CHAPTER :3 |

Higher Order Linear ODEs

In this chapter we extend the concepts and methods of Chap. 2 for linear ODEs from order
n = 2 to arbitrary order n. This will be straightforward and needs no new ideas. However,
the formulas become more involved, the variety of roots of the characteristic equation (in
Sec. 3.2) becomes much larger with increasing n, and the Wronskian plays a more
prominent role.

Prerequisite: Secs. 2.1, 2.2, 2.6, 2.7, 2.10.
References and Answers to Problems: App. 1 Part A, and App. 2.

3.1 Homogeneous Linear ODEs

Recall from Sec. 1.1 that an ODE is of nth order if the nth derivative y™ = d™y/dx™ of
the unknown function y(x) is the highest occurring derivative. Thus the ODE is of the form

d™y
Fx, v,y ,y™) =0 L
.y Dy y "
where lower order derivatives and y itself may or may not occur. Such an ODE is called
linear if it can be written

1) Y + poa @Y™V + -+ pi@)y + polx)y = ().

(For n = 2 this is (1) in Sec. 2.1 with p; = p and py = g). The coefficients py, - -, p,,_1
and the function 7 on the right are any given functions of x, and y is unknown. y™ has
coefficient 1. This is practical. We call this the standard form. (If you have p,,(x)y™,
divide by p,(x) to get this form.) An nth-order ODE that cannot be written in the form
(1) is called nonlinear.

If r(x) is identically zero, r(x) = O (zero for all x considered, usually in some open
interval I), then (1) becomes

2 Y + 1@y 4+ o+ pix)Y + pox)y =0

and is called homogeneous. If r(x) is not identically zero, then the ODE is called
nonhomogeneous. This is as in Sec. 2.1.

A solution of an nth-order (linear or nonlinear) ODE on some open interval [ is a
function y = h(x) that is defined and n times differentiable on I and is such that the ODE
becomes an identity if we replace the unknown function y and its derivatives by & and its
corresponding derivatives.
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CHAP. 3 Higher Order Linear ODEs

Homogeneous Linear ODE: Superposition Principle,
General Solution

Sections 3.1-3.2 will be devoted to homogeneous linear ODEs and Sec. 3.3 to
nonhomogeneous linear ODEs. The basic superposition or linearity principle in Sec. 2.1
extends to nth order homogeneous linear ODEs as follows.

Fundamental Theorem for the Homogeneous Linear ODE (2)

For a homogeneous linear ODE (2), sums and constant multiples of solutions on
some open interval I are again solutions on I (This does not hold for a
nonhomogeneous or nonlinear ODE!)

The proof is a simple generalization of that in Sec. 2.1 and we leave it to the student.

Our further discussion parallels and extends that for second-order ODEs in Sec. 2.1.
So we define next a general solution of (2), which will require an extension of linear
independence from 2 to n functions.

General Solution, Basis, Particular Solution

A general solution of (2) on an open interval [ is a solution of (2) on I of the form
3 Y@ = cpy1(x)t s o0 Fieu (%) (c1, * * *, ¢y arbitrary)

where yq, * - -, y, is a basis (or fundamental system) of solutions of (2) on /; that
is, these solutions are linearly independent on 7, as defined below.

A particular solution of (2) on / is obtained if we assign specific values to the
n constants ¢y, - -+, ¢, in (3).

Linear Independence and Dependence

n functions y;(x), - - -, y,(x) are called linearly independent on some interval I
where they are defined if the equation

4 ka0t oo b Bnpamy e 0 on /
implies that all k4, - - -, k,, are zero. These functions are called linearly dependent
on [ if this equation also holds on I for some ky, - - -, k,, not all zero.
(As in Secs. 1.1 and 2.1, the arbitrary constants ¢, - - -, ¢,, must sometimes be restricted
to some interval.)
If and only if y;, - - -, y,, are linearly dependent on I, we can express (at least) one of

these functions on / as a “linear combination” of the other n — 1 functions, that is, as
a sum of those functions, each multiplied by a constant (zero or not). This motivates the
term “linearly dependent.” For instance, if (4) holds with k; # 0, we can divide by k; and
express y; as the linear combination
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Note that when n = 2, these concepts reduce to those defined in Sec. 2.1.

Linear Dependence

Show that the functions y; = %2 Y2 = 5x, y3 = 2x are linearly dependent on any interval.

