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Linear Algebra: Matrices,
Vectors, Determinants.
Linear Systems

This is the first of two chapters on linear algebra, which concerns mainly systems of
linear equations and linear transformations (to be discussed in this chapter) and eigenvalue
problems (to follow in Chap. 8).

Systems of linear equations, briefly called linear systems, arise in electrical networks,
mechanical frameworks, economic models, optimization problems, numerics for
differential equations, as we shall see in Chaps. 21-23, and so on.

As main tools, linear algebra uses matrices (rectangular arrays of numbers or functions)
and vectors. Calculations with matrices handle matrices as single objects, denote them by
single letters, and calculate with them in a very compact form, almost as with numbers,
so that matrix calculations constitute a powerful “mathematical shorthand”.

Calculations with matrices and vectors are defined and explained in Secs. 7.1-7.2.
Sections 7.3-7.8 -center around linear systems, with a thorough discussion of Gauss
elimination, the role of rank, the existence and uniqueness problem for solutions (Sec. 7.5),
and matrix inversion. This also includes determinants (Cramer’s rule) in Sec. 7.6 (for
quick reference) and Sec. 7.7. Applications are considered throughout this chapter. The
last section (Sec. 7.9) on vector spaces, inner product spaces, and linear transformations
is more abstract. Eigenvalue problems follow in Chap. &.

COMMENT. Numeric linear algebra (Secs. 20.1-20.5) can be studied immediately
after this chapter.

Prerequisite: None.
Sections that may be omitted in a short course: 7.5, 7.9.
References and Answers to Problems: App. 1 Part B, and App. 2.

7.1 Matrices, Vectors:
Addition and Scalar Multiplication

In this section and the next one we introduce the basic concepts and rules of matrix and
vector algebra. The main application to linear systems (systems of linear equations) begins
in Sec. 7.3.
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EXAMPLE 1
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A matrix is a rectangular array of numbers (or functions) enclosed in brackets. These
numbers (or functions) are called the entries (or sometimes the elements) of the matrix.
For example,

a1 aiz a3’
0.3 1 -5
asy Ao Asz | »
0 -—-02 16
(1) " dsy dsg ass |
e ” 2x? 47
> la; ay ag),
5% 4x o

are matrices. The first matrix has two rows (horizontal lines of entries) and three columns
(vertical lines). The second and third matrices are square matrices, that is, each has as
many rows as columns (3 and 2, respectively). The entries of the second matrix have two
indices giving the location of the entry. The first index is the number of the row and the
second is the number of the column in which the entry stands. Thus, as5 (read a two three)
is in Row 2 and Column 3, etc. This notation is standard, regardless of whether a matrix
is square or not.

Matrices having just a single row or column are called vectors. Thus the fourth matrix
in (1) has just one row and is called a row vector. The last matrix in (1) has just one
column and is called a column vector.

We shall see that matrices are practical in various applications for storing and processing
data. As a first illustration let us consider two simple but typical examples.

Linear Systems, a Major Application of Matrices

In a system of linear equations, briefly called a linear system, such as

6

4xy + 6x9 + Ox3
6x1 — 2x3 =20

5x; — 8xp + x3 =10

the coefficients of the unknowns xy, x5, x3 are the entries of the coefficient matrix, call it A,

4 6 9 4 6 9 6
P A=|6 0 -2]. The matrix A=l6 0 -2 20
5 -8 1 5 -8 1 10

is obtained by augmenting A by the right sides of the linear system and is called the augmented matrix of the
system. In A the coefficients of the system are displayed in the pattern of the equations. That is, their position
in A corresponds to that in the system when written as shown. The same is true for A.

We shall see that the augmented matrix A contains all the information about the solutions of a system,
so that we can solve a system just by calculations on its augmented matrix. We shall discuss this in great
detail, beginning in Sec. 7.3. Meanwhile you may verify by substitution that the solution is x; = 3, x5 = 3,
Xg = —1.

The notation x3, x5, x3 for the unknowns is practical but not essential; we could choose x, y, z or some other
letters.
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EXAMPLE 2
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Sales Figures in Matrix Form

Sales figures for three products I, II, III in a store on Monday (M), Tuesday (T), - - - may for each week be
arranged in a matrix

M T W Th F s
400 330 810 0 210 470 I
A= 0o 120 780 500 500 960 1
100 0 0 270 430 780 I

If the company has ten stores, we can set up ten such matrices, one for each store. Then by adding corresponding
entries of these matrices we can get a matrix showing the total sales of each product on each day. Can you think
of other data for which matrices are feasible? For instance, in transportation or storage problems? Or in recording
phone calls, or in listing distances in a network of roads? |

General Concepts and Notations

We shall denote matrices by capital boldface letters A, B, C, - - -, or by writing the general
entry in brackets; thus A = [a;;], and so on. By an m X n matrix (read m by n matrix)
we mean a matrix with m rows and n columns—rows come always first! m X n is called
the size of the matrix. Thus an m X n matrix is of the form

ai a2 BhSa G

dgy Qg3 S Aon

2 A = [ay] =

TAL/_'#/L AL —= . Am1 Am2 ‘ " e a;mn’ :
K 2 @/(Zumm Aﬁ"ﬁr%@‘?j’

IX7

The matrices in (1) are of sizes.2 X 3,3 X 3,2 X 2,1 X 3, and 2 X 1, respectively.

Each entry in (2) has two subscripts. The first is the row number and the second is the
column number. Thus as; is the entry in Row 2 and Column 1.

If m = n, we call A an n X n square matrix. Then its diagonal containing the entries
11, Ao, * * 5 Gy, is called the main diagonal of A. Thus the main diagonals of the two
square matrices in (1) are ayq, dgg, ass and e™%, 4x, respectively.

Square matrices are particularly important, as we shall see. A matrix that is not square
is called a rectangular matrix.

Vectors

A vector is a matrix with only one row or column. Its entries are called the components
of the vector. We shall denote vectors by lowercase boldface letters a, b, - - - or by its
general component in brackets, a = [q;], and so on. Our special vectors in (1) suggest
that a (general) row vector is of the form

A—ldy as v, Gy For instance, a=[-2 5 08 0 1l

N CoOMPIAS ,,
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A column vector is of the form

by
4
by

/ _ ) ~
Lé < ,?7 % b = 1K For instance, b = ol.
K | ook (él)é)-)'°’)-;'m) -7

Matrix Addition and Scalar Multiplication

What makes matrices and vectors really useful and particularly suitable for computers is
the fact that we can calculate with them almost as easily as with numbers. Indeed, we
now introduce rules for addition and for scalar multiplication (multiplication by numbers)

L that were suggested by practical applications. (Multiplication of matrices by matrices
follows in the next section.) We first need the concept of equality.

DEFINITION Equality of Matrices

Two matrices A = [a;;] and B = [bj;] are equal, written A = B, if and only if they
have the same size and the corresponding entries are equal, that is,
a1 = byy, a1z = byy, and so on. Matrices that are not equal are called different.

Thus, matrices of different sizes are always different.

. ﬂ__ = = =/, %7
EXAMPLE 3 Equality of Matrices A’B é% /k ék PR e
Let k: /)~-‘)7?
a;; axp 4 0
A= and B = ;
ag1  agy 3 =
Then
) ay; = 4, aip = 0,
A=B if and only if
as; =3, ags = —1.

The following matrices are all different. Explain!
[1 3] [4 2:] [4 1}
4 2 1 3 2 3
DEFINITION Addition of Matrices

The sum of two matrices A = (9] and B = [by] of the same size is written
A + B and has the entries a;;, + bj, obtained by adding the corresponding entries
of A and B. Matrices of different sizes cannot be added.

[1 3 0:|
4 2 0

As a special case, the sum a + b of two row vectors or two column vectors, which must
have the same number of components, is obtained by adding the corresponding
components.

ek &= ADE

4 - 7 .. .
74/1}777 C:j/& = 6& T o5k D=L, K=l
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EXAMPLE 4

DEFINITION

EXAMPLE 5
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Addition of Matrices and Vectors

—4 6 3 5 -1 0 1 5 3
If A= and B = , then A+ B= .
0 1 2 3 1 0 3 2 2

A in Example 3 and our present A cannot be added. fa =[5 7 2] and b = [-6 2 0], then
a+b=[-1 9 2] )
An application of matrix addition was suggested in Example 2. Many others will follow. |

Scalar Multiplication (Multiplication by a Number)

The product of any m X n matrix A = [ay] and any scalar ¢ (number c) is written
cA and is the m X n matrix cA = [cay;] obtained by multiplying each entry of A
by c. :

Here (—1)A is simply written —A and is called the negative of A. Similarly, (—k)A is
written —kA. Also, A + (—B) is written A — B and is called the difference of A and B
(which must have the same size!).

Scalar Multiplication

27 —-138 —-2.7 1.8 3 =2 0 0

10
If A=} 0 09|, then —A= 0 -09 1, 5 =10 11, 0OA=|0 0
9.0 —45 -9.0 4.5 10 -5 0 0

If a matrix B shows the distances between some cities in miles, 1.609B gives these distances in kilometers. B

Rules for Matrix Addition and Scalar Multiplication. From the familiar laws for the
addition of numbers we obtain similar laws for the addition of matrices of the same size
m X n, namely,

(a) " A+B=B+A

3 (b) A+B+C=A+B+C0 (written A + B + C)
() A+0=A
(d) A+ (—A) =0.

Here 0 denotes the zero matrix (of size m X n), that is, the m X n matrix with all entries
zero. (The last matrix in Example 5 is a zero matrix.)
Hence matrix addition is commutative and associative [by (3a) and (3b)].
Similarly, for scalar multiplication we obtain the rules
(a) cA+B)=cA+cB
(b) (c + HA = cA + kA
(©) c(kA) = (ck)A (written ckA)
(d) 1A = A.

@
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DEFINITION

EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

Multiplication of a Matrix by a Matrix

The product C = AB (in this order) of an m X n matrix A = [a;,] times an r X p
matrix B = [bj] is defined if and only if » = # and is then the m X p matrix

C = [cj3] with entries

& - , ; =
(1) Cjk = 2 ajlblk = ajlblk = ajzbzk Fmeae ajnbnk - {

=1 =1, p

The condition » = n means that the second factor, B, must have as many rows as the first

factor has columns, namely 7. As a diagram of sizes (denoted as shown):

A B
[m X n][n Xr]

C
[m X r].

Cjx in (1) is obtained by multiplying each entry in the jth row of A by the corresponding
entry in the kth column of B and then adding these n products. For instance,

Ca1

ag1b11 + assbyy + - -+ ay,b,q, and so on. One calls this briefly a

“multiplication of rows into columns.” See the illustration in Fig. 155, where n = 3.

n=3 p=2 p=2
11 %2 %3 1 b ‘1 ‘2
" F Go Oos 1oy 2 b= G ey i
= | ; B m =
mn @31 83z 33 31 932 %1 C3
@y Uy Gy3 €1, a2
Fig. 155. Notations in a product AB = C
Matrix Multiplication

3 5 -1 2 =2 3 1 22 -2 43 42
AB = 4 0 2 5 0 7 8| =126 -—16 14 6
-6 -3 2]|9 -4 17 1 -9 4 -37 -28

Herecll=3'2+5-5+(—1)-9=22,andsoon.Theentryintheboxisczs=4-3+0-7+2'1 = 14.

The product BA is not defined. |,

Multiplication of a Matrix and a Vector

4 2 k. 4-3+2-5 22 3 4 2
= = whereas is undefined.
1 8 5 1:3+ 85 43 5 1 8
Products of Row and Column Vectors
1 1 3 6 1
[3 6 1112 =119], 213 6 11=1 6 12 2
4 4 12 24 4
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EXAMPLE 4

EXAMPLE 5
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CAUTION! Matrix Multiplication Is Not Commutative, AB + BA in General

This is illustrated by Examples 1 and 2, where one of the two products is not even defined, and by Example 3,
where the two products have different sizes. But it also holds for square matrices. For instance,

1 1 -1 1 0 0 -1 1 1 1 99 99
= but = .

100 100 1 -1 0 0 1 -1 100 100 -99 —99
It is interesting that this also shows that AB = 0 does not necessarily imply BA = 0 or A = 0 or B = 0. We

shall discuss this further in Sec. 7.8, along with reasons when this happens. |

Our examples show that the order of factors in matrix products must always be observed
very carefully. Otherwise matrix multiplication satisfies rules similar to those for numbers,
namely.

(a) (kA)B = k(AB) = A(kB) written kAB or AkB
(b) A(BC) = (AB)C written ABC

2
() (A+B)C=AC+BC

(d CA+B)=CA+CB
provided A, B, and C are such that the expressions on the left are defined; here, k is any
scalar. (2b) is called the associative law. (2c) and (2d) are called the distributive laws.

Since matrix multiplication is a multiplication of rows into columns, we can write the
defining formula (1) more compactly as

(3) Cjkzajbk7 ]:1,,1’1’[, k:1,"',p,

where a; is the jth row vector of A and by is the kth column vector of B, so that in
agreement with (1),

by
ajbk - [ajl ajz SEE ajn] = ajlblk + aijZk ML o ambnk

bnk

Product in Terms of Row and Column Vectors

If A = [aj] is of size 3 X 3 and B = [by] is of size 3 X 4, then

L ] _ albl albz albg 31b4
ORU

AB = azbl azbz 32b3 azb4

agb; ° agby  agby  agby
Takinga; =[3 5 —1],a,=[4 0 2], etc, verify (4) for the product in Example 1. ]
Parallel processing of products on the computer is facilitated by a variant of (3) for
computing C = AB, which is used by standard algorithms (such as in Lapack). In this

method, A is used as given, B is taken in terms of its column vectors, and the product is
computed columnwise; thus,

®) AB=A[b, b, - b,]=[Ab; Ab, --- Ab,].

