$$P[X(t_1) = a_1, ..., X(t_k) = a_k]$$
  
=  $P[X(t_1 + \tau) = a_1, ..., X(t_k + \tau) = a_k]$   
for any  $k$ , any  $t_1 < \cdots < t_k$  and any  $a_i = \pm 1$ 

> The independent increments property of the Poisson process.

$$P[X(t_1) = a_1, ..., X(t_k) = a_k] = P[X(t_1) = a_1]$$

$$\times P[X(t_2) = a_2 | X(t_1) = a_1] \cdots P[X(t_k) = a_k | X(t_{k-1}) = a_{k-1}]$$

> cf) the sum process

$$P[S_{n_1} = y_1, S_{n_2} = y_2, ..., S_{n_k} = y_k] = P[S_{n_1} = y_1]$$

$$\times P[S_{n_2} - S_{n_1} = y_2 - y_1] \cdots P[S_{n_k} - S_{n_{k-1}} = y_k - y_{k-1}]$$

$$= P[S_{n_1} = y_1] P[S_{n_2-n_1} = y_2 - y_1] \cdots P[S_{n_k-n_{k-1}} = y_k - y_{k-1}]$$

 $\therefore$  The values of the random telegraph at the times  $t_1, \ldots, t_k$  is determined by the number of occurrences of the Poisson process in the time intervals  $(t_i, t_{i+1})$ .

### Similarly

$$P[X(t_1 + \tau) = a_1, ..., X(t_k + \tau) = a_k]$$

$$= P[X(t_1 + \tau) = a_1]P[X(t_2 + \tau) = a_2 | X(t_1 + \tau) = a_1] \cdots$$

$$\times P[X(t_k + \tau) = a_k | X(t_{k-1} + \tau) = a_{k-1}]$$

Conditional probability (ex 6.22)

$$P[X(t_{j+1}) = a_{j+1} | X(t_j) = a_j] = \begin{cases} \frac{1}{2} \left\{ 1 + e^{-2\alpha(t_{j+1} - t_j)} \right\} & \text{if } a_j = a_{j+1} \\ \frac{1}{2} \left\{ 1 - e^{-2\alpha(t_{j+1} - t_j)} \right\} & \text{if } a_j \neq a_{j+1} \end{cases}$$

$$\text{cf) } P[X(t) = \pm 1 | X(0) = \pm 1] = P[N(t) = \text{even integer}]$$

$$= \sum_{j=0}^{\infty} \frac{(\alpha t)^{2j}}{(2j)!} e^{-\alpha t} = e^{-\alpha t} \sum_{j=0}^{\infty} \frac{(\alpha t)^{2j}}{(2j)!}$$

$$= e^{-\alpha t} \frac{1}{2} (e^{-\alpha t} + e^{-\alpha t}) = \frac{1}{2} (1 + e^{-2\alpha t})$$

$$\text{where } e^{\alpha} = 1 + \alpha + \frac{1}{2!} \alpha^{2} \cdots, \quad e^{-\alpha} = 1 - \alpha + \frac{1}{2!} \alpha^{2} - \cdots$$

> cf) Poisson process

$$P[N(t) = k] = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$P[X(t_{j+1} + \tau) = a_{j+1} | X(t_j + \tau) = a_j]$$

$$= \begin{cases} \frac{1}{2} \left\{ 1 + e^{-2\alpha(t_{j+1} + \tau - t_j - \tau)} \right\} & \text{if } a_j = a_{j+1} \\ \frac{1}{2} \left\{ 1 - e^{-2\alpha(t_{j+1} + \tau - t_j - \tau)} \right\} & \text{if } a_j \neq a_{j+1} \end{cases}$$

> The joint probabilities differ only in the first term.

$$\rightarrow P[X(t_1) = a_1]$$
 and  $P[X(t_1 + \tau) = a_1]$ 

> cf)

$$P[X(t) = 1] = P[X(t) = 1 | X(0) = 1]P[X(0) = 1]$$

$$+ P[X(t) = 1 | X(0) = -1]P[X(0) = -1]$$

$$= \frac{1}{2} \cdot \frac{1}{2} \left\{ 1 + e^{-2\alpha t} \right\} + \frac{1}{2} \cdot \frac{1}{2} \left\{ 1 - e^{-2\alpha t} \right\}$$

$$= \frac{1}{2}$$

$$P[X(t) = -1] = \frac{1}{2}$$

$$\therefore P[X(t_1) = a_1] = P[X(t_1 + \tau) = a_1] = \frac{1}{2} \quad \text{with} \quad P[X(0) = \pm 1] = \frac{1}{2}$$