Solution. Y2 = Oy; + 2.5y3. This proves linear dependence on any interval. =

Linear Independence
Show that y; = x, yg = B2 y3 = x2 are linearly independent on any interval, for instance, on —1 = x = 2.
Solution. Equation (4) is kyx + kzx2 + k3x3 = 0. Taking (a) x = —1, (b) x = 1, (c) x = 2, we get

(@ —ky + kg — kg =0, (b) ky + ko + k3 = 0, (c) 2ky + 4ky + 8kg = 0.

ko = 0 from (a) + (b). Then k5 = 0 from (c) —2(b). Then ky = 0 from (b). This proves linear independence.
A better method for testing linear independence of solutions of ODEs will soon be explained. B

General Solution. Basis
Solve the fourth-order ODE
YW—5" +4y=0 (where yV = d%y/dx).

Solution. As in Sec. 2.2 we try and substitute y = ¢*. Omitting the common factor e**, we obtain the
characteristic equation

AM-s5a%+4=0.
This is'a quadratic equation in p = 22, namely,
pE=Sutd=(u= -4 =0

The roots are u = 1 and 4. Hence A = —2, —1, 1, 2. This gives four solutions. A general solution on any
interval is

¥ =17 4 cpe + cge” + cqe®

provided those four solutions are linearly independent. This is true but will be shown later. |

Initial Value Problem. Existence and Uniqueness

An initial value problem for the ODE (2) consists of (2) and  initial conditions
©) VK, Y (%) = K, L ¥ D(x) = K,,_,

with given x, in the open interval I considered, and given Ky, - - - , K,,_1.
In extension of the existence and uniqueness theorem in Sec. 2.6 we now have the following.

Existence and Uniqueness Theorem for Initial Valye Problems
=

"
If the coefficients po(x), « - -, pp—1(x) of (2) are Eontinuous on some open interval I
and xg is in I, then the initial value problem (2), (5) has a unique solution y(x) on I.

Existence is proved in Ref. [A11] in App. 1. Uniqueness can be proved by a slight
generalization of the uniqueness proof at the beginning of App. 4.
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Initial Value Problem for a Third-Order Euler—Cauchy Equation

Solve the following initial value problem on any open interval / on the positive x-axis containing x = 1.

X3y — 32" + 6xy' — 6y =0, =2 YyO=1, YO=-4

Solution. Step 1. General solution. As in Sec. 2.5 we try y = x™. By differentiation and substitution,

m m m m
m(m = 1)(m — 2)x™ = 3m(m — Dx™ + 6mx™ — 6x™ = 0. ({n, +)(m-2) (9;,_3) =o0
Dropping x"* and ordering gives m® — 6m? + 1lm — 6 = 0. If we can guess the root m = 1, we can divide
by m — 1 and find the other roots 2 and 3, thus obtaining the solutions x, x2, x%, which are linearly independent
on [ (see Example 2). [In general one shall need a root-finding method, such as Newton’s (Sec. 19.2), also
available in a CAS (Computer Algebra System).] Hence a general solution is

W = @E o czxz ar 03x3

valid on any interval 1, even when it includes x = 0 where the coefficients of the ODE divided by x° (to have
the standard form) are not continuous.

Step 2. Particular solution. The derivatives are y' = ¢; + 2cox + 3c3x2 and y” = 2¢5 + 6cgx. From this and
y and the initial conditions we get by setting x = 1

(@ y(l) =c1+ cg+ cz3= 2
() y'(1)
© y"(1) = 2cy + 6cg = —4.

c;+ 209 +3c3= 1

This is solved by Cramer’s rule (Sec. 7.6), or by elimination, which is simple, as follows. (b) — (a) gives
(d) cg + 2c¢3 = —1. Then (c) — 2(d) gives c3 = —1. Then (c) gives c5 = 1. Finally ¢; = 2 from (a).
Answer: y = 2x + *2 = x5,

Linear Independence of Solutions. Wronskian

Linear independence of solutions is crucial for obtaining general solutions. Although it
can often be seen by inspection, it would be good to have a criterion for it. Now Theorem
2 in Sec. 2.6 extends from order n = 2 to any n. This extended criterion uses the Wronskian