(' Ab =4 ] b = ZK/L]

LS

o) les)
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EXAMPLE 6

Columns of B are then assigned to different processors (individually or several to each
processor), which simultaneously compute the columns of the product matrix Ab,, Ab,, etc.

Computing Products Columnwise by (5)

4 1 3 0 7 11 4 34
AB = =
-5 2 =1 4 6 -17 8§ —23

from (5), calculate the columns

DAY B 1 4 I [ A

of AB and then write them as a single matrix, as shown in the first formula on the right. B

To obtain

Motivation of Multiplication by Linear Transformations

Let us now motivate the “unnatural” matrix multiplication by its use in linear
transformations. For n = 2 variables these transformations are of the form

Y1 = apX; t agaxs
(6%)

Yo = Ap1Xy T agaXy

and suffice to explain the idea. (For general n they will be discussed in Sec. 7.9.) For
instance, (6*) may relate an x;xp-coordinate system to a y;y,-coordinate system in the
plane. In vectorial form we can write (6*) as

| A aii Q12 X1 a11%; T ajexs
Y2 Aoy 3% X2 Ag1X1 + dgoXy
Now suppose further that the x;xp-system is related to a wywy-system by another linear
transformation, say,

X1 b1a bia | [w1 biawy + biawy
@) X = = Bw = = .
X2 b1 bas Wa boawy + baawy
Then the y;y,-system is related to the w;wy-system indirectly via the x;x,-system, and we

wish to express this relation directly. Substitution will show that this direct relation is a
linear transformation, too, say,

C11 Ci12 w1 C1iW1 T CiaWs
®) y=Cw= . = .

Ca1 Caz Wa, Ca1W1 T Coowy
Indeed, substituting (7) into (6), we obtain

y1 = ay1(bywyr + biows) + a1a(baiwy + bogws)
= (a11b11 + aioba)wy + (a11b12 + A12b92)wy
Yo = Gg1(b1ywy + b1aws) + aga(boywy + bagwy)

= (ag1b11 + agobo)wy + (agibia + A22D22)Ws.
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Comparing this with (8), we see that

€11 = A11b1y + a12ba C12 = a11b1g + a12bos

Co1 = Agibyy T agaba Cog = Ao1b1g + aoobos.

This proves that C = AB with the product defined as in-(1). For larger matrix sizes the
idea and result are exactly the same. Only the number of variables changes. We then have
m variables y and n variables x and p variables w. The matrices A, B, and C = AB then
have sizes m X n, n X p, and m X p, respectively. And the requirement that C be the
product AB leads to formula (1) in its general form. This motivates matrix multiplication

completely. % _ A X _ /4 @W) — @:@ H/ ://aly/

Y Transposition provides a transition from row vectors to column vectors and conversely.
More generally, it gives us a choice to work either with a matrix or with its transpose,
whatever will be more practical in a specific situation.

Transposition

DEFINITION Transposition of Matrices and Vectors

The transpose of an m X n matrix A = [aj;,] is the n X m matrix AT (read A transpose)
that has the first row of A as its first column, the second row of A as its second
column, and so on. Thus the transpose of A in (2) is AT = [ax;], written out

&
| 6\!1 T &i'n a1 dg; Tt Oy
| 4o Ag:n . a1z Ggg )

| ayn  Adop T Apn
IV WY

As a special case, transposition converts row vectors to column vectors and
conversely.

EXAMPLE 7 Transposition of Matrices and Vectors

: 5 4
5 -8 1
If A= , then A'T=|-8 0
- 4 0 0
1 0
A little more compactly, we can write
5 4
5 -8 17 3 01 3 8
= | -8 0], =
4 0 0 8 —1 0 -1
1 0
6 67"
6 2 3T=|2], 21 =6 2 3]
3 3

Note that for a square matrix, the transpose is obtained by interchanging entries that are symmetrically positioned
with respect to the main diagonal, e.g., a;5 and asq, and so on.
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EXAMPLE 8

EXAMPLE 9

Rules for transposition are

(@) AD"=A

) (A+B)T =AT + BT
(10)

©) (cA)T = cAT

(d (AB)T = BTA™.

CAUTION! Note that in (10d) the transposed matrices are in reversed order. We leave
the proofs to the student. (See Prob. 22.)

Special Matrices

Certain kinds of matrices will occur quite frequently in our work, and we now list the
most important ones of them.

Symmetric and Skew-Symmetric Matrices. Transposition gives rise to two useful
classes of matrices, as follows. Symmetric matrices and skew-symmetric matrices are
Square matrices whose transpose equals the matrix itself or minus the matrix, respectively:

(11) AT=A (thus ai; = a;), AT =—-A (thus ay; = —ay,, hence a;; = 0).
Symmetric Matrix Skew-Symmetric Matrix

Symmetric and Skew-Symmetric Matrices

20 120 200 0 1 -3
A =|120 10 150 is symmetric, and B=|-1 0 -2 is skew-symmetric.
200 150 30 3 2 0

For instance, if a company has three building supply centers Cy, Co, Cg, then A could show costs, say, ay; for
handling 1000 bags of cement on center C;, and aj, (j # k) the cost of shipping 1000 bags from Cj to Cy.
Clearly, aj;, = aj; because shipping in the opposite direction will usually cost the same.

Symmetric matrices have several general properties which make them important. This will be seen as we
proceed. B

Triangular Matrices. Upper triangular matrices are square matrices that can have
nonzero entries only on and above the main diagonal, whereas any entry below the diagonal
must be zero. Similarly, lower triangular matrices can have nonzero entries only on and
below the main diagonal. Any entry on the main diagonal of a triangular matrix may be
Zero or not.

Upper and Lower Triangular Matrices

30 0 0
Tt g, 2 0 0
1, 0 9 -3 0 0
, |0 3w P, 8 -1 01, ]
0 2 F 0 %2 0
0 0 6 TG 3
Togsoiss Qs 31 WG

Upper triangular Lower triangular
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EXAMPLE 11
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Diagonal Matrices. These are square matrices that can have nonzero entries only on
the main diagonal. Any entry above or below the main diagonal must be zero.

If all the diagonal entries of a diagonal matrix S are equal, say, ¢, we call S a scalar
matrix because multiplication of any square matrix A of the same size by S has the same
effect as the multiplication by a scalar, that is,

(12) ' AS = SA = cA.

In particular, a scalar matrix whose entries on the main diagonal are all 1 is called a
unit matrix (or identity matrix) and is denoted by I,, or simply by L. For I, formula (12)
becomes

(13) Al = 1A = A.

Diagonal Matrix D. Scalar Matrix S. Unit Matrix |

2 0 0 c 0 0 1 0 0
D={0 -3 01, S=10 c 01, I=10 1 0 ]
0O 0 0 0 0 ¢ 0 0 1

Applications of Matrix Multiplication

Matrix multiplication will play a crucial role in connection with linear systems of
equations, beginning in the next section. For the time being we mention some other simple
applications that need no lengthy explanations.

Computer Production. Matrix Times Matrix

Supercomp Ltd produces two computer models PC1086 and PC1186. The matrix A shows the cost per computer
(in thousands of dollars) and B the production figures for the year 2005 (in multiples of 10000 units.) Find a
matrix C that shows the shareholders the cost per quarter (in millions of dollars) for raw material, labor, and
miscellaneous.

Quarter
PC1086 PC1186 I 2 3 a4
1.2 1.6 ] Raw Components
3 8 6 97 PC1086
A=103 0.4 | Labor B=
6 2 4 3 PC1186
0.5 0.6 | Miscellaneous
Solution.
Quarter
1 2 3 4

13.2 12.8 13.6 15.6 | Raw Components
C=AB=| 33 32 34 39 | Labor
5.1 52 54 6.3 1 Miscellaneous

Since cost is given in multiples of $1000 and production in multiples of 10 000 units, the entries of C are
multiples of $10 millions; thus c;; = 13.2 means $132 million, etc. |

H_:/i—/
Pk, 7207 @

/;.4,;, 92,0

Pl 7> 2 a)
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Linear System, Coefficient Matrix, Augmented Matrix

A linear system of m equations in » unknowns x4, - - -, x,, is a set of equations of the form
G e = by
a2 +' Ay Xon, =Dy

The system is called linear because each variable x; appears in the first power only, just
as in the equation of a straight line. ayq, - - -, a,,, are given numbers, called the
coefficients of the system. by, - - -, b, on the right are also given numbers. If all the b;
are zero, then (1) is called a homogeneous system. If at least one ; is not zero, then (1)
is called a nonhomogeneous system.

A solution of (1) is a set of numbers xy, - - -, x,, that satisfies all the m equations.
A solution vector of (1) is a vector X whose components form a solution of (1). If the
system (1) is homogeneous, it has at least the trivial solutionx; = 0, - -, x, = 0.

Matrix Form of the Linear System (1). From the definition of matrix multiplication
we see that the m equations of (1) may be written as a single vector equation

) _ Ax =D

where the coefficient matrix A = [a;;] is the m X n matrix

X1
ain Q12 " dip by
Qg1 Qg " dQop
A= , and x = . and b =
Am1 Am2 T Amn, bm
xn

are column vectors. We assume that the coefficients aj;, are not all zero, so that A is not
a zero matrix. Note that x has n components, whereas b has m components. The matrix

aix 0 Qi by

|
|
|
|
|
Y S N
is called the augmented matrix of the system (1). The dashed vertical lineN could be
omitted (as we shall do later); it is merely a reminder that the last column of A does not
belong to A.

The augmented matrix A determines the system (1) completely because it contains all
the given numbers appearing in (1).
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EXAMPLE 1

Infinitely
many solutions

No solution

Fig. 156. Three
equations in
three unknowns
interpreted as
planes in space

Geometric Interpretation. Existence and Uniqueness of Solutions
If m = n = 2, we have two equations in two unknowns x;, xo
apixy + apxg = by
agiXy t dgaXp = b.
If we interpret xq, xo as coordinates in the x;x5-plane, then each of the two equations represents a straight line,

and (x;, xp) is a solution if and only if the point P with coordinates xy, x lies on both lines. Hence there are
three possible cases:

(a) Precisely one solution if the lines intersect.
(b) Infinitely many solutions if the lines coincide.
(c) No solution if the lines are parallel

For instance,

X +x,=1 X +x,=1 X +x,=1
2% -x,=0 200 +2x,=2 X +x,=0
Case (a) Case (b) Case (¢)
%, x, %,
2P
|
i % 1 x, 1 \\x1

If the system is homogenous, Case (c) cannot happen, because then those two straight lines pass through the
origin, whose coordinates 0, O constitute the trivial solution. If you wish, consider three equations in three
unknowns as representations of three planes in space and discuss the various possible cases in a similar fashion.
See Fig. 156. ]

Our simple example illustrates that a system (1) may perhaps have no solution. This poses
the following problem. Does a given system (1) have a solution? Under what conditions
does it have precisely one solution? If it has more than one solution, how can we
characterize the set of all solutions? How can we actually obtain the solutions? Perhaps
the last question is the most immediate one from a practical viewpoint. We shall answer
it first and discuss the other questions in Sec. 7.5.

Gauss Elimination and Back Substitution

This is a standard elimination method for solving linear systems that proceeds
systematically irrespective of particular features of the coefficients. It is a method of great
practical importance and is reasonable with respect to computing time and storage demand
(two aspects we shall consider in Sec. 20.1 in the chapter on numeric linear algebra). We
begin by motivating the method. If a system is in “triangular form,” say,

2x1 aF SXZ = 2
13.X2 = —26

we can solve it by “back substitution,” that is, solve the last equation for the variable,
Xp = —26/13 = —2, and then work backward, substituting x, = —2 into the first equation



290

7{2 ,Q/Za Hans
df@‘/ 4‘/’14 Q‘)/
ani— ,{C/Q/Z;EIC‘V(Z

)

*

EXAMPLE 2

CHAP.7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

and solve it for x;, obtaining x; = 2(2 — 5x;) = 3(2 — 5+ (—2)) = 6. This gives us the idea
of first reducing a general system to triangular form. For instance, let the given system be

|

We leave the first equation as it is. We eliminate x from the second equation, to get a triangular
system. For this we add twice the first equation to the second, and we do the same operation
on the rows of the augmented matrix. This gives —4x; + 4x; + 3xp + 10x; = =30 +2-2,

that is,

where Row 2 + 2 Row 1 means “Add twice Row 1 to Row 2” in the original matrix.
This is the Gauss elimination (for 2 equations in 2 unknowns) giving the triangular form,
from which back substitution now yields x, = —2 and x; = 6, as before.

Since a linear system is completely determined by its augmented matrix, Gauss
elimination can be done by merely considering the matrices, as we have just indicated.
We do this again in the next example, emphasizing the matrices by writing them first and
the equations behind them, just as a help in order not to lose track.

230G N, 2 2 5 2

Its augmented matrix is l:
—4x; + 3xy = —30. —4 B30

2x; + 5xy = 2 2 5 2

/7

13x5 = —26 Row 2 + 2 Row 1 [0 18 me=2 6

Gauss Elimination. Electrical Network

Solve the linear system

, _, I : 0 SR O = 0
/{2\/ __ ‘/ / 1 ’ SR e 0
L <~ 10xg + 25x3 = 90
i 1
0 [o =f o 20x; + 101, = 80.
26

/0

A 1,{/7, e JL 2 J /‘7 d»x

; (¥
0Dei’ii;2ti0ﬁ from the circuit in Fig. 157 ( Optional). This is the system for the unknown currents
Xy = iy, Xy = iy, X3 = ig in the electrical network in Fig. 157. To obtain it, we label the currents as shown,
choosing directions arbitrarily; if a current will come out negative, this will simply mean that the current flows
against the direction of our arrow. The current entering each battery will be the same as the current leaving it.
The equations for the currents result from Kirchhoff’s laws:

Kirchhoff’s current law (KCL). At any point of a circuit, the sum of the inflowing currents equals the sum
of the outflowing currents.