If 
$$P[X(0) = \pm 1] \neq \frac{1}{2} \Rightarrow P[X(t_1) = a_1] \neq P[X(t_1 + \tau) = a_1]$$

If 
$$P[X(0)=1]=1$$
, 
$$P[X(t)=a]=P[X(t)=a|X(0)=1]\cdot 1$$
 
$$=\begin{cases} \frac{1}{2}\left\{1+e^{-2\alpha t}\right\} & \text{if } a=1\\ \frac{1}{2}\left\{1-e^{-2\alpha t}\right\} & \text{if } a=-1 \end{cases}$$
 The process forgets the initial condition and settles down into steady state  $\rightarrow$  stationary behavior. 
$$=P[X(t_1)=a_1] \rightarrow \frac{1}{2} \text{ as } t_1 \text{ becomes large}$$

## Wide-Sense Stationary Random Processes

- Cannot determine whether a random process is stationary
- Can determine whether

$$C_X(t_1, t_2) = C_X(t_1 - t_2) \text{ for all } t_1, t_2$$

$$Function of t_1 - t_2 \text{ only }$$

$$X(t) \text{ is wide-sense stationary (WSS).}$$

- Jointly Wide-Sense Stationary
  - ① X(t) and Y(t) are both wide-sense stationary.
  - ② Cross-Covariance depends only on  $t_1 t_2$

### Note

- $\rightarrow$  X(t) is Wide-Sense Stationary
  - $\rightarrow$  auto covariance  $C_X(t_1, t_2) = C_X(\tau)$  and auto correlation  $R_X(t_1, t_2) = R_X(\tau)$  where  $\tau = t_1 t_2$

### Note

- > All stationary random processes are wide-sense stationary.
- > Some wide-sense stationary processes are not stationary.

#### **Ex.** 6.29

 $\succ X_n$ : Consist of two interleaved sequences of independent r.v.'s.

For 
$$n$$
 even,  $P[X_n = \pm 1] = \frac{1}{2}$   
For  $n$  odd,  $P\left[X_n = \frac{1}{3}\right] = \frac{9}{10}$ ,  $P[X_n = -3] = \frac{1}{10}$ 

- $\succ X_n$  is not stationary since its pmf varies with n.
- $m_X(n) = 0$   $[E[X_i]E[X_i] = 0$

$$C_X(i,j) = \begin{cases} E[X_i]E[X_j] = 0 & \text{for } i \neq j \\ E[X_i^2] = 1 & \text{for } i = j \end{cases}$$

 $\rightarrow X_n$ : Wide - Sense Stationary.

### Properties of Autocorrelation Function of WSS Process

- Average power of the process.
  - $ightharpoonup R_X(0) = E[X^2(t)]$  for all t.
- $\bullet$  Even function of  $\tau$

- Measure of the rate of change of a random process.
  - $\triangleright$  The change in the process from time t to  $t+\tau$ :

$$P[|X(t+\tau) - X(t)| > \varepsilon] = P[(X(t+\tau) - X(t))^{2} > \varepsilon^{2}]$$

$$\leq \frac{E[(X(t+\tau) - X(t))^{2}]}{\varepsilon^{2}} = \frac{2\{R_{X}(0) - R_{X}(\tau)\}}{\varepsilon^{2}}$$

> cf) Markov inequality

$$P[X \ge a] \le \frac{E[X]}{a}$$

> Observation:

If  $R_X(0) - R_X(\tau)$  is small, the probability of a large change in X(t) in  $\tau$  seconds is small.

cf)  $R_X(0) - R_X(\tau)$  is small  $\rightarrow R_X(\tau)$  drops off slowly.