W of n solutions y,, * - -, ¥, defined as the nth order determinant
Y1 Yo e Yn
! ’ !
Y1 Y2 T Yn
(6) W(yb ok y’n) =
y(ln——l) yén—l) 3 5 yT(Tn i)
Note that W depends on x since y;, * * -, y,, does. The criterion states that these solutions

form a basis if and only if W is not zero; more precisely:

Linear Dependence and Independence of Solutions

f. 2eef)ise—
Let the ODE (2) have continuous coefficients po(x), * -, pp_1(x) on an open
interval I. Then n solutions yy, = * +, Yy, of (2) on I are lmearly dependent on I if

and only if their Wronskian is zero for some x = xq in I. Furthermore, if W is zero for
X = xg, then W is identically zero on 1. Hence if there is an xy in I at which W is
not zero, then yq, * * +, y,, are linearly independent on I, so that they form a basis
of solutions of (2) on 1.
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(a) Let y1, " * *, ¥, be linearly dependent solutions of (2) on /. Then, by definition, there
are constants ky, + + -, k,, not all zero, such that for all x in 7,
(7) kiyr + -+ kpy, = 0. Y,0) T
AR +
B . . . . ;.
By n 1 differentiations of (7) we obtain for all x in / % =)
kadirireestmmbelymlo- o0 :
(®) 5
fyy L+ ek y @D =0, Lyl ()()J

N, (8) is a homogeneous linear system of algebraic equations with a nontrivial solution
ky, - » kn. Hence its coefficient determinant must be zero for every x on I, by Cramer’s
theorem (Sec. 7.7). But that determinant is the Wronskian W, as we see from (6). Hence
W is zero for every x on I.

(b) Conversely, if W is zero at an x, in /, then the system (7), (8) with x = x, has a solution
T L k,*, not all zero, by the same theorem. With these constants we define the
solution y* = ky*y; + -+ -+ + k,*y, of (2) on I. By (7), (8) this solution satisfies the
initial conditions y*(xg) = 0, * - -, y*™~P(x,) = 0. But another solution satisfying the
same conditions is y = 0. Hence y* = y by Theorem 2, which applies since the coefficients
of (2) are continuous. Together, y* = ky*y; + - - - + k,,* y,, = 0 on [. This means linear
dependence of yj, -+ ,y,onl

(oUW is zero at an xq in I, we have linear dependence by (b) and then W = 0 by (a).
Hence if W is not zero at an x; in /, the solutions y;, - - -, y,, must be linearly independent
on .

Basis, Wronskian

We can now prove that in Example 3 we do have a basis. In evaluating W, pull out the exponential functions
columnwise. In the result, subtract Column 1 from Columns 2, 3, 4 (without changing Column 1). Then
expand by Row 1. In the resulting third-order determinant, subtract Column 1 from Cé)lumn 2 and expand
It by Row 2: —206 X X 2K
the result by X L xexe'xe

e 2% e F e* % 1 1 1 1 \/‘
1 3
—2e7  _oTE T 2% -2 -1 1 2
W= . il =|-3 =3 ol =72. B
4e™ % e % e* 4% 4 1 1 4
7 9 16
—8¢TI % T g -8 -1 1 8

A General Solution of (2) Includes All Solutions

Let us first show that general solutions always exist. Indeed, Theorem 3 in Sec. 2.6 extends
ag follows.

Existence of a General Solution frt' R Ce@ica

If the coefficients po(x), * * *, pp—1(x) of (2) are continuous on some open interval
], then (2) has a general solution on I.
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We choose any fixed x, in I. By Theorem 2 the ODE (2) has n solutions yq, * - *, y,,,

where y; satisfies initial conditions (5) with K;_; = 1 and all other K’s equal to zero. Their f
Wronskian at x, equals 1. For instance, When n = 3, then y;(xg) = 1, ya(xg) = 1,

y3(xo) = 1, and the other initial values are zero. Thus, as claimed,

Y1(xo) Ya(xo) Y3(xo) 1 0 0
W(y1(x0), ¥2(x0), ¥3(x0)) = }’1(360) yz'(xo) yé(xo) =10 1 0| = 1.
Yy '1'(x0) 34 lzl (*xo) y g(xo) 0 0 1

Hence for any n those solutions yy, - - -, y,, are linearly independent on 7, by Theorem 3.
They form a basison /, and y = c;y; + - - - + ¢, v, is a general solution of (2) on /. &

We can now prove the basic property that from a general solution of (2) every solution
of (2) can be obtained by choosing suitable values of the arbitrary constants. Hence an
nth order linear ODE has no singular solutions, that is, solutions that cannot be obtained
from a general solution.