Kirchhoff’s voltage law (KVL). In any closed loop, the sum of all voltage drops equals the impressed
electromotive force.

Node P gives the first equation, node Q the second, the right loop the third, and the left loop the fourth, as
indicated in the figure.

20Q 10Q
Q Node P: ij= i,+ iy3= 0
Node @: —ip+ i,— iy= 0
Right loop: 10i, + 251, =90
P 150 Left loop: 207, + 101, =80

Fig. 157. Network in Example 2 and equations relating the currents
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Solution by Gauss Elimination. This system could be solved rather quickly by noticing its particular
form. But this is not the point. The point is that the Gauss elimination is systematic and will work in general,
also for large systems. We apply it to our system and then do back substitution. As indicated let us write the
augmented matrix of the system first and then the system itself:

Augmented Matrix A Equations
Pivot I ——[ (1) -1 1 oo Pivot | —— (T x)= %+ x= 0
ey (o A x|+ m— x= 0
|
Eliminate——>1 | 0| 10 25 | 90 Eliminate —— 10xg + 25x5 = 90
i
20 10 0 | 80 20%;| + 10x, = 80.

Step 1. Elimination of x,
Call the first row of A the pivot row and the first equation the pivot equation. Call the coefficient 1 of its
x;-term the pivot in this step. Use this equation to eliminate x; (get rid of x) in the other equations. For this, do:

Add 1 times the pivot equation to the second equation.

Add —20 times the pivot equation to the fourth equation.

This corresponds to row operations on the augmented matrix as indicated in BLUE behind the new matrix in
(3). So the operations are performed on the preceding matrix. The result is

i =il 1 } 0 X3~ X+ x3= 0
T S Row 2 + Row | 0= 0
3) |
GRS o0 10x5 + 25x5 = 90
I
O aS OREE=0 0 w30 Row 4 — 20 Row 1 30xg — 20x3 = 80.

Step 2. Elimination of x5

The first equation remains as it is. We want the new second equation to serve as the next pivot equation. But
since it has no x,-term (in fact, it is 0 = 0), we must first change the order of the equations and the corresponding
rows of the new matrix. We put 0 = 0 at the end and move the third equation and the fourth equation one place

up. This is called partial pivoting (as opposed:to the rarely used total pivoting, in which also the order of the
unknowns is changed). It gives

1 -1 1 ! 0 ) X3~ X9+ x3 =0

Pivot 10— | 0 25 | 90 Pivot 10— (10x) + 25x3 = 90
!

Eliminate 30— | 0 -20 | 80 Eliminate 30x, —> — 20x3" = 80
|

e o 0=0

To eliminate x5, do:

Add —3 times the pivot equation to the third equation.
The result is

-1l X - x+ xz= 0

0 10 25| 90 10xy + 25x5 = 90

- 0 ) =08 ; —190 | Row 3 — 3 Row 2 — 95x3 = —190
o o o1 o ez

Back Substitution. Determination of x3, x5, X, (in this order)
Working backward from the last to the first equation of this “triangular” system (4), we can now readily find
X3, then xo, and then xq:

—95x3 = —190 x3 = iz = 2 [A]
10xy + 25x3= 90 Xg = 75(90 — 25x3) = iy = 4 [A]
i o X3 = 0 X1 = Xg — x3 = ip = 2 [A]

where A stands for “amperes.” This is the answer to our problem. The solution is unique. o
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Elementary Row Operations. Row-Equivalent Systems

Example 2 illustrates the operations of the Gauss elimination. These are the first two of
three operations, which are called

Elementary Row Operations for Matrices:

Interchange of two rows
Addition of a constant multiple of one row to another row

Multiplication of a row by a nonzero constant c.

CAUTION! These operations are for rows, not for columns! They correspond to the
following

Elementary Operations for Equations:

Interchange of two equations
Addition of a constant multiple of one equation to another equation

Multiplication of an equation by a nonzero constant c.

Clearly, the interchange of two equations does not alter the solution set. Neither does that
addition because we can undo it by a corresponding subtraction. Similarly for that
multiplication, which we can undo by multiplying the new equation by 1/c (since ¢ # 0),
producing the original equation.

We now call a linear system S; row-equivalent to a linear system S, if S; can be
obtained from S, by (finitely many!) row operations. Thus we have proved the following
result, which also justifies the Gauss elimination.

Row-Equivalent Systems

Row-equivalent linear systems have the same set of solutions.

Because of this theorem, systems having the same solution sets are often called
equivalent systems. But note well that we are dealing with row operations. No column
operations on the augmented matrix are permitted in this context because they would
generally alter the solution set.

A linear system (1) is called overdetermined if it has more equations than unknowns,
as in Example 2, determined if m = 7, as in Example 1, and underdetermined if it has
fewer equations than unknowns.

Furthermore, a system (1) is called consistent if it has at least one solution (thus, one
solution or infinitely many solutions), but inconsistent if it has no solutions at all, as
x; + x9 = 1, x; + x5 = 0 in Example 1.

Gauss Elimination: The Three Possible Cases of Systems

The Gauss elimination can take care of linear systems with a unique solution (see Example
2), with infinitely many solutions (Example 3, below), and without solutions (inconsistent
systems; see Example 4).
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"EXAMPLE 3 Gauss Elimination if Infinitely Many Solutions Exist
Solve the following linear systems of three equations in four unknowns whose augmented matrix is

SO0 SO0 =50 | + 2.0xy + 2.0x3 — 5.004 = 8.0
7. Thus, 0.6x1+ 1.5x5 + 1.5x3 — S5.4dx, = 2.7

I

|

|

%) 0.6 1:5 1.5 -54 :
12 -03 -03 24 1

7
2.1 1.2x;|— 0.3x5 — 0.3x3 + 24x, = 2.1,

Solution. As in the previous example, we circle pivots and box terms of equations and corresponding entries
to be eliminated. We indicate the operations in terms of equations and operate on both equations and matrices.

Step 1. Elimination of x4 from the second and third equations by adding
— 0.6/3.0 = —0.2 times the first equation to the second equation,
— 1.2/3.0 = —0.4 times the first equation to the third equation.
This gives the following, in which the pivot of the next step is circled.
) 3.0 20 20 =50 { 8.0 3.0x; + 2.0xg + 2.0x3 — 5.0x4 = 8.0

(6) 0 11 11 -44] 11| Row2-02Rowil + Llxg — 44x, = 1.1

OGNS 44 : =Lt Row 3 — 0.4 Row 1 — Llxg + 44x, = —1.1
Step 2. Elimination of x, from the third equation of (6) by adding
1.1/1.1 = 1 times the second equation to the third equation.
This gives
3.0 20 - 20 =50 : 8.0 SHOR i 210, e 200y — SH0ks, — 30
) SR ) S T S S Llxg + Llxg — 44x, = 1.1
0 0 0 O: 0] Row 3 + Row 2 Q0

Back Substitution. From the second equation, x, = 1 — x3 + 4x4. From this and the first equation,
x; = 2 — x4 Since x3 and x4 remain arbitrary, we have infinitely many solutions. If we choose a value of
x3 and a value of x4, then the corresponding values of x1 and Xy are uniquely determined.

On Notation. 1If unknowns remain arbitrary, it is also customary to denote them by other letters ty, to, n v
In this example we may thus write x; = 2 — x4 = 2 — s Xg =1—x3+dxg=1—1; + 4y, x3 = t; (first
arbitrary unknown), x4 = f (second arbitrary unknown).

EXAMPLE 4 Gauss Elimination if no Solution Exists
—T————

What will happen if we apply the Gauss elimination to a linear system that has no solution? The answer is that
in this case the method will show this fact by producing a contradiction. For instance, consider

R @+2x2+ x3 =3
2= 1 Ji@ 21|+ xo+ x3=0
|
6 2 4 16 6x1|+ 2xg + 4x3 = 6.
Siep 1. Elimination of x from the second and third equations by adding
—% times the first equation to the second equation,

—8 = —2 times the first equation to the third equation.

This gives

W

3x; + 2x9 + x5 = 3

|
|

W = %:~2 Row 2 — £ Row | +%x3=~2
|

0 -2 21 0] Row3—2Rowl [ 26+ 3= 0.
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Step 2. Elimination of x5 from the third equation gives

3 2 | e 372113 I+ gt = 3

o —4 £z = 0 -1 %i—z Ly +ln=—2

a © 2 5 5 0 0 0 112] Row3 - 6Row?2 ey
The false statement 0 = 12 shows that the system has no solution. |

Row Echelon Form and Information From It

s A_Q }Zo-n At the end of the Gauss elimination the form of the coefficient matrix, the augmented
matrix, and the system itself are called the row echelon form. In it, rows of zeros, if
I:/ f / , ] present, are the last rows, and in each nonzero row the leftmost nonzero entry is farther
? gy to the right than in the previous row. For instance, in Example 4 the coefficient matrix
' and its augmented in row echelon form are
. 2 1 Bk 2 1 3
|
o -4 1 and 0 -3 %i—z
0O 0 0 00 Wi 12

Note that we do not require that the leftmost nonzero entries be 1 since this would have
/g( Slime - A Ri 7[ g ;‘i' no theoretic or numeric advantage. (The so-called reduced echelon form, in which those
L

A ks entries are 1, will be discussed in Sec. 7.8.)
h ce ,Q; tans © / /+ At the end of the Gauss elimination (before the back substitution) the row echelon form
I ﬂ« nZ4, % "‘“*"L%C\ A of the augmented matrix will be 7
AX{ )r-xzayJ | 2, | b, ]
D 41 e
= Ik /}7 m €2n i :bz
/’f/LL L Ln 0> ) = 2 3
T |~ r
U’lu o\_):ﬂ 25 )(7 }f,” i i :l_)r+1
| (me/ L) ! O B
QX i ‘ 1 b, |
' o O o X
o o ] 7( blere r=manday; #0,c99 #0,- -, k. # 0, and all the entries in the blue triangle
= ' - _“"as well as in the blue rectangle are zero. From this we see that with respect to solutions
_~ of the system with augmented matrix (8) (and thus with respect to the originally given
// system) there are three possible cases:
(a) Exactly one solution if r = n and b, ,, - * -, by, if present, are zero. To get the
solution, solve the nth equation corresponding to (8) (which is k,,,,x,, = b,,) for x,,, then
~ the (n — 1)st equation for x,,_,, and so on up the line. See Example 2, where r = n = 3
Lr’w and m = 4,
; =¢ an Qj ) &= (b) Infinitely many solutions if r <nandb,,,, - - -, b, if present, are zero. To obtain
g T any of these solutions, choose values of x,., ;, - - -, x,, arbitrarily. Then solve the rth equation
| . for x,, then the (r — 1)st equation for x,_;, and so on up the line. See Example 3.
bpet #0 1n Kj) &= (¢) Nosolutionifr <m and one of the entries Brors* " 5 by is N0t zero. See Example
; 4, where r =2 <m = 3 and b,,, = by = 12.
bom

(&) Ay = - -'dk.m"l by X Hu/
' ~ x /JMZ? 7.3 .74
O 6 0.0 )5 [Feb. 7.3 .25
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20. (Wheatstone bridge) Show that if R,/R; = R;/R5 in
the figure, then I = 0. (R, is the resistance of the
instrument by which I is measured.) This bridge is a
method for determining R,. R;, Ry, R3 are known. R
is variable. To get R, make I = 0 by varing Rs. Then
calculate R, = R3R;/Rs.

21. (Traffic flow) Methods of electrical circuit analysis
have applications to other fields. For instance, applying
the analog of Kirchhoff’s current law, find the traffic
flow (cars per hour) in the net of one-way streets (in
the directions indicated by the arrows) shown in the
figure. Is the solution unique?

22. (Models of markets) Determine the equilibrium
solution (D; = S;, Dy = S5) of the two-commodity
market with linear model (D, S, P = demand, supply,

L] price; index 1 = first commodity, index 2 = second
commodity)

Dy =60 — 2P, — P,, S, = 4P, — 2P, + 14
Dy, = 4P, — Py + 10, Sy = 5P, — 2.

23. (Equivalence relation) By definition, an equivalence
relation on a set is a relation satisfying three conditions
(named as indicated):

(i) Each element A of the set is equivalent to itself
(“Reflexivity”).

(ii) If A is equivalent to B, then B is equivalent to A
(“Symmetry”).

(iii) If A is equivalent to B and B is equivalent to C,
then A is equivalent to C (“Transitivity”).

Show that row equivalence of matrices satisfies these

three conditions. Hint. Show that for each of the three

elementary row operations these conditions hold.

@PROJECT. Elementary Matrices. The idea is that

elementary operations can be accomplished by matrix
multiplication. If A is an m X n matrix on which we

want to do an elementary operation, then there is a

matrix E such that EA is the new matrix after the

operation. Such an E is called an elementary matrix.

This idea can be helpful, for instance, in the design of

algorithms. (Computationally, it is generally preferable

25.
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to do row operations
multiplication by E.)

directly, rather than by
(a) Show that the following are elementary matrices,
for interchanging Rows 2 and 3, for adding —5 times
the first row to the third, and for multiplying the fourth
row by 8.

r1 0 0 0]
0 0 1 0
El - L ]
0 1 0 0
0 0 0o 1]
1 0 0 0]
0o 1 0 0
E2 —_ 5
-5 0 1 0
0 0 0 1]
1 0 0 0]
0 1 0 0
E; =
0 0 1 0
L o o 0 8]

Apply E, E,, E5 to a vector and to a 4 X 3 matrix of
your choice. Find B = E;E.E,A, where A = [ay] is
the general 4 X 2 matrix. Is B equal to C = E,E;Ez;A?
(b) Conclude that E,, E,, E; are obtained by doing
the corresponding elementary operations on the 4 X 4
unit matrix. Prove that if M is obtained from A by an
elementary row operation, then

M = EA,

where E is obtained from the n X n unit matrix 1, by
the same row operation.