- $R_X(\tau)$  is maximum at  $\tau = 0$ 
  - Proof)
  - ①  $E[XY]^2 \le E[X^2]E[Y^2]$  for any two r.v.'s X and Y.
    - Can be proved using the approach used to prove  $|\rho| \le 1$ . HW
  - ②  $R_X(\tau)^2 = E[X(t+\tau)X(t)]^2 \le E[X^2(t+\tau)]E[X^2(t)] = R_X(0)^2$
  - > Thus

$$\left| R_X(\tau) \right| \le R_X(0)$$

cf)  $R_X(0)$  is positive  $R_X(0) = E[X^2(t)]$ 

❖ If  $R_X(0) = R_X(d)$ , then  $R_X(\tau)$  is periodic with period d and X(t) is mean square periodic.

$$E[(X(t+d)-X(t))^2]=0$$

pf) 
$$E[(X(t+\tau+d)-X(t+\tau))X(t)]^2$$
  
 $\leq E[(X(t+\tau+d)-X(t+\tau))^2]E[X^2(t)]$   
 $\to \{R_X(\tau+d)-R_X(\tau)\}^2 \leq 2\{R_X(0)-R_X(d)\}R_X(0)$ 

- $\therefore R_{X}(0) = R_{X}(d) \rightarrow \text{R.H.S.}$  is zero
- $\therefore R_X(\tau) = R_X(\tau + d)$  for all  $\tau \to R_X(\tau)$  is periodic with period d.
  - Mean square periodic:

$$E[(X(t+d)-X(t))^{2}] = 2\{R_{X}(0)-R_{X}(d)\} = 0$$

**Let** X(t) = m + N(t), where N(t) is a zero-mean process for which  $R_N(\tau) \to 0$  as  $\tau \to \infty$ , then

$$R_X(\tau) = E[(m+N(t+\tau))(m+N(t))]$$

$$= m^2 + 2mE[N(t)] + R_N(\tau)$$

$$= m^2 + R_N(\tau) \rightarrow m^2 \text{ as } \tau \rightarrow \infty$$

### > Note

 $R_X(\tau)$  approaches the square of the mean of X(t) as  $\tau \to \infty$ .

Summary: Three type of components

① 
$$R_{X1}(\tau) \rightarrow 0$$
 as  $|\tau| \rightarrow \infty$ 

② 
$$R_{X2}(\tau) = R_{X2}(\tau + d)$$

③ 
$$R_{X3}(\tau) \rightarrow m^2$$
 as  $|\tau| \rightarrow \infty$ 

### **WSS Gaussian Random Processes**

If a Gaussian random process is wide-sense stationary, then it is also stationary.

### Proof)

- The joint pdf of a Gaussian random process is completely determined by the mean  $m_X(t)$  and autocovariance  $C_X(t_1, t_2)$ .
- ightharpoonup X(t) is wide sense stationary ightharpoonup its mean is constant its autocovariance is only the function of the difference of the sampling times  $t_i t_j \to$  the joint pdf of X(t) depends only on this set of differences  $\to$  invariant with respect to time shifts
- Thus the process is also stationary

## Cyclostationary Random Processes

$$F_{X(t_1),X(t_2),...,X(t_k)}(x_1,x_2,...,x_k)$$

$$=F_{X(t_1+mT),X(t_2+mT),...,X(t_k+mT)}(x_1,x_2,...,x_k)$$

For all k, m and all choices of sampling times  $t_1, \ldots, t_k$ 

Wide-Sense Cyclostationary.

:If the mean and autocovariance functions are invariant with respect to shifts in the time origin by integer multiples of T

$$m_X(t+mT) = m_X(t)$$
  
 $C_X(t_1+mT,t_2+mT) = C_X(t_1,t_2)$ 

### Note

- ightharpoonup If X(t) is cyclostationary, then X(t) is also wide-sense cyclostationary.
- $\star$  X(t) is a cyclostationary process with period T.
  - $\rightarrow$  X(t) is stationarized by observing a randomly phase-shifted version of X(t)
- \*  $X_S(t) = X(t + \Theta)$ ,  $\Theta$  uniform in [0, T], where  $\Theta$  is independent of X(t).
  - $\rightarrow$  If X(t) is a cyclostationary,  $X_S(t)$  is a stationary random process.