General Solution Includes All Solutions
aSe_—
Ifthe ODE (2) has Zom‘muous coefﬁczents DPo(X), * * *, Pr_1(x) on some open interval

I, then every solution'y = Y(x) of (2) on I is of the form

©)) Yx) = Ciyi(0) + - - - + Cpyn(®)
where yy, - - -, ¥, is a basis of solutions of (2) on I and Cy, * - - , C,, are suitable
constants.
Let Y be a given solution and y = ¢;y; + - - * + ¢,,),, a general solution of (2)on 1. We
choose any fixed x, in 7 and show that we can find constants cy, - - -, ¢, for which y and

its first » — 1 derivatives agree with ¥ and its corresponding derivatives at x,. That is,
we should have at x = x,

Y5
cyir+ o+ ey, =Y ‘//CXo) S 7@‘7\) C( T )
Gis s G, i ! ! =)o
(10) : v ‘ f /
=D ‘ -1 -1 ) @ 116G 4 4'
C1y1 +oe ey =Y . 7{ Cxo) ———— 77, OC‘)J ~ (Xo))
But this is a linear system of equations in the unknowns ¢y, * - -, Cn. Its coefficient
determinant is the Wronskian W of y,, - - -, y,, at x,. Since Y1, * Y form a basis, they
are linearly independent, so that W is not zero by Theorem 3. Hence (10) has a unique
solution ¢; = Cy, - - -, ¢, = C,, (by Cramer’s theorem in Sec. 7.7). With these values

we obtain the particular solution
PRSI e ¢ - 2 G yplc)

on /. Equation (10) shows that y* and its first n — 1 derivatives agree at Xo with ¥ and
its corresponding derivatives. That is, y* and Y satisfy at x, the same initial conditions.



SEC. 3.2 Homogeneous Linear ODEs with Constant Coefficients m

The uniqueness theorem (Theorem 2) now implies that y* = Y on I. This proves the
theorem. |

This completes our theory of the homogeneous linear ODE (2). Note that for n = 2 it is
identical with that in Sec. 2.6. This had to be expected.

TYPICAL EXAMPLES OF BASES 11. x2, x|x|, x @x 1/x, 0
To get a feel for higher order ODEs, show that the given 13. sin 2x, sin x, cos x 14. cos? x, sin? x, cos 2x
ngt\ix(JmS are solutions and form a basis on any interval. 15. tan x, cot x, 1 16. (x — D2, (x + )2, x
s¢ Wronskizns. (In Prob..2, % >0 17. sin x, sin L x 18. cosh x, sinh x, cosh? x
1.1, x, x2, x3 yW =20 .
5 1’ - a 8. o 19. cos® x, sin® x, 27
N B e S ot x%y" — 3xy y =
3. &%, xe®, x%e®, y" =3y + 3y —y=0 TEAM PROJECT. Linear Independence and
4. ¢2% cos x, €2* sin x, e~2% cos x, ¢~2% sin x, Dependence. (a) Investigate the given question about
yi¥ — 6y” + 25y = 0. a set S of functions on an interval I. Give an example.
5.1, x, cos 3x, sin 3x, YV 4+ 9y" =0 Lo ete

(1) If S contains the zero function, can S be linearly

6. TEAM PROJECT. General Properties of Solutions independent?
of Linear ODEs. These properties are important in
obtaining new solutions from given ones. Therefore
extend Team Project 34 in Sec. 2.2 to nth-order ODEs.
Explore statements on sums and multiples of solutions
of (1) and (2) systematically and with proofs.

Recognize clearly that no new ideas are needed in this .(4) If § is linearly independent on /, is it linearly
extension from n = 2 to general 7. independent on a subinterval J?

(2) If S is linearly independent on a subinterval J of 1,
is it linearly independent on I?

(3) If S is linearly dependent on a subinterval J of I,
is it linearly dependent on I?

(5) If S is linearly dependent on I, is it linearly

7-19] LINEAR INDEPENDENCE independent on a subinterval J?

AND DEFENDENCE (6) If S is linearly dependent on 7, and if T contains S,
Are the given functions linearly independent or dependent is T linearly dependent on I?

e )
on the positive x-axis? (Give a reason.) (b) In what cases can you use the Wronskian for
x - . . .
7.1, €% e 8.x+1,x+2,x testing linear independence? By what other means can
9. In x, In x2, (In x)2 10. ¢*, ¢~ %, sinh 2x you perform such a test?