CAS PROJECT. Gauss Elimination and Back
Substitution. Write a program for Gauss elimination
and back substitution (a) that does not include pivoting,
(b) that does include pivoting. Apply the programs to
Probs. 13-16 and to some larger systems of your choice.

/.4 Linear Independence. Rank of a Matrix.

Vector Space

In the last section we explained the Gauss elimination with back substitution, the most
important numeric solution method for linear systems of equations. It appeared that such
a system may have a unique solution or infinitely many solutions, or it may be inconsistent,
that is, have no solution at all. Hence we are confronted with the questions of existence
and uniqueness of solutions. We shall answer these questions in the next section. As the



EXAMPLE 1

DEFINITION

SEC.74 Linear Independence. Rank of a Matrix. Vector Space 297

key concept for this (and other questions) we introduce the rank of a matrix. To define
rank, we first need the following concepts, which are of general importance.

Linear Independence and Dependence of Vectors

Given any set of m vectors acq,, -+ -, ¢y, (With the same number of components), a linear
combination of these vectors is an expression of the form

C18qy + Coapy +  * -+ gy,
where ¢y, ¢y, - - -, c,,, are any scalars. Now consider the equation
ey €18y + Colg) t ° *  F Cpamy = 0.

Clearly, this vector equation (1) holds if we choose all c;’s zero, because then it becomes
0 = 0. If this is the only m-tuple of scalars for which (1) holds, then our vectors
Ay, * **, Ay are said to form a linearly independent set or, more briefly, we call them
linearly independent. Otherwise, if (1) also holds with scalars not all zero, we call these
vectors linearly dependent, because then we can express (at least) one of them as a
linear combination of the others. For instance, if (1) holds with, say, ¢; # 0, we can
solve (1) for a:

a = kza(z) et kma(m) where kj = —'Cj/cl.

(Some k;’s may be zero. Or even all of them, namely, if a4, = 0.)

Why is this important? Well, in the case of linear dependence we can get rid of some
of the vectors until we arrive at a linearly independent set that is optimal to work with
because it is smallest possible in the sense that it consists only of the “really essential”
vectors, which can no longer be expressed linearly in terms of each other. This motivates
the idea of a “basis” used in various contexts, notably later in our present section.

Linear Independence and Dependence

The three vectors
apn=[ 3 0 2 2]
agy=[-6 42 24 54
ag, =[ 21 -21 0 —15]

are linearly dependent because

1 _
6agy ~ 3a) — ag, = 0.

Although this is easily checked (do it!), it is not so easy to discover. However, a systematic method for finding
out about linear independence and dependence follows below.

The first two of the three vectors are linearly independent because ¢1a¢y t coacy = 0 implies ¢y = 0 (from
the second components) and then ¢; = 0 (from any other component of ay,). |

Rank of a Matrix

The rank of a matrix A is the maximum number of linearly independent row vectors
of A. It is denoted by rank A.
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Further important properties will result from the basic

Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent
column vectors of A.

Hence A and its transpose A" have the same rank.

In this proof we write simply “rows” and “columns” for row and column vectors. Let
A be an m X n matrix of rank A = r. Then by definition of rank, A has r linearly
independent rows which we denote by Vay * * * 5 Ve (regardless of their position in A),
and all the rows ag), * * -+, a,,, of A are linear combinations of those, say,

Ay = Vo) T CpVey T+ Ve
A2) = CaVay T CoViey T+ oV
3) . )
Amy) = CmaVay T CmaVey T °* * + CpupVir

These are vector equations for rows. To switch to columns, we write (3) in terms of

components as n such systems, withk = 1, - - -, n,
Qi = C11V1x T CioUg T+ ¢+ 1, U0
Aol = Co1V1x T CoglUgy + -+ + ¢y
“4)
A = Cpalig T+ Cmalgi + - + ComrUric

and collect components in columns. Indeed, we can write (4) as

aix C11 Ci2 Cir
sy Co1 Cag Cor
(5) SR & e | . e kO
Ak Cm1 Cm2 Cmr
where k = 1, -+ -, n. Now the vector on the left is the kth column vector of A. We see

that each of these 7 columns is a linear combination of the same 7 columns on the right.
Hence A cannot have more linearly independent columns than rows, whose number is
rank A = r. Now rows of A are columns of the transpose AT. For AT our conclusion is
that AT cannot have more linearly independent columns than rows, so that A cannot have
more linearly independent rows than columns. Together, the number of linearly
independent columns of A must be r, the rank of A. This completes the proof. H

Illustration of Theorem 3

The matrix in (2) has rank 2. From Example 3 we see that the first two row vectors are linearly independent
and by “working backward” we can verify that Row 3 = 6 Row 1 —1 Row 2. Similarly, the first two columns
are linearly independent, and by reducing the last matrix in Example 3 by columns we find that

Column 3 = £ Column 1 + £ Column 2 and Column 4 = £ Column 1 + £ Column 2. H
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EXAMPLE 2

THEOREM 1

EXAMPLE 3

THEOREM 2

Our further discussion will show that the rank of a matrix is an important key concept for
understanding general properties of matrices and linear systems of equations.

Rank
The matrix

3 0 2 2
) A=|-6 42 24 54

has rank 2, because Example 1 shows that the first two row vectors are linearly independent, whereas all three
row vectors are linearly dependent.
Note further that rank A = 0 if and only if A = 0. This follows directly from the definition. |

We call a matrix A, row-equivalent to a matrix A, if A; can be obtained from A, by
(finitely many!) elementary row operations.

Now the maximum number of linearly independent row vectors of a matrix does not
change if we change the order of rows or multiply a row by an nonzero ¢ or take a linear
combination by adding a multiple of a row to another row. This proves that rank is
invariant under elementary row operations:

Row-Equivalent Matrices

Row-equivalent matrices have the same rank.

Hence we can determine the rank of a matrix by reduction to row-echelon form
(Sec. 7.3) and then see the rank directly.

Determination of Rank

For the matrix in Example 2 we obtain successively

[ 3 0 2 2
A=|-6 42 24 54 (given)
L 21 -21 0 —15
3 0 2 27
0 42 28 58 Row 2 + 2 Row 1
L 0 —21 —14 -29] Row3 —7Rowl
[ 3 0 2 27]
0 42 28 58
L O 0 0 0] Row3 + % Row?2 |

Since rank is defined in terms of two vectors, we immediately have the useful

Linear Independence and Dependence of Vectors

p vectors with n components each are linearly independent if the matrix with these
vectors as row vectors has rank p, but they are linearly dependent if that rank is
less than p.

ray) (4o Acpy [ ]
Acs -} Ae) — ok 1Cas | = Jank A

(; ) = 4 A oAyt Ag) ‘)ﬁMK :() .
\6\(;”7") K d(’m) 4,%) : L 407, )4
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Combining Theorems 2 and 3 we obtain

Linear Dependence of Vectors

p vectors with n < p components are always linearly dependent.

The matrix A with those p vectors as row vectors has p rows and n < p columns; hence by
Theorem 3 it has rank A = n < p, which implies linear dependence by Theorem 2. |

Vector Space

The following related concepts are of general interest in linear algebra. In the present
context they provide a clarification of essential properties of matrices and their role in
connection with linear systems.

A vector space is a (nonempty) set V of vectors such that with any two vectors a and
b in V all their linear combinations @a + B8b (a, B8 any real numbers) are elements of V,
and these vectors satisfy the laws (3) and (4) in Sec. 7.1 (written in lowercase letters a,
b, u, - - -, which is our notation for vectors). (This definition is presently sufficient.
General vector spaces will be discussed in Sec. 7.9.)

The maximum number of linearly independent vectors in V is called the dimension of
V and is denoted by dim V. Here we assume the dimension to be finite; infinite dimension
will be defined in Sec. 7.9.

A linearly independent set in V consisting of a maximum possible number of vectors
in Vis called a basis for V. Thus the number of vectors of a basis for V equals dim V.

The set of all linear combinations of given vectors ay, = * *, ¢y With the same
number of components is called the span of these vectors. Obviously, a span is a vector
space. W Vv

By a subspace of a vector space V we mean a nonempty subset of V (including V itself)
that forms itself a vector space with respect to the two algebraic operations (addition and
scalar multiplication) defined for the vectors of V.

Vector Space, Dimension, Basis
The span of the three vectors in Example 1 is a vector space of dimension 2, and a basis is ay), acg), for instance,

or a¢yy, Az) et B

We further note the simple

Vector Space R”

The vector space R™ consisting of all vectors with n components (n real numbers)
has dimension n.

A basis of n vectors is aq, = [1 0 -++ 0, agp =0 1 0 -~ 0],
a(n):[o <o 0 1} H

In the case of a matrix A we call the span of the row vectors the row space of A and the
span of the column vectors the column space of A.



SEC. 7.4 Linear Independence. Rank of a Matrix. Vector Space 301

Now, Theorem 3 shows that a matrix A has as many linearly independent rows as
columns. By the definition of dimension, their number is the dimension of the row space
or the column space of A. This proves

: THEOREM 6 Row Space and Column Space
. 5 n The row space and the column space of a matrix A have the same dimension, equal
/(ZA):: E)(éﬂ [ to rank A.
fr=3
/{; ﬁl Finally, for a given matrix A the solution set of the homogeneous system Ax = 0 is a
vector space, called the null space of A, and its dimension is called the nullity of A. In
L(/ U € )(/CA ) i the next section we motivate and prove the basic relation

7A2n N (6) rank A + nullity A = Number of columns of A.
/4(4%4“[5’75):02/4“*@/(’”:0 = o&c(+-re/{/\(A)%/{[(A)fci«_rMJﬁCL
' "PROBEEM SET 7.4 . - . ,of K?'

RANK, ROW SPACE, COLUMN SPACE [t 2 3 4
Find the rank and a basis for the row space and for the 2 3 4 5
column space. Hint. Row-reduce the matrix and its 10.
transpose. (You may omit obvious factors from the vectors 3 4 9 6
of thgi:_se bases.) 4 5 6 4
1 -2 8 2 5
F 2 4 8 16
1 0 0 2. 116 -6 29
16 8 4 2
| =3 6 4 0o -7 11.
_ 4 8 16 2
0 -2 1 3 _
a b L2 16 8 4
3.1 4 0 7 4 |
b a c -
5 s 5 s Mo 0 7 1
ro 3 4 1 1 4] TH LU
5./]-3 0 -5 6.1 a 1 75 02
-4 5 g% o L0 2 0
[8 0 4 I =2 3 =4 13-20| LINEAR INDEPENDENCE
0 2 0 2 -3 4 —1 Are the following sets of vectors linearly independent?
7. 8. (Show the details.)
4 0 2 374 1 -2 1303 =2 0 4,50 0 1,[~6 1 0 1],
L0 4 0 4 -1 2 -3 2 0 0 3]
4.1 1 0L[1 0 0,11 1 1
[-1 0 3 0 [ 1, [ 1, [ 1
15.06 0 3 1 4 21,0 -1 2 7 0 51,
0 5 8 —-37 [12 3 0 -19 8 -11]
9. 5 g 7 0 16. [3 4 7L,[2 0 3],[8 2 3LI5 5 6]
17. [02 12 53 28 1.6],
L0 —37 0 37 [43 34 09 20 -43]

%

Jreh 74
20d. 2K 22 ~2y
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18. [3 2 1L,[0 0 0, [4 3 6] 25. If the row vectors of a square matrix are linearly
19.[1 1 1, [% 11 %], [2 11 %}’ independent, so are the column vectors, and
[L 11 1] conversely.
6 7
20. [i 52 3 4,12 3 4 51,3 4 5 6 26. Givg examples showing that the ranl.c of a product of
matrices cannot exceed the rank of either factor.
4 5 6 7]
21. CAS Experiment. Rank. (a) Show experimentally VECTOR SPACES
that the n X n matrix A = [az] withay, =j+ k=1  1gthe given set of vectors a vector space? (Give reason.) If
has rank 2 for any n. (Problem 20 shows n = 4.) Try your answer is yes, determine the dimension and find a
to prove it. basis. (vy, vg, - - - denote components.)

(b) Do the same when a;, = j + k + c, where c is 27. All vectors in R® such that v; + vy = 0
any positive integer.

(c) What is rank A if a;, = 29*%~29 Try to find other
large matrices of low rank independent of .

28. All vectors in R* such that 2vy, — 3v, = k
29. All vectors in R® with v; Z 0, v, = —4ug
30. All vectors in R? with v; = v,

22-26|  PROPERTIES OF RANK 31. All vectors in R? with 4v; + vg = 0, 30, = v,

AND CONSEQUENCES

i 4 1 = = = =
Show the following. 32. All vectors in R* with vy — vy = 0, v3 = 5v;, v, = 0

22. rank B'A” = rank AB. (Note the order!) 33. All vectors in R™ with o] = 1forj=1,---,n
23. rank A = rank B does nor imply rank A® = rank BZ. 34. All ordered quadruples of positive real numbers
(Give a counterexample.) 35. All vectors in R® with v, = 2vy = 3vz = 4v, = Sv;
24. If A is not square, either the row vectors or the column 36. All vectors in R* with
vectors of A are linearly dependent. 3v; —v3=0,2v; + 3v, — 4v, =0

/1.5 Solutions of Linear System:s:
Existence, Uniqueness

Rank as just defined gives complete information about existence, uniqueness, and general
structure of the solution set of linear systems as follows.