\* If X(t) is a wide-sense cyclostationary random process, then  $X_S(t)$  is a wide-sense stationary random process

$$E[X_s(t)] = \frac{1}{T} \int_0^T m_X(t) dt$$

$$R_{X_s}(\tau) = \frac{1}{T} \int_0^T R_X(t+\tau,t) dt$$

### 6.6 Continuity, Derivatives and Integrals of Random Processes

- > The system having dynamics: described by linear differential eqs.
- > Each sample function of a random process: deterministic signal
- Input to the system: Sample function of continuous-time random process
  - Output of the system: A sample function of another random process
- Probabilistic methods for addressing the continuity, differentiability and integrability of random processes
- cf) A random process: the ensemble of sample functions

## Mean Square Continuity

- \*  $X(t, \zeta)$ : A particular deterministic sample function for each point  $\zeta$  in S of random process
- **\*** The continuity of the sample function at a point  $t_0$  for each point  $\zeta$ :
  - If given any  $\varepsilon > 0$  there exists a  $\delta > 0$  such that  $|t t_0| < \delta$  implies that  $|X(t, \zeta) X(t_0, \zeta)| < \varepsilon$ 
    - $\lim_{t \to t_0} X(t, \zeta) = X(t_0, \zeta)$

- $\diamond$  All sample functions of the random process are continuous at  $t_0$ , then the random process is continuous
- The continuity of random process in a probabilistic sense is considered.
- ❖ Mean square continuity:  $\lim_{t\to t_0} X(t) = X(t_0)$
- \* The random process X(t) is continuous at the point  $t_0$  in the mean square sense if

$$E[(X(t)-X(t_0))^2] \rightarrow 0$$
 as  $t \rightarrow t_0$ 

Note: Mean square continuity does not imply that all the sample functions are continuous Considering the mean square difference:

$$E[(X(t)-X(t_0))^2] = R_X(t,t) - R_X(t_0,t) - R_X(t,t_0) + R_X(t_0,t_0)$$

Therefore, if  $R_X(t_1, t_2)$  is continuous in both  $t_1$  and  $t_2$  at the point  $(t_0, t_0)$ , then X(t) is mean square continuous at the point  $t_0$ .

❖ If X(t) is mean square continuous at  $t_0$ , then the mean function  $m_X(t)$  must be continuous at  $t_0$ .

$$\lim_{t \to t_0} m_X(t) = m_X(t_0)$$

Proof

$$0 \le VAR[X(t) - X(t_0)] = E[(X(t) - X(t_0))^2] - E[X(t) - X(t_0)]^2$$
  

$$\therefore E[(X(t) - X(t_0))^2] \ge E[X(t) - X(t_0)]^2 = [m_V(t) - m_V(t_0)]^2$$

If X(t) is mean square continuous, L.H.S.  $\to 0$  as  $t \to t_0$ , then R.H.S.  $\to 0$ , i.e.,  $m_X(t) \to m_X(t_0)$ 

Note: If X(t) is mean square continuous at  $t_0$ , then we can interchange the order of the limit and the expectation

$$\lim_{t \to t_0} E[X(t)] = E \left[ \underset{t \to t_0}{\text{1.i.m.}} X(t) \right]$$

 $\bullet$  For the WSS random process X(t),

$$E[(X(t_0 + \tau) - X(t_0))^2] = 2(R_X(0) - R_X(\tau))$$

: If  $R_X(\tau)$  is continuous at  $\tau = 0$ , then the WSS random process X(t) is mean square continuous at every point  $t_0$ .

## Mean Square Derivatives

The derivative of a deterministic function

$$\lim_{\varepsilon \to 0} \frac{X(t+\varepsilon,\zeta) - X(t,\zeta)}{\varepsilon}$$

: this limit may exist for some sample functions and it may fail to exist for other sample functions

Mean Square Derivative

$$X'(t) \equiv \lim_{\varepsilon \to 0} \frac{X(t+\varepsilon,\zeta) - X(t,\zeta)}{\varepsilon} \equiv \frac{dX(t)}{dt}$$

Provided that the mean square limit exists, that is,

$$\lim_{\varepsilon \to 0} E \left[ \left( \frac{X(t+\varepsilon,\zeta) - X(t,\zeta)}{\varepsilon} - X'(t) \right)^{2} \right] = 0$$

- Note: The existence of the mean square derivative does not imply the existence of the derivative for all sample functions.
- $\diamond$  The mean square derivative of X(t) at the point t exists if

$$\frac{\partial^2}{\partial t_1 \partial t_2} R_X(t_1, t_2)$$

exists at the point  $(t_1, t_2) = (t, t)$ 

Proof) Use the Cauchy criterion

 $\bullet$  If the random process X(t) is WSS

$$\frac{\partial^2}{\partial t_1 \partial t_2} R_X(t_1, t_2) = \frac{\partial^2}{\partial t_1 \partial t_2} R_X(t_1 - t_2)$$

$$= \frac{\partial}{\partial t_1} \left( -\frac{d}{d\tau} R_X(t_1 - t_2) \right) = -\frac{\partial^2}{\partial \tau^2} R_X(\tau)$$

The mean square derivative of a WSS random process X(t) exists if  $R_X(\tau)$  has derivatives up to order two at  $\tau=0$ .