3.2 Homogeneous Linear ODEs with Constant
Coefficients

In this section we consider nth-order homogeneous linear ODEs with constant coefficients,
which we write in the form

@® s T o R e Ll

where y™ = d"y/dx", etc. We shall see that this extends the case n = 2 discussed in
Sec. 2.2. Substituting y = ¥ (as in Sec. 2.2), we obtain the characteristic equation

2 A, AR S e g gy =0
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of (1). If A is a root of (2), then y = ¢* is a solution of (1). To find these roots, you may
need a numeric method, such as Newton’s in Sec. 19.2, also available on the usual CASs.
For general n there are more cases than for n = 2. We shall discuss all of them and
illustrate them with typical examples.

Distinct Real Roots

If all the n roots Ay, - - -, A, of (2) are real and different, then the » solutions
3) e T

constitute a basis for all x. The corresponding general solution of (1) is

x

)] y=cie + -+ ¢
Indeed, the solutions in (3) are linearly independent, as we shall see after the example.

Distinct Real Roots
Solve the ODE y" — 2y" — y" + 2y = 0.

Solution. The characteristic equation is A% —2)%2 — A + 2 = 0. It has the roots —1, 1, 2; if you find one
of them by inspection, you can obtain the other two roots by solving a quadratic equation (explain!). The
corresponding general solution (4) is y = c1¢™% + cpe” + c3e>%.

Linear Independence of (3). Students familiar with nth-order determinants may verify
that by pulling ‘out all exponential functions from the columns and denoting their product
by E, thus E = exp [(A; + - -+ + A,)x], the Wronskian of the solutions in (3) becomes

eMT et E e en®
AeM® Age™?® e Ay etn®
W = A12e)\1x )\226)\23(: o )\nZE)\nx
X)lfb—le/\lx szfz,—le/\gx .. /\;'Lb—le)\nx
©)
1 1 o s 1
% X A
=E| A 12 )\22 e An2
n—1 n—1 . n—1
A Az An

The exponential function E is never zero. Hence W = 0 if and only if the determinant on
the right is zero. This is a so-called Vandermonde or Cauchy determinant®. It can be
shown that it equals

'ALEXANDRE THEOPHILE VANDERMONDE (1735-1796), French mathematician, who worked on
solution of equations by determinants. For CAUCHY see footnote 4, in Sec. 2.5.
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(6) (_ l)n(n—l)/zv

where V is the product of all factors A; — A, with j < k (= n); for instance, when n = 3
we get =V = —(A; — A9)(A; — A3)(Ay — Ag). This shows that the Wronskian is not zero
if and only if all the 7 roots of (2) are different and thus gives the following.

Basis

Solutions y; = e'\lx, S il of (1) (with any real or complex A;’s) form a

basis of solutions of (1) on any open interval if and only if all n roots of (2) are
different.

Actually, Theorem 1 is an important special case of our more general result obtained
from (5) and (6):

Linear Independence

Any number of solutions of (1) of the form &** are linearly independent on an open
interval 1 if and only if the corresponding A are all different.

Simple Complex Roots

If complex roots occur, they must occur in conjugate pairs since the coefficients of (1)
are real. Thus, if A = y + iw is a simple root of (2), so is the conjugate A = y — iw, and
two corresponding linearly independent solutions are (as in Sec. 2.2, except for notation)

y1 = €”" cos wx, Yo = €”* sin wx.

Simple Complex Roots. Initial Value Problem

Solve the initial value problem

"

y" =" +100y" - 100y = 0, ¥(0) = 4, y'(0) = 11, y"(0) = —299.

Solution. The characteristic equation is A% — 22 + 100A — 100 = 0. It has the root 1, as can perhaps be
seen by inspection. Then division by A — 1 shows that the other roots are =10i. Hence a general solution and
its derivatives (obtained by differentiation) are

y = c1¢” + A cos 10x + B sin 10x,

c1¢” — 10A sin 10x + 10B cos 10x,

<
1

n

y" = c1¢¥ — 1004 cos 10x — 100B sin 10x.
From this and the initial conditions we obtain by setting x = 0
@ ¢ +A=4, (b) ¢y + 10B = 11, (¢) ¢