A linear system of equations in # unknowns has a unique solution if the coefficient matrix
and the augmented matrix have the same rank 7, and infinitely many solution if that common
rank is less than 7. The system has no solution if those two matrices have different rank.

To state this precisely and prove it, we shall use the (generally important) concept of
a submatrix of A. By this we mean any matrix obtained from A by omitting some rows
or columns (or both). By definition this includes A itself (as the matrix obtained by omitting
no rows or columns); this is practical.

THEOREM 1 Fundamental Theorem for Linear Systems
(a) Existence. A linear system of m equations in n unknowns Xip™ o Xy
ap;Xy + apxs + 00+ ag,x, = by
do1Xq + a22x2 + - 4+ aznxn = bz
)
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K = [Cd)‘“ Cen) b)

\

bm

b=
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—
is consistent, that is, has solutions, if and only if the coefficient matrix A and the
augmented matrix A have the same rank. Here,

{ ———

[_ 3 - <OMns £74
11

A1n Fan o Ain by

|
I
I
|
I
|

Am1

by,

L amn_ _aml Amn

(b) Uniqueness. The system (1) has

precisely one solution if and onlv if this
common rank r of A and A equals n.

</7\ < 9\‘;'“{/(#‘,{‘»{@;7) |
(c) Infinitely many solutions. If this common rank r is less than n; the system
(1) has infinitely many solutions. All of these solutions are obtained by determining . _

r suitable unknowns (whose submatrix of coefficients must have rank r) in terms of

the remaining n — r unknowns, to which arbitrary values can be assigned. (See
Example 3 in Sec. 7.3.)

(d) Gauss elimination (Sec. 7.3). If solutions exist, they can all be obtained by
the Gauss elimination. (This method will automatically reveal whether or not
solutions exist; see Sec. 1:3¢)

(a) We can write the system (1) in vector form Ax =
A C(n) Of A:

b or in terms of column vectors
c(l)a .

@

CyXs T CxyXp + -0 + Coyx, = b

A is obtained by augmenting A by a single column b. Hence, by Theorem 3 in Sec. 7.4,
rank A equals rank A or rank A + 1. Now if (1) has a solution x, then (2) shows that b
must be a linear combination of those column vectors, so that A and A have the same
maximum number of linearly independent column vectors and thus the same rank.

Conversely, if rank A = rank A, then b must be a linear combination of the column
vectors of A, say,

(2%) b= acq, + -+ aen,

since otherwise rank A = rank A + 1. But (2*) means that (1) has a solution, namely,
X1 = @1, """, X, = @y, as can be seen by comparing (2%) and 2).

(b) If rank A = n, the n column vectors in (2) are linearly independent by Theorem 3
in Sec. 7.4. We claim that then the representation (2) of b is unique because otherwise

@
This would imply (take all terms to the left, with a minus sign)
o/
&)

andx; — % =0, ,x, — %, = 0 by linear independence. But this means that the
scalars x;, - - -, x,, in (2) are uniquely determined, that is, the solution of (1) is unique.

If thesilidio of @ 4o urigun , Ahen S0 <np/ras

Sk Touheain s o Wi iR,

(s By e, = R 0

R o, Ry =5 S etheimds, %) nplics
gy Rl A anffrinds CRR

AN~ jw & 7%’3 9/4427[2*574\.'7;!#’\ G/ﬁ/v

,7‘%!9 _/Wy///{ir /’T/MJL reak A = Hak A =2

u

L

VQQ}?JV AR 7(3 c/—e-);c
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(c) If rank A = rank A = r < n, then by Theorem 3 in Sec. 7.4 there is a linearly
independent set K of r column vectors of A such that the other n — r column vectors of
A are linear combinations of those vectors. We renumber the columns and unknowns,
denoting the renumbered quantities by , so that {€q, * * -+, €45} is that linearly independent
set K. Then (2) becomes

: &+ ik )&‘{, RN +%)):92 = 8yt 8kt Epinfp o0 F Conin = b,
C2

Cor1y * * 7 Gy are linear combinations of the vectors of K, and so are the vectors
ri1€ei1y 0 05 £nCony- Expressing these vectors in terms of the vectors of K and collecting
terms, we can thus write the system in the form

3 S enn By = b
with y; = %; + B;, where B; results from the n — r terms €,y 1)%,4+1, * * * 5 €ty here,
j=1,---,r. Since the system has a solution, there are yy, - - -, y, satisfying (3). These
scalars are unique since K is linearly independent. Choosing %,.1, * * * , %, fixes the §3;
and corresponding £; = y; — B;, wherej = 1,-- -, r. v\’t%»/r\ ) oH

(d) This was discussed in Sec. 7.3 and is restated here as a reminder. B

The theorem is illustrated in Sec. 7.3. In Example 2 there is a unique solution since
rank A = rank A = n = 3 (as can be seen from the last matrix in the example). In Example
3 we have rank A = rank A = 2 < n = 4 and can choose x5 and x, arbitrarily. In Example
4 there is no solution because rank A = 2 < rank A = 3.

Homogeneous Linear System

Recall from Sec. 7.3 that a linear system (1) is called homogeneous if all the b;’s are
zero, and nonhomogeneous if one or several b;’s are not zero. For the homogeneous
system we obtain from the Fundamental Theorem the following results.

Homogeneous Linear System

A homogeneous linear system

appxy T auaxe + 00t oagx, =0
91Xy + AooXo + -+ + agyx, =0
C))
ApiX1 + QpaXe + + apixi =0
always has the trivial solution x; = 0, - - -, x,, = 0. Nontrivial solutions exist if and

only if rank A < n. If rank A = r < n, these solutions, together with x = 0, form a
vector space (see Sec. 7.4) of dimension n — r, called the solution space of (4).

In particular, if Xy and X, are solution vectors of (4), then X = ¢;Xqy + CoX(g)
with any scalars ¢, and cq is a solution vector of (4). (This does not hold for
nonhomogeneous systems. Also, the term solution space is used for homogeneous
systems only.)

o X1+ Co Xt Gy Xn=e

ao/(é’/uL
g =

A |

({lk

Ry +
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PROOF The first proposition can be seen directly from the system. It agrees with the fact that

/l/‘( A ) _?: b = 0 implies that rank A = rank A, so that a homogeneous system is always consistent.
If rank A = n, the trivial solution is the unique solution according to (b) in Theorem 1.

{ é n /4 5 s If rank A < n, there are nontrivial solutions according to (c) in Theorem 1. The solutions

[ X /< = } " form a vector space because if X(;, and Xy, are any of them, then Axy, = 0, Axy) = 0,
A gand this implies A(Xq) + X)) = AXy + AXy = 0 as well as A(cxq,) = cAxq, = 0,

¢ MA ) where ¢ is arbitrary. If rank A = r < n, Theorem 1 (c) implies that we can choose

%f} n — r suitable unknowns, call them QTH, ‘* ', Xy, in an arbitrary fashion, and every
) solution is obtained in this way. Hence a basis for the solution space, briefly called a basis

)(Cﬂ—) € /"[ CA ) of solutions of (4),is y5, * * *, ¥n—p, Where the basis vector y, j is obtained by choosing
/)?HJ- = 1 and the other/x\rﬂ, 5700 ,Qn zero; the corresponding first r components of this

\U/ solution vector are then determined. Thus the solution space of (4) has dimension n — r.

NA) )
'

This proves Theorem 2.

The solution space of (4) is also called the null space of A because Ax = 0 for every x

—_ 0 in the solution space of (4). Its dimension is called the nullity of A. Hence Theorem 2
U/ states that ~ n-K
Q) raok A + nullity A = n

< Xyt GQra) € LJCA) ‘

where 7 is the number of unknowns (number of columns of A).
Furthermore, by the definition of rank we have rank A = m in (4). Hence if m < n,
then rank A < n. By Theorem 2 this gives the practically important

R R RGO REES Homogeneous Linear System with Fewer Equations Than Unknowns

A homogeneous linear system with fewer equations than unknowns has always
n ‘k>’0 nontrivial solutions.

Nonhomogeneous Linear Systems

The characterization of all solutions of the linear system (1) is now quite simple, as follows.

e . = THEOREM-4 Nonhomogeneous Linear System

If a nonhomogeneous linear system (1) is consistent, then all of its solutions are
obtained as

(6) X = Xo + Xp,

where Xq is any (fixed) solution of (1) and x;, runs through all the solutions of the
corresponding homogeneous system (4).

PROOF The difference x, = x — X, of any two solutions of (1) is a solution of (4) because
Ax, = A(X — Xg) = AX — Ax, = b—b = 0. Since x is any solution of (1), we get all
the solutions of (1) if in (6) we take any solution X, of (1) and let x;, vary throughout the
solution space of (4). ]
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7.6 For Reference:
Second- and Third-Order Determinants

X PROOF

We explain these determinants separately from the general theory in Sec. 7.7 because they
will be sufficient for many of our examples and problems. Since this section is for
reference, go on to the next section, consulting this material only when needed.

A determinant of second order is denoted and defined by

ai ays

§)) D = detA = = 4y1092 — Q120271

asy Qg

So here we have bars (whereas a matrix has brackets).
Cramer’s rule for solving linear systems of two equations in two unknowns

(@) ay1xq + agpxs = by

2
(®)  agixy + agexy = by
is
by ap
- by asy _ biazy — a19by
€T " p D :
3)
a;n by
_ 1821 by _ aiby — biag;
=" " p D
with D as in (1), provided
D # 0.

The value D = 0 appears for inconsistent nonhomogeneous systems and for homogeneous
systems with nontrivial solutions.

We prove (3). To eliminate x,, multiply (2a) by ass and (2b) by —a;5 and add,
(11822 — G12091)X1 = b1y — G13bs.

Similarly, to eliminate x;, multiply (2a) by —as; and (2b) by a,; and add,
(a11a92 — A12a21) X2 = a11bs — b1as;.

Assuming that D = ay1a99 — ay5d2; # 0, dividing, and writing the right sides of these
two equations as determinants, we obtain (3). H
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EXAMPLE 1 Cramer’s Rule for Two Equations

12 3 4 12
dx; + 3x9 = 12 -8 5 2 -8 -
then x1=———=ﬁ=6, Xg = =—5§=—4. |
2x; + Sxp = —8 4 3 14 14 3 14
2.5 2 5
Third-Order Determinants
A determinant of third order can be defined by
d13 412 433
Qo dag 12 di3 d12 i3
W=, G Gl =g : ~ as + az
& Q32 dss d3z2 dsg doz Qg3

d31 Qzg agg

Note the following. The signs on the right are + — +. Each of the three terms on the
right is an entry in the first column of D times its minor, that is, the second-order
determinant obtained from D by deleting the row and column of that entry; thus, for a,;
delete the first row and first column, and so on.

If we write out the minors in (4), we obtain

@4*) D= Q11022033 — Q11093039 T A91013035 — Q21012033 + A31015093 — a310130s2.

Cramer’s Rule for Linear Systems of Three Equations

X1 T ai9Xs + ay3x3 = by
5) Ap1X1 T AgaXy + aAggxs = by

ag1X1 t azaXy + agzxs = by
is

6) - 2 =plls (D #0
( XS D Xo = s X3 = D )
with the determinant D of the system given by (4) and
by aps a3 a;; by a3 a1 aip by
Dy = by  ay oz | Dy = |ay; by Gg3|» D3 = |ay azs by
by agy ass az; by as asy  azg by

Note that Dy, D,, D5 are obtained by replacing Columns 1, 2, 3, respectively, by the
column of the right sides of (5).

Cramer’s rule (6) can be derived by eliminations similar to those for (3), but it also
follows from the general case (Theorem 4) in the next section.
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7.7 Determinants. Cramer’s Rule

Determinants were originally introduced for solving linear systems. Although impractical
in computations, they have important engineering applications in eigenvalue problems
(Sec. 8.1), differential equations, vector algebra (Sec. 9.3), and so on. They can be
introduced in several equivalent ways. Our definition is particularly practical in connection
with linear systems.

A determinant of order 7 is a scalar associated with an # X n (hence square!) matrix
A = [aj], which is written

ai 12 to Ain
Q21 Qoz S don
' (1) D = detA =
an1 An2 . Ann
and is defined for n = 1 by
(2) D=ay
and for n = 2 by
(3a) ‘ D = anCiy + a;pCis + -+ + ainCpn. - (=1, 2,-++,0rn)
or
(3b) D= ayCip + @Cop +°** + @u3Crpe (k=1,2,---,0rn)
Here,

Ci = (1Y "My,

and Mjy, is a determinant of order n — 1, namely, the determinant of the submatrix of A
obtained from A by omitting the row and column of the entry ajy, that is, the jth row and
the kth column.

In this way, D is defined in terms of n determinants of order n — 1, each of which is,
in turn, defined in terms of n — 1 determinants of order n — 2, and so on; we finally
arrive at second-order determinants, in which those submatrices consist of single entries
whose determinant is defined to be the entry itself.

From the definition it follows that we may expand D by any row or column, that is,
choose in (3) the entries in any row or column, similarly when expanding the C;.’s in (3),
and so on.