\* For a Gaussian random process X(t), if X'(t) exists, then X'(t) must be a Gaussian random process

 $\bullet$  Mean of X'(t)

$$E[X'(t)] = E\left[\lim_{\varepsilon \to 0} \frac{X(t+\varepsilon) - X(t)}{\varepsilon}\right] = \lim_{\varepsilon \to 0} E\left[\frac{X(t+\varepsilon) - X(t)}{\varepsilon}\right]$$
$$= \lim_{\varepsilon \to 0} \frac{m_X(t+\varepsilon) - m_X(t)}{\varepsilon} = \frac{d}{dt} m_X(t)$$

 $\diamond$  The cross-correlation between X(t) and X'(t)

$$R_{X,X'}(t_1,t_2) = E \left[ X(t_1) \underset{\varepsilon \to 0}{\text{l.i.m.}} \frac{X(t_2 + \varepsilon) - X(t_2)}{\varepsilon} \right]$$

$$= \lim_{\varepsilon \to 0} \frac{R_X(t_1,t_2 + \varepsilon) - R_X(t_1,t_2)}{\varepsilon} = \frac{\partial}{\partial t_2} R_X(t_1,t_2)$$

## $\bullet$ The autocorrelation of X'(t)

$$\begin{split} R_{X'}(t_1, t_2) &= E \Bigg[ \underset{\varepsilon \to 0}{\text{l.i.m.}} \left\{ \frac{X(t_1 + \varepsilon) - X(t_1)}{\varepsilon} \right\} X'(t_2) \Bigg] \\ &= \lim_{\varepsilon \to 0} \frac{R_{X, X'}(t_1 + \varepsilon, t_2) - R_{X, X'}(t_1, t_2)}{\varepsilon} \\ &= \frac{\partial}{\partial t_1} R_{X, X'}(t_1, t_2) \\ &= \frac{\partial^2}{\partial t_1 \partial t_2} R_X(t_1, t_2) \end{split}$$

 $\bullet$  For the WSS random process X(t)

$$R_{X,X'}(\tau) = \frac{\partial}{\partial t_2} R_X(t_1 - t_2) = -\frac{\partial}{\partial \tau} R_X(\tau)$$

$$R_{X'}(\tau) = \frac{\partial}{\partial t_1} \left\{ \frac{\partial}{\partial t_2} R_X(t_1 - t_2) \right\} = -\frac{\partial^2}{\partial \tau^2} R_X(\tau)$$

## Mean Square Integrals

- Imply the integral of a random process in the sense of mean square convergence
- $\bullet$  The integral of the random process X(t)
  - $\triangleright$  The mean square limit of the sequence  $I_n$  as the width of the subintervals approaches zero:

$$I_n = \sum_{k=1}^n X(t_k) \Delta_k$$

$$Y(t) = \int_{t_0}^t X(t')dt' = \lim_{\Delta_k \to 0} \sum_k X(t_k) \Delta_k$$

Conditions that ensure the existence of the mean square integral

$$E\left[\left\{\sum_{j} X(t_j)\Delta_j - \sum_{k} X(t_k)\Delta_k\right\}^2\right] \to 0 \quad \text{as } \Delta_j, \Delta_k \to 0$$

:The Cauchy criterion

> Expanding the square inside the expected value

$$E\left[\sum_{j}\sum_{k}X(t_{j})X(t_{k})\Delta_{j}\Delta_{k}\right] = \sum_{j}\sum_{k}R_{X}(t_{j},t_{k})\Delta_{j}\Delta_{k}$$

The limit of the right hand side approaches a double integral

$$\lim_{\Delta_j, \Delta_k \to 0} \sum_j \sum_k R_X(t_j, t_k) \Delta_j \Delta_k = \int_{t_0}^t \int_{t_0}^t R_X(u, v) du dv$$

- $\clubsuit$  The mean square integral of X(t) exists if the double integral of the autocorrelation function exists
- $\star$  If X(t) is a mean square continuous random process, then its integral exists.

