Introduction to Nuclear Fusion

Prof. Dr. Yong-Su Na

Resistive MHD instabilities in a Tokamak

- growing more slowly compared with the ideal instabilities (10⁻⁴-10⁻² s)
- resulting from the diffusion or tearing of the magnetic field lines relative to the plasma fluid
- destroying the nested topology of the magnetic flux surfaces

Tearing Modes

- resistive internal kink modes ($m \ge 2$)
- driven by perturbed **B** induced by current layer (∇J) in plasmas
- magnetic island formation
- more tolerable and lower than ideal modes
- unstable region reduced as sharpness of the current profile, closeness of the wall to the plasma, shear increases
- stability condition: $q_0 > 3$

Neoclassical Tearing Modes (NTMs)

I_D=1.6 MA, B_t=4.8 T, R=2.45 m, a=0.80 m, q_a~5.0

- *∆′* < 0

20

- Predicted theoretically first, observed experimentally in 1995

(a)

A: 66869

Neoclassical Tearing Modes (NTMs)

- Pressure flattening across magnetic islands due to large transport coefficients along magnetic field lines

Neoclassical Tearing Modes (NTMs)

 pressure gradient drives plasma current (Bootstrap current):

 $j_{BS} \propto \nabla p$

- inside islands ∇p flattened $\rightarrow j_{BS}$ vanished

 Loss of BS current inside magnetic islands acts as helical perturbation current driving the islands – so once seeded, island is sustained by lack of bootstrap current.

Neoclassical Tearing Modes (NTMs)

• Neoclassical Tearing Modes (NTMs) • $\vec{r} \cdot \vec{r}_{s} = \bigcirc \vec{B}_{z} \uparrow \uparrow \vec{j}_{z}$

- Missing bootstrap current inside island can be replaced by localised external current drive.

- complete stabilisation in quantitative agreement with theory.

• Neoclassical Tearing Modes (NTMs)

Complex non-linear instabilities in a Tokamak

• Nonlinear low-n internal modes: Sawtooth

I. T. Chapman et al, PRL (2010)

• Nonlinear low-n internal modes: Sawtooth

Nonlinear low-n internal modes: Sawtooth

W. Suttrop "Experimental Results from Tokamaks", IPP Summer School, IPP Garching, September (2001)

Nonlinear low-n internal modes: Sawtooth

18

20

Time (s)

22

24

ICRH leads to the triggering of n = 2NTM activity which causes a termination of the discharge.

Major Disruption

Major Disruption

- Disruptions are fast (~1 ms) global instabilities that my arise in magnetic confinement fusion devices that use plasma current for confinement such as tokamak.
- Termination of confinement, uncontrolled loss of thermal and magnetic energy
 - shift of the plasma column
 - heat load damage to plasma facing components (PFCs)
 - large mechanical stresses from JxB forces during current quench
 - rapid cooling of the plasma \rightarrow increase of resistivity
 - increase of loop voltage → runaway electrons (0.1-10 MeV) through avalanche amplification, resulting in a > 5 MA of relativistic electron beam
 - \rightarrow deep penetration of materials (~cm)

Current Quench

Temperature

lectron

Ξ

Plasma Current

Major Disruption

KSTAR #6104 00:00:05.400 frame #255 08-Aug-2011 09:55:41.699 09:55:41.699 09:55:41.699 00:00:05.400 frame #255 40FPS 107.2 188.4 149.0 199.9 199

KSTAR

- Synchrotron radiation

IR images (left): electrons of ~ 25 - 35 MeV Visible light images (right): electrons of > 60 MeV

Junghee Kim et al, "Runaway electron suppression in KSTAR", KPS/DPP, Daejeon, Korea, 26 April 2013

Major Disruption

- Several classes of "triggering" instabilities lead to
 - this "final" ideal instability
 - Beta / pressure limits
 - Radiative limits
 - Vertical position instability
 - (Vertical Displacement Event (VDE))

Disruption Mitigation

VDE

- Killer pellet injection: fast conversion of thermal energy to the radiation energy
- MGI (Massive Gas Injection): H, He, Ne, Ar, Kr, Xe, etc.
- RMP (Resonant Magnetic Perturbation) to reduce runaway electrons

Neon gas jet injection triggered by control system

Tokamak Instabilities and Their Control

- conducting wall
- magnetic shear
- minimum-**B** configuration
- profile optimisation
- dynamic stabilisation
- by feedback control