This definition is unambiguous, that is, yields the same value for D no matter which
columns or rows we choose in expanding. A proof is given in App. 4.
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EXAMPLE 1

A: A// Y, CS«;
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Terms used in connection with determinants are taken from matrices. In D we have n?
entries a, also n rows and n columns, and a main diagonal on which ay;, ag, * * -, anp
stand. Two terms are new:

M, is called the minor of a;, in D, and Cy, the cofactor of a;; in D.
For later use we note that (3) may also be written in terms of minors

(4a) D=2 (—1)"*a; My, (j=1,2---,0rn)
k=1
mn
(4b) D = > (—1)Y**a; My, (k=1,2,--,o0rn).
y JKg
i=1

Minors and Cofactors of a Third-Order Determinant

In (4) of the previous section the minors and cofactors of the entries in the first column can be seen directly.
For the entries in the second row the minors are

4 Mon = a2 a3 Mo = a11 a13 M a1 a12
G aha 21 = , 22 © ’ 23 =
l‘/ 4"2'? a32 as3 as1 ass asy asz
a 2 4} 2 A 73 and the cofactors are Coy = —Msy, Cog = +Mss, and Coz = —Mog. Similarly for the third row—write these
b / —~ down yourself. And verify that the signs in Cj, form a checkerboard pattern
+ - 4+
— + -—
+ -+ B
EXAMPLE 2 Expansions of a Third-Order Determinant
1 3 0
6 4 2 4 2 6
D=| 2 6 4] =1 -3 +0
0 2 -1 2 -1 0
-1 0 2
=112-0)—-3@4 +4 + 00 +6) = —12.
This is the expansion by the first row. The expansion by the third column is
2 6 1 1 3
D=0 —4 +2 =0—-12+0=—12,
-1 0 -1 2 6
Verify that the other four expansions also give the value —12. |
EXAMPLE 3 Determinant of a Triangular Matrix
=3 0 0
4
6 4 0l =-3 =-3-4-5=—60.
2
-1 2 5

Inspired by this, can you formulate a little theorem on determinants of triangular matrices? Of diagonal
matrices?

Rermarks *

det A= T ) oy o
C‘)éw\ A4 = S‘Z&R—ewcxz_ 27[ .hec.:mc/ _5\;(/5*(,4,[/;@ o "\/5@”74(}5\)‘&97
OJC {,2,~, %, Tha + Sgn & Aesent %#Ak"ﬁamlty\-e][

ppRhEA 0N AR thes smpwenca. & even, TheXLmber s

Hhe rumber of Patrs An A a ,ﬂa/ﬁ& Wamle/u/a,«ﬁczc/(; a Smallon

Anlersi'em Ao
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General Properties of Determinants

To obtain the value of a determinant (1), we can first simplify it systematically by
elementary row operations, similar to those for matrices in Sec. 7.3, as follows.

THEOREM 1 Behavior of an nth-Order Determinant under Elementary Row Operations

(a) Interchange of two rows multiplies the value of the determinant by —1.

(b) Addition of a multiple of a row to another row does not alter the value of the
determinant.

(¢) Multiplication of a row by a nonzero constant ¢ multiplies the value of the
determinant by c. (This holds also when ¢ = 0, but gives no longer an elementary
row operation.)

1] :
PROOF (a) By induction. The statement holds for n = 2 because
a b c d
= ad — bc, but = bc — ad.
c d a b n=z3

/\/aa)_f ule */m,* { We now make the induction hypothesis that (a) holds for determinants of ordern — 1 = 2
| 4 izt Fa OFMJ&: n} Ao LA and §how that it then ho.lds for determinants of order n. Let D be of order n. Let. E be
| obtained from D by the interchange of two rows. Expand D and E by a row that is not

fc;— n= ﬁ\<‘—‘ DA ) one of those interchanged, call it the jth row. Then by (4a),
n : n
) D =2 (1) auMje E =2 (—1)""azNy
k=1 k=1

where Ny is obtained from the minor My, of ay in D by the interchange of those two
1 ‘ ~ rows which have been interchanged in D (and which Ny, must both contain because we
7‘3/} J/’edwe%‘t f {expand by another row!). Now these minors are of order n — 1. Hence the induction

i A,, MC }ar e ,Q—HI (:‘?? hypothesis applies and gives N, = —]V{J;k' Thus E = —D by (5).

i (b) Add ¢ times Row i to Row j. Let D be the new determinant. Its entries in Row j are
I l-f)) fA’U‘-Cc) aj. + cay. If we expand D by this Row j, we see that we can write it as D = D, + cD,,
and 2 kit TLD where D; = D has in Row j the a;,, whereas Dy has in that Row j the a;, from the addition.

Hence D, has a;, in both Row i and Row j. Interchanging these two rows gges D,, back,
but on the other hand it gives —Dy by (a). Together Dy = —Dy, =0,sothat D =D, = D.

(c) Expand the determinant by the row that has been multiplied.

CAUTION! det (cA) = c¢™det A (not c det A). Explain why. |

EXAMPLE 4 Evaluation of Determinants by Reduction to Triangular Form

Because of Theorem 1 we may evaluate determinants by reduction to triangular form, as in the Gauss elimination
for a matrix. For instance (with the blue explanations always referring to the preceding determinant)

| ! g : | .
T o S I R T
e ’ : / e
. f}/-, S 6/}7 (f\/f/‘t‘.cﬂxw)-_»@jf({%d’ik)" "<6‘77+C@€1’>
K ' .
7R, (. LQ\”/ e ; Aman

2 0 -4 6
4 5 1 0 :
D= 4, = &in
0 2 6 -1 A
-3 8 9 1 ;
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THEOREM 2

PROOF

THEOREM 3

2 0 —4 6

0 5 9 -12 Row 2 — 2 Row 1

0 2 6 -1

0 8 3 10 Row 4 + 1.5 Row 1

2 0 -4 6

0 5 9 -12

0 0 24 3.8 Row 3 — 0.4 Row 2

0 0 -—-114 292 Row 4 — 1.6 Row 2

2 0 -4 6

0 5 9 -12

0 0 2.4 3.8

0 0 -0 47.25 Row 4 + 4.75 Row 3
=2+5-24-4725 = 1134. 4]

Further Properties of nth-Order Determinants

(@)—(¢) in Theorem 1 hold also for columns.
(d) Transposition leaves the value of a determinant unaltered.
(e) A zero row or column renders the value of a determinant zero.

- (®) Proportional rows or columns render the value of a determinant zero. In
particular, a determinant with two identical rows or columns has the value zero.

(a)—(e) follow directly from the fact that a determinant can be expanded by any row
column. In (d), transposition is defined as for matrices, that is, the jth row becomes the
Jth column of the transpose.

(f) If Row j = ¢ times Row i, then D = ¢D, where D, has Row j = Row i. Hence an
interchange of these rows reproduces D;, but it also gives —D; by Theorem 1(a). Hence
Dy = 0and D = ¢D; = 0. Similarly for columns. B

It is quite remarkable that the important concept of the rank of a matrix A, which is the
maximum number of linearly independent row or column vectors of A (see Sec. 7.4), can
be related to determinants. Here we may assume that rank A > 0 because the only matrices
with rank O are the zero matrices (see Sec. 7.4).

Rank in Terms of Determinants

Anm X n matrix A = [a;] has rank r Z 1 if and only if A has an r X r submatrix
with nonzero determinant, whereas every square submatrix with more than r rows
that A has (or does not have!) has determinant equal to zero. '

In particular, if A is square, n X n, it has rank n if and only if

det A # 0.
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The key idea is that elementary row operations (Sec. 7.3) alter neither rank (by Theorem
1 in Sec. 7.4) nor the property of a determinant being nonzero (by Theorem 1 in this
section). The echelon form A of A (see Sec. 7.3) has r nonzero row vectors (which are
the first » row vectors) if and only if rank A = r. Let R be the r X r submatrix in the left
upper corner of A (so that the entries of R are in both the first r rows and r columns of A).
Now R is triangular, with all diagonal entries 7;; nonzero. Thus, det R =11 Ty # 0.
Also det R # 0 for the corresponding r X r submatrix R of A because R results from R
by elementary row operations. Similarly, det S = O for any square submatrix S of » + 1
or more rows perhaps contained in A because the corresponding submatrix S of A must
contain a row of zeros (otherwise we would have rank A = r + 1), so that detS = 0 by
Theorem 2. This proves the theorem for an m X n matrix.

In particular, if A is square, n X n, then rank A = » if and only if A contains an n X n
submatrix with nonzero determinant. But the only such submatrix can be A itself, hence
det A # 0. |

Cramer’s Rule

Theorem 3 opens the way to the classical solution formula for linear systems known as
Cramer’s rule?, which gives solutions as quotients of determinants. Cramer’s rule is not
practical in computations (for which the methods in Secs. 7.3 and 20.1-20.3 are suitable),
but is of theoretical interest in differential equations (Secs. 2.10, 3.3) and other theories
that have engineering applications.

Cramer’s Theorem (Solution of Linear Systems by Determinants)

(a) If a linear system of n equations in the same number of unknowns xy, * * * , X,
ajiXy T A19X9 P O A1 Xy, = bl
91X, st Qg9oXo e QonXy = bz
(6)
oy G Xo o A @i — by

has a nonzero coefficient determinant D = det A, the system has precisely one
solution. This solution is given by the formulas

D, Dy
7 i —iaTETTT L 2 = did et 5
™ o Xy D 2% D |

= Cramer’s rule
F 5 ( )

where Dy, is the determinant obtained from D by replacing in D the kth column by
the column with the entries by, - * - ,b,,.

(b) Hence if the system (6) is homogeneous and D # 0, it has only the trivial
solution x; = 0, x5 =0, * -, x, = 0. If D = 0, the homogeneous system also has
nontrivial solutions.

2GABRIEL CRAMER (1704-1752), Swiss mathematician.

HW
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21.

22,

23.

24.

r 8 4
-2 -1
L 6 3

M 2 1 0

13 -13 12

L-3 5 -4

[04 0 -24 30
12 06 0 03

Lo 12 12 0

TEAM PROJECT. Geometrical Applications:
Curves and Surfaces Through Given Points. The
idea is to get an equation from the vanishing of
the determinant of a homogeneous linear system as the
condition for a nontrivial solution in Cramer’s theorem.
We explain the trick for obtaining such a system for
the case of a line L through two given points P;: (x;, Y1)
and Py: (xg, y). The unknown line is ax + by = —c, -
say. We write it as ax + by + c+1 = 0. To get a
nontrivial solution a, b, c, the determinant of the
“coefficients” x, y, 1 must be zero. The system is

ax+by +c¢-1=0 (Line L)
(12)  axy +by; +¢c-1 =0 (P,onl)
axg + byy +c+-1 =0 (PyonlL).

/.8 Inverse of a Matrix.
Gauss—Jordan Elimination

In this section we consider square matrices exclusively.
The inverse of an n X n matrix A = [aj] is denoted by A™! and is an n X n matrix

such that -

@)

25.

26.

315

(a) Line through two points. Derive from D = 0 in
(12) the familiar formula

XX Y ™ N

=2
(b) Plane. Find the analog of (12) for a plane through
three given points. Apply it when the points are (1, 1, 1),
(3, 2,06), (5,0,5).
(¢) Circle. Find a similar formula for a circle in the
plane through three given points. Find and sketch the
circle through (2, 6), (6, 4), (7, 1).
(d) Sphere. Find the analog of the formula in (c) for
a sphere through four given points. Find the sphere
through (0, 0, 5), (4, 0, 1), (0, 4, 1), (0,.0, —3) by this
formula or by inspection.
(e) General conic section. Find a formula for a
general conic section (the vanishing of a determinant
of 6th order). Try it out for a quadratic parabola and
for a more general conic section of your own choice.
WRITING PROJECT. General Properties of
Determinants. Illustrate each statement in Theorems
1 and 2 with an example of your choice.
CAS EXPERIMENT. Determinant of Zeros and
Ones. Find the value of the determinant of the n X n
matrix A,, with main diagonal entries all 0 and all others
1. Try to find a formula for this. Try to prove it by
induction. Interpret A5 and A, as “incidence matrices”
(as in Problem Set 7.1 but without the minuses) of a
triangle and a tetrahedron, respectively; similarly for
an “n-simplex”, having n vertices and n(n — 1)/2 edges
(and spanning R™ 1, n =56, - ).

X1 T Xg

AAl=AA =1

where I is the n X n unit matrix (see Sec. 7.2).
If A has an inverse, then A is called a nonsingular matrix. If A has no inverse, then

A is called a singular matrix.

If A has an inverse, the inverse is unique.
Indeed, if both B and C are inverses of A, then AB =TI and CA = I, so that we obtain

the uniqueness from

B =1B = (CA)B = C(AB) = CI = C.
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We prove next that A has an inverse (is nonsingular) if and only if it has maximum
possible rank 7. The proof will also show that Ax = b implies x = A™'b provided A™*
exists, and will thus give a motivation for the inverse as well as a relation to linear systems.
(But this will not give a good method of solving Ax = b numerically because the Gauss
elimination in Sec. 7.3 requires fewer computations.)

THEOREM 1 Existence of the Inverse

The inverse A™* of an n X n matrix A exists if and only if rank A = n, thus (by
Theorem 3, Sec. 7.7) if and only if det A # 0. Hence A is nonsingular if tank A = n,
and is singular if rank A < n.

PROOF LetAbeagiven n X n matrix and consider the linear system
) Ax = b.

<ﬁ) If the inverse A™! exists, then multiplication from the left on both sides and use of (1)

gives At X, X m‘»rfy <.
A"lAx =x = A"h. 7x¢’>l A(K )<)-—O

= X5 = =0 Jun f e
? that (2) has a unique solution x. Hence A must have rank 7 by the Fundamentalo Z
T

gorem in Sec. 7.5.
Gé:;) Conversely, let rank A = n. Then by the same theorem, the system (2) has a unique
solution X for any b. Now the back substitution following the Gauss elimination (Sec. 7.3)
shows that the components x; of x are linear combinations of those of b. Hence we can

write
e By -
7 with B to be determined. Substitution into (2) gives

Ax = A(Bb) = (ABb=Cb=b (C = AB)

for any b. Hence C = AB = I, the unit matrix. Similarly, if we substitute (2) into (3) we
get

x = Bb = B(Ax) = (BA)x

for any X (and b = Ax). Hence BA = I. Together, B = A™! exists. B

SWILHELM JORDAN (1842-1899), German mathematician and geodesist. [See American Mathematical
Monthly 94 (1987), 130-142.]