 $\bullet$  The mean and autocorrelation function of Y(t)

$$m_{Y}(t) = E\left[\int_{t_{0}}^{t} X(t')dt'\right] = \int_{t_{0}}^{t} E[X(t')]dt'$$
$$= \int_{t_{0}}^{t} m_{X}(t')dt'$$

$$R_{Y}(t_{1}, t_{2}) = E \left[ \int_{t_{0}}^{t_{1}} X(u) du \int_{t_{0}}^{t_{2}} X(v) dv \right]$$
$$= \int_{t_{0}}^{t_{1}} \int_{t_{0}}^{t_{2}} R_{X}(u, v) du dv$$

## 6.7 Time Averages of Random Processes and Ergodic Theorems

\* To estimate the mean  $m_X(t)$  of a random process  $X(t, \zeta)$ ,

$$\hat{m}_X(t) = \frac{1}{N} \sum_{i=1}^{N} X(t, \xi_i)$$

where N is the number of repetitions of the experiment

In estimating the mean or autocorrelation functions from the time average of a single realization

$$\langle X(t) \rangle_T = \frac{1}{2T} \int_{-T}^T X(t,\xi) dt$$

- Ergodic theorems: when time averages converge to the ensemble average (expected value)
  - cf) Strong law of large numbers:

: if  $X_n$  is an iid discrete-time random process with finite mean  $E[X_n] = m$ , then

$$P\left[\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_{i}=m\right]=1$$

 $⟨X(t)⟩_T = \frac{1}{2T} \int_{-T}^T X(t,\xi) dt$  yields a single number ⇒ consider process for which  $m_X(t) = m$ 

- An ergodic theorem for the time average of wide-sense stationary processes
  - $\succ X(t)$ : WSS process

$$E[\langle X(t) \rangle_T] = E\left[\frac{1}{2T} \int_{-T}^T X(t) dt\right]$$
$$= \frac{1}{2T} \int_{-T}^T E[X(t)] dt = m$$

$$VAR[\langle X(t) \rangle_{T}] = E[(\langle X(t) \rangle_{T} - m)^{2}]$$

$$= E\left[\left\{\frac{1}{2T} \int_{-T}^{T} (X(t) - m) dt\right\} \left\{\frac{1}{2T} \int_{-T}^{T} (X(t') - m) dt'\right\}\right]$$



$$= \frac{1}{4T^{2}} \int_{-T}^{T} \int_{-T}^{T} C_{X}(t, t') dt dt'$$

$$= \frac{1}{4T^{2}} \int_{-T}^{T} \int_{-T}^{T} C_{X}(t - t') dt dt'$$

$$= \frac{1}{4T^{2}} \int_{-T}^{T} \int_{-T}^{T} C_{X}(t - t') dt dt'$$

$$= \frac{1}{4T^{2}} \int_{-2T}^{2T} (2T - |u|) C_{X}(u) du$$

$$= \frac{1}{2T} \int_{-2T}^{2T} (1 - \frac{|u|}{2T}) C_{X}(u) du$$

 $\Rightarrow$   $\langle X(t) \rangle_T$  will approach m in the mean square sense, i.e.,  $E[(\langle X(t) \rangle_T - m)^2] \to 0$  if and only if

$$\lim_{T\to\infty}\frac{1}{2T}\int_{-2T}^{2T}\left(1-\frac{|u|}{2T}\right)C_X(u)du=0$$

Discrete-time random process

$$\langle X_n \rangle_T = \frac{1}{2T+1} \sum_{n=-T}^T X_n$$
$$\langle X_{n+k} X_n \rangle_T = \frac{1}{2T+1} \sum_{n=-T}^T X_{n+k} X_n$$

 $\bullet$  If  $X_n$  is WSS

$$E[\langle X_n \rangle_T] = m$$

VAR[
$$\langle X_n \rangle_T$$
] =  $\frac{1}{2T+1} \sum_{k=-2T}^{2T} \left( 1 - \frac{|k|}{2T+1} \right) C_X(k)$ 

 $\triangleright$  ( VAR[ $< X_n >_T$ ]  $\rightarrow$  0 : mean square sense )

## Home work

- Ch. 6 Problems
- **3**,5,7,10,15,18,21,24,29,34,
- **37,40,44,48,52,55,59,63,67,69,**
- 71,74,79,83,87,89