We do not recommend it as a method for solving systems of linear equations, since the number of operations
in addition to those of the Gauss elimination is larger than that for back substitution, which the Gauss—Jordan
elimination avoids. See also Sec. 20.1.
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Determination of the Inverse
by the Gauss—Jordan Method

For the practical determination of the inverse A~! of a nonsingular #n X n matrix A we
can use the Gauss elimination (Sec. 7.3), actually a variant of it, called the Gauss-Jordan
Q ,av-t elimination® (footnote of p- 316). The idea of the method is as follows.
’ Using A, we form 7 linear systems

A X =T AXq) = eqy, bedtes AXe) = e

;9 . where eq), ---, e, are the columns of the n X 7z unit matrix I; thus,
7L°"‘ X ) S IS O S SRS eic. These are n vector equations
: in the unknown vectors Xy " * 5 Xy We combine them into a single matrix equation
QAW‘ AX = I, with the unknown matrix X having the columns x,, - - - s Xny-
Correspondingly, we combine the 7 augmented matrices [A e, - - -, [A  eq,]into

X = [EI ) = XC’" )J one n X 2n “augmented matrix” A = [A T]. Now multiplication of AX = I by A™!
from the left gives X = A=1[ = A~1 Hence, to solve AX = I for X, we can apply the

" Gauss elimination to A = [A I]. This gives a matrix of the form [U H] with upper

\U/ triangular U because the Gauss elimination triangularizes systems. The Gauss—Jordan
method reduces U by further elementary row operations to diagonal form, in fact to the

unit matrix L This is done by eliminating the entries of U above the main diagonal and

i — - making the diagonal entries all 1 by multiplication (see the example below). Of course,
(A%~ AXny]=T

the method operates on the entire matrix [U H], transforming H into some matrix K,

hence the entire [U H] to [I K]. This is the “augmented matrix” of IX = K. Now
-1

IX = X = A™1, as shown before. By comparison, K = A~ 5o that we can read

directly from [I K].
[r kJ

The following example illustrates the practical details of the method,”

/ ;
-1 1 2 ; I)(::/(
o\

EXAMPLE 1 Inverse of a Matrix. Gauss~jordan Elimination (

RS & & Logasibs

Determine the inverse A~ of

Solution. we apply the Gauss elimination (Sec. 7.3) to the following n X 2n = 3 X 6 matrix, w : UE __—
always refers to the previous matrix.

-1 1 2 1 0 o
A O=| 3 -1 1 0 1 o0
EJ- CA IJ L-1 3 4 0 0 1
=t I 73 1 0 o
= E. [Ae(l) - em_l 0 2 7 3 0 0. RowziiRewl
L 0 2 2 -1 0 1 Row 3 — Row |
= e, ... & 1 1 0 o
[E;A EJ ) E Cqmj I
0 2 7 3 1 o0
= [I kj N, =g g Row 3 — Row 2
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This is [U H] as produced by the Gauss elimination. Now follow the additional Gauss—Jordan steps, reducing
U to I, that is, to diagonal form with entries 1 on the main diagonal.

i -2 | -1 0 07" * "= Row 1
0 W 35 15 05 0| 05Row2
Lo o 1 08 02 -02]  —02Row3
M -1 0 0.6 04 —-047 Row 1 + 2 Row 3
0o 1 o0 -13 =02 07| Row2— 3.5Row3
Lo o 1 08 02 —02]
R ~07 02 03] Rowl+Row?2
0 1 o0 e
Lo o 1 Q8 i D]

The last three columns constitute A™. Check:

-1 1 277-07 02 03 1 0 0
3 -1 1[]-13 —-02 o07|=|0 1 o
-1 3 4 08 02 —02 0 0 1
Hence AA™! = L Similarly, A™%A = L. 2|

Useful Formulas for Inverses

The explicit formula (4) in the following theorem is often useful in theoretical studies (as
opposed to computing inverses). In fact, the special case n = 2 occurs quite frequently in
geometrical and other applications.

Inverse of a Matrix

The inverse of a nonsingular n X n matrix A = [aj] is given by

Cn Cay Cr1
_1 1 = 1 Ciz Cos Crz

@ RS S :
N Cln C2n T C'rm

where Cj, is the cofactor of aji, in det A (see Sec. 7.7). (CAUTION! Note well that
in A™%, the cofactor Cjx occupies the same place as a; (not aji) does in A.)
In particular, the inverse of

@) A l:all amJ i A1 1 [: daz _alz]
= is = .
a1 [250) det A —dasy an
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PROOF We denote the right side of (4) by B and show that BA = L. We first write
®) BA = G = [gi]

and then show that G = I. Now by the definition of matrix multiplication and because of
the form of B in (4), we obtain (CAUTION! Cg, not Cys)

Csk 1

n
(6) g = 9oL e n (@1 Cix + -+ 4y Crp)-

Now (9) and (10) in Sec. 7.7 show that the sum (- - -) on the right is D = det A when
! = k, and is zero when [ # k. Hence

1
Ser = detA = 1,

det A
L]
g =0 (#hk),
In particular, for n = 2 we have in (4) in the first row Cy; = ag9, C3; = —a;p and in
the second row Cyy = —asq, Cas = ay;. This gives (4%). |

EXAMPLE 2 Inverse of a2 X 2 Matrix

3001 1 4 -1 04 —0.17
A= : ATl = — =1 H
2 4 1012 3 -02 03

EXAMPLE 3 Further lllustration of Theorem 2

Using (4), find the inverse of

-1 1 2
A= 3 -1 1
=1 3 4

Solution. We obtain detA = —1(=7) — 1-13 + 2-8 = 10, and in (4),

] 1 1 2 1 2
Ci1 = l = -7, Cop = — =12, C3 = =3
3 4 3 4 -1 1
3 1 =1 2 -1 2
Ciz=— | =13, Ca= =-2 Cs2 =~ =7,
-1 4 -1 4 3 1
3 -1 -1 1 -1 1
Ciz = =3, Cos. 5 = =2 Ca3 = =-2,
-1 3 -1 3 |
so that by (4), in agreement with Example 1,
07 02 03 ,
Al=|-13 -02 07]. 2

08 02 =02

Remals

In particular, if we choose as new numbe i
. : s the entries
ay, » py Of the Ith column of D (where [ # k), we have a new determinant 1) which

has twice the column [a s & i

1 . @], once as its /th column, and once as its kth
because of the replacement. Hence D = 0 by Theorem 2 (f). If we now expand D by the
column that has been replaced (the kth column), we thus obtain y

(10) allCIk o ale2k E oo ot anlan =0 (l #+ k)
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PROOF

EXAMPLE 4

PROOF
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Diagonal matrices A = [a;;], a5 = 0 when j # k, have an inverse if and only if all
a; # 0. Then A~ is diagonal, too, with entries 1/ayy, - * *, Vay,.

For a diagonal matrix we have in (4)

C Qoo a 1
11 - 2. nn = ete. B
D Qa11Q92 * * * Qup ai
Inverse of a Diagonal Matrix
Let
-0.5 0 0
A= 0 4 0
0 0 1
Then the inverse is
-2 0 0
A'=1 0 025 0 ]
0 0 1

Products can be inverted by taking the inverse of each factor and multiplying these
inverses in reverse order,

@ ACY L=C 1AL
Hence for more than two factors,

®) QGBI SRR A

The idea is to start from (1) for AC instead of A, that is, ACAC)™! = 1, and multiply
it on both sides from the left, first by A~1 which because of A7IA = I gives

AT'ACAO)™ = C(AO)™
=AM=A"

and then multiplying this on both sides from the left, this time by C~! and by using
cic=1,

CICACI = A1 =C A
This proves (7), and from it, (8) follows by induction. i
We also note that the inverse of the inverse is the given matrix, as you may prove,

)] A™H™1 = Al
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THEOREM 3

PROOF

Unusual Properties of Matrix Multiplication.
Cancellation Laws

Section 7.2 contains warnings that some properties of matrix multiplication deviate from
those for numbers, and we are now able to explain the restricted validity of the so-called
cancellation laws [2.] and [3.] below, using rank and inverse, concepts that were not yet
available in Sec. 7.2. The deviations from the usual are of great practical importance and
must be carefully observed. They are as follows.

[1.] Matrix multiplication is not commutative, that is, in general we have

AB # BA.
[2.] AB = 0 does not generally imply A = 0 or B = 0 (or BA = 0); for example,
1 1 -1 1 0 0
[2 2}[ 1 —1}2[0 o]
[3.] AC = AD does not generally imply C = D (even when A # 0).

Complete answers to [2.] and [3.] are contained in the following theorem.

Cancellation Laws
Let A, B, C be n X n matrices. Then:
(@) Ifrank A = nand AB = AC, then B = C.

(b) If rank A = n, then AB = 0 implies B = 0. Hence if AB = 0, but A # 0
as well as B # 0, then rank A < n and rank B < n.

(¢) If A is singular, so are BA and AB.

(a) The inverse of A exists by Theorem 1. Multiplication by A™! from the left gives
A~'AB = A7'AC, hence B = C.

(b) Let rank A = n. Then A~ ! exists, and AB = 0 implies A7IAB = B = 0. Similarly
when rank B = n. This implies the second statement in (b).

(cy) Rank A < n by Theorem 1. Hence Ax = 0 has nontrivial solutions by Theorem 2
in Sec. 7.5. Multiplication by B shows that these solutions are also solutions of BAx = 0,
so that rank (BA) < n by Theorem 2 in Sec. 7.5 and BA is singular by Theorem 1.

(c5) AT is singular by Theorem 2(d) in Sec. 7.7. Hence BTAT is singular by part (c,),
and is equal to (AB)" by (10d) in Sec. 7.2. Hence AB is singular by Theorem 2(d) in
Sec. 7.7. 0

Determinants of Matrix Products

The determinant of a matrix product AB or BA can be written as the product of the
determinants of the factors, and it is interesting that det AB = det BA, although AB # BA
in general. The corresponding formula (10) is needed occasionally and can be obtained
by Gauss-Jordan elimination (see Example 1) and from the theorem just proved.
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THEOREM 4 Determinant of a Product of Matrices

For any n X n matrices A and B,

(10) det (AB) = det (BA) = det A det B.

PROOF If A or B is singular, so are AB and BA by Theorem 3(c), and (10) reduces to 0 = 0by
Theorem 3 in Sec. 7.7.
Now let A and B be nonsingular. Then we can reduce A to a diagonal matrix A = [ay]
by Gauss—Jordan steps. Under these operations, det A retains its value, by Theorem 1 in
Sec. 7.7, () and (b) [not (c)] except perhaps for a sign reversal in row interchanging when
pivoting. But the same operations reduce AB to AB with the same effect on det (AB).
L] Hence it remains to prove (10) for AB; written out,
ary 0 e 0 b bis bin
A 0 dao R 0 b1 bas ban
AB =
0 0 &rm bnl an bnn
dy1b11 dy1biz dy1b1n,
. dgoba1 d2ba2 d2ban
aAnn b nl &nnb n2 éinnb nn

We now take the determinant det (AB). On the right we can take out a factor ay; from

the first Tow, dyy from the second, - * -, d,,, from the nth. But this product Ay1 Q2 * * " Opn
equals det A because A is diagonal. The remaining determinant is det B. This proves (10)
for det (AB), and the proof for det (BA) follows by the same idea. [

This completes our discussion of linear systems (Secs. 7.3-7.8). Section 7.9 on vector
spaces and linear transformations is optional. Numeric methods are discussed in Secs.
20.1-20.4, which are independent of other sections on numerics.

1-12

INVERSE

Find the inverse by Gauss—Jordan [or by (4*) if n = 2] or
state that it does not exist. Check by using (1).

1.20 4.64 06 08
1. 2.
0.50 3.60 0.8 —0.6

HW

—
pm——

»/’M. N

. |

cos 26
—sin 26

sin 29]
cos 26

B

W= Wiy Wi

Wiy Wi Wi

Wiy W= Wi
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3 -1 1 r 20 —11 10 13. (Triangular matrix) Is the inverse of a triangular
matrix always triangular (as in Prob. 7)? Give reason.

9 e = 6 =7 6. | —160 61 =55 14. (Rotation) Give an application of the matrix in Prob.
e 50 2 .. 55 —21 19 3 that makes the form of its inverse obvious.
15. (Inverse of the square) Verify (A%)™! = (A™1)2 for
M1 0 0] M1 2 5 " A in Prob. 5.
7. 12 1 0 8. 1o -1 ) 16. Prove the formula in Prob. 15.

17. (Inverse of the transpose) Verify AN = @Ay
LS 4 1] L2 % 11 for A in Prob. 5.

_ _ _ 18. Prove the formula in Prob. 17.

19. (Inverse of the inverse) Prove that (A™1)™! = A.

9. |1 0 0 10. | O 0 4 20. (Row interchange) Same question as in Prob. 14 for
the matrix in Prob. 9.

L0 0 1 L2 0 0
& 21-23| EXPLICIT FORMULA (4) FOR THE
M1 2 5 ro1 2 -9 INVERSE
Formula (4) is generally not very practical. To understand
11. [0 -1 2 12. | -2 -4 19 its use, apply it:
12 4 10 0o -1 9 21. To Prob. 9. 22. To Prob. 4. 23. To Prob. 7.

1.9 Vector Spaces, Inner Product Spaces,
Linear Transformations Optional

In Sec. 7.4 we have seen that special vector spaces arise quite naturally in connection
with matrices and linear systems, that their elements, called vectors, satisfy rules quite
similar to those for numbers [(3) and (4) in Sec. 7.1], and that they are often obtained as
spans (sets of linear combinations) of finitely many given vectors. Each such vector has
n real numbers as its components. Look this up before going on.

Now if we take all vectors with »n real numbers as components (“real vectors”), we
obtain the very important real n-dimensional vector space R™. This is a standard name
and notation. Thus, each vector in R™ is an ordered n-tuple of real numbers.

Particular cases are R2, the space of all ordered pairs (“vectors in the plane”) and R3,
the space of all ordered triples (“‘vectors in 3-space”). These vectors have wide applications
in mechanics, geometry, and calculus that are basic to the engineer and physicist.

Similarly, if we take all ordered n-tuples of complex numbers as vectors and complex
numbers as scalars, we obtain the complex vector space C™, which we shall consider in
Sec. 8.5.

This is not all. There are other sets of practical interest (sets of matrices, functions,
transformations, etc.) for which addition and scalar multiplication can be defined in a
natural way so that they form a “vector space”. This suggests to create from the “concrete
model” R™ the “abstract concept” of a “real vector space” V by taking the basic properties
(3) and (4) in Sec. 7.1 as axioms. These axioms guarantee that one obtains a useful and
applicable theory of those more general situations. Note that each axiom expresses a simple
property of R™ or, as a matter of fact, of R3. Selecting good axioms needs experience and
is a process of trial and error that often extends over a long period of time.
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DEFINITION Real Vector Space

A nonempty set V of elements a, b, - - - is called a real vector space (or real linear
space), and these elements are called vectors (regardless of their nature, which will
come out from the context or will be left arbitrary) if in V there are defined two
algebraic operations (called vector addition and scalar multiplication) as follows.

L. Vector addition associates with every pair of vectors a and b of V a unique
vector of V, called the sum of a and b and denoted by a + b, such that the following
axioms are satisfied.

1.1 Commutativity. For any two vectors a and b of V,

a+b=>b+a.
1.2 Associativity. For any three vectors u, v, W of V,

@+v)+w=u+(v+w (written u + v + W).

1.3 There is a unique vector in V, called the zero vector and denoted by 0, such
that for every ain V,

a+0=a.

1.4 For every a in V there is a unique vector in V that is denoted by —a and is
such that

a+ (—a) =0.

IL. Scalar multiplication. The real numbers are called scalars. Scalar
multiplication associates with every a in V and every scalar c a unique vector of V,
called the product of ¢ and a and denoted by ca (or ac) such that the following
axioms are satisfied.

IL.1 Distributivity. For every scalar ¢ and vectors a andbinV,

c(a+ b)=ca+ch.
1.2 Distributivity. For all scalars ¢ and k and every a inV,
(c + k)a = ca + ka.

113 Associativity. For all scalars ¢ and k and every a mnV,

I

c(ka) = (ck)a (written cka).

I1.4 For every ain'V,

la=a

& ' N

A complex vector space is obtained if, instead of real numbers, we take complex numbers
as scalars.



SEC.7.9 Vector Spaces, Inner Product Spaces, Linear Transformations Optional 325

EXAMPLE 1

EXAMPLE 2

Basic concepts related to the concept of a vector space are defined as in Sec. 7.4.
A linear combination of vectors agy, - - -, aq, in a vector space V is an
expression

ciaqy T+ Cpaom (c1,* * *, cyy, any scalars).

These vectors form a linearly independent set (briefly, they are called linearly
independent) if

(1 Clagy t+ 0+ g, =0

implies that ¢; = 0, - - -, ¢,,, = 0. Otherwise, if (1) also holds with scalars not all zero,
the vectors are called linearly dependent.

Note that (1) with m = 1 is ca = 0 and shows that a single vector a is linearly
independent if and only if a # 0.

V has dimension #, or is n-dimensional, if it contains a linearly independent set of n
vectors, whereas any set of more than »n vectors in V is linearly dependent. That set of n
linearly independent vectors is called a basis for V. Then every vector in V can be written

as a linear combination of the basis vectors; for a given basis, this representation is unique
(see Prob. 14).

Vector Space of Matrices

The real 2 X 2 matrices form a four-dimensional real vector space. A basis is

1 0 0 1 0 0 0 0
By = , Bip= , Ba = , B =
0 0 0 0 1 0 0 1

because any 2 X 2 matrix A = [a;] has a unique representation A = a11By; + a;2B1a + ap1Bay + aoaBao.
Similarly, the real m X n matrices with fixed m and n form an mn-dimensional vector space. What is the
dimension of the vector space of all 3 X 3 skew-symmetric matrices? Can you find a basis? |

Vector Space of Polynomials

The set of all constant, linear, and quadratic polynomials in x together is a vector space of dimension 3 with
basis {1, x, x2} under the usual addition and multiplication by real numbers because these two operations give
polynomials not exceeding degree 2. What is the dimension of the vector space of all polynomials of degree
not exceeding a given fixed n? Can you find a basis? |

If a vector space V contains a linearly independent set of n vectors for every n, no matter
how large, then V is called infinite dimensional, as opposed to a finite dimensional
(n-dimensional) vector space just defined. An example of an infinite dimensional vector

“space is the space of all continuous functions on some interval [a, b] of the x-axis, as we

mention without proof.

Inner Product Spaces

If a and b are vectors in R, regarded as column vectors, we can form the product a'b.
This is a 1 X 1 matrix, which we can identify with its single entry, that is, with a number.
This product is called the inner product or dot product of a and b. Other notations for
it are (a, b) and ab. Thus b

1

T - e i o ) —
alb=(a,b)=ab=1[a a,]| : |=2ab=ab + -+ a.b,

=1
b, :
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We now extend this concept to general real vector spaces by taking basic properties of
(a, b) as axioms for an “abstract inner product” (a, b) as follows.

Real Inner Product Space

A real vector space V is called a real inner product space (or real pre-Hilbert*
space) if it has the following property. With every pair of vectors a and b in V there
is associated a real number, which is denoted by (a, b) and is called the inner
product of a and b, such that the following axioms are satisfied.

1. For all scalars ¢; and g, and all vectors a, b, ¢ in V,

(g12 + gsb, ©) = g1(a, ¢) + ga(b, ©) (Linearity).

II. For all vectors a and bin V,

(a, b) = (b, a) (Symmetry).
III. For every ain V,

(a,a) =0, ~
(Positive-definiteness).
(a,a) =0 ifandonlyif a=10

Vectors whose inner product is zero are called orthogonal.
The length or norm of a vector in V is defined by

2 ‘ lall = V@,a) (=0).

A vector of norm 1 is called a unit vector.
From these axioms and from (2) one can derive the basic inequality

A3 l(a, b)| = llall [Ib]| (Cauchy-Schwarz® inequality).
From this follows

(€)) la + bl =]lall + |Ibl| (Triangle inequality).
A simple direct calculation gives

%) H:; +b||2+[a- b|| 2 =2(|lal|® + 1) (Parallelogram equality).

4DAVID HILBERT (1862-1943), great German mathematician, taught at K6nigsberg and Géttingen and was
the creator of the famous Gottingen mathematical school. He is known for his basic work in algebra, the calculus
of variations, integral equations, functional analysis, and mathematical logic. His “Foundations of Geometry”
helped the axiomatic method to gain general recognition. His famous 23 problems (presented in 1900 at the
International Congress of Mathematicians in Paris) considerably influenced the development of modern
mathematics.

If V is finite dimensional, it is actually a so-called Hilbert space; see Ref. [GR7], p. 73, listed in App. .

S5HERMANN AMANDUS SCHWARZ (1843-1921). German mathematician, known by his work in complex
analysis (conformal mapping) and differential geometry. For Cauchy see Sec. 2.5.
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EXAMPLE 3

EXAMPLE 4

n-Dimensional Euclidean Space

R™ with the inner product
©® @b) = a'b = aby + - + azby,

(where both a and b are column vectors) is called the n-dimensional Euclidean space and is denoted by E™
or again simply by R™. Axioms I-III hold, as direct calculation shows. Equation (2) gives the “Euclidean norm”

2 lall = V&) = Vala= Va2 + - + a2 &

An Inner Product for Functions. Function Space

The set of all real-valued continuous functions f(x), g(x), - * * on a given interval &« = x = f is a real vector
space under the usual addition of functions and multiplication by scalars (real numbers). On this “function
space” we can define an inner product by the integral

B
® 3 (£, & =f F(x) g(x) dx.

Axioms I-III can be verified by direct calculation. Equation (2) gives the norm

B
® Ifl =vGE. =/ f f)® d. @

Our examples give a first impression of the great generality of the abstract concepts of
vector spaces and inner product spaces. Further details belong to more advanced courses
(on functional analysis, meaning abstract modern analysis; see Ref. [GR7] listed in App. 1)
and cannot be discussed here. Instead we now take up a related topic where matrices play
a central role.

Linear Transformations

Let X and Y be any vector spaces. To each vector X in X we assign a unique vector y in
Y. Then we say that a mapping (or transformation or operator) of X into Y is given.
Such a mapping is denoted by a capital letter, say F. The vector y in ¥ assigned to a vector
x in X is called the image of x under F and is denoted by F(x) [or Fx, without parentheses].

F is called a linear mapping or linear transformation if for all vectors v and x in X

and scalars c,

F(v + x) = F(v) + F(x)
(10)

F(cx) = cF(x).

Linear Transformation of Space R” into Space R™

From now on we let X = R™ and Y = R™. Then any real m X n matrix A = [a;;] gives
a transformation of R™ into R™,

(1) y = Ax.

Since A(u + x) = Au + Ax and A(cx) = cAX, this transformation is linear.

We show that, conversely, every linear transformation F of R™ into R™ can be given
in terms of an m X n matrix A, after a basis for R™ and a basis for R™ have been chosen.
This can be proved as follows.
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Let eqy, - - -, €, be any basis for R™. Then every x in R™ has a unique representation
X = X1€q) T 0+ xp€0p.
Since F is linear, this representation implies for the image F(x):
F(x) = F(xieqy + * * + + X,€0) = x,F(€y) + -+ - + X F(eq).

Hence F is uniquely determined by the images of the vectors of a basis for R™. We now
choose for R™ the “standard basis”

1] ro7 707

0 1 0

(12) e =101, e =101, U, emy = | 0
Lo L0 L1

where e, has its jth component equal to 1 and all others 0. We show that we can now
determine an m X n matrix A = [ay;] such that for every x in R” and image y = F(x) in R™,

y = F(x) = Ax.

Indeed, from the image y¥ = F(e ) of e, we get the condition

M.,

yi azy fait Ain 1
@
Y2 Aasy tas & Aoy 0
@ — —
y poc
@
LYm | L Am1 s Amn_| _0__

from which we can determine the first column of A, namely a;; = y{¥, ay; = y$, - - -,
m1 = Y. Similarly, from the image of e., we get the second column of A, and so on.
This completes the proof. ]
We say that A represents F, or is a representation of F, with respect to the bases for R™
and R™. Quite generally, the purpose of a “representation” is the replacement of one
object of study by another object whose properties are more readily apparent.

In three-dimensional Euclidean space E® the standard basis is usually written e = i,
€2 = J, €3 = K. Thus,

1 : 0 0
13 i=(0], =11, k=10
0 0 1
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These are the three unit vectors in the positive directions of the axes of the Cartesian
coordinate system in space, that is, the usual coordinate system with the same scale of
measurement on the three mutually perpendicular coordinate axes.

EXAMPLE 5 Linear Transformations

Interpreted as transformations of Cartesian coordinates in the plane, the matrices

I:O 1} [1 0:1 [ -1 O:l i:a O}

1 ol” Lo —1l’ o 117 Lo 1

represent a reflection in the line x5 = x;, a reflection in the x;-axis, a reflection in the origin, and a stretch
(when a > 1, or a contraction when 0 < a < 1) in the x;-direction, respectively. B

EXAMPLE 6 Linear Transformations

Our discussion preceding Example 5 is simpler than it may look at first sight. To see this, find A representing
§ the linear transformation that maps (xq, xp) onto (2x; — 5xg, 3x; + 4x3).

Solution. Obviously, the transformation is
Y1 = 2x3 — Sxp
Yo = 3x1 + 4x5.

From this we can directly see that the matrix is
L P T b
A= . Check: = = . =
3 4 Yo 3 4] |xs 3x1 + 4xo
If A in (11) is square, n X n, then (11) maps R™ into R™. If this A is nonsingular, so that
A~! exists (see Sec. 7.8), then multiplication of (11) by A™* from the left and use of

A~'A = I gives the inverse transformation

(14) x=A"y.

It maps every y = y, onto that x, which by (11) is mapped onto y,. The inverse of a linear
transformation is itself linear, because it is given by a matrix, as (14) shows.

1-12| VECTOR SPACES 6. All vectors in R* with vy + vy = 0,03 — v, = 1
(Additional problems in Problem Set 7.4.) 7. All skew-symmetric 2 X 2 matrices
Is the given set (taken with the usual addition and scalar 8. All n X n matrices A with fixed n and det A = 0
multiplication) a vector space? (Give a reason.) If your 9. All polynomials with positive coefficients and degree
answer is yes, find the dimension and a basis. 3 or less
1. All vectors in R® satisfying 5v; — 3v, + 2v53 = 0 10. All functions f(x) = a cosx + b sinx with any
2. All vectors in R® satisfying 2v; + 3vy — vg = O, constants a and b
vy —4vg +u3 =0 11. All functions f(x) = (ax + b)e™® with any constants
3. All 2 X 3 matrices with all entries nonnegative a and b
4. All symmetric 3 X 3 matrices 12. All 2 X 3 matrices with the second row any multiple

5. All vectors in R® with the first three components 0 of[4 0 —9]
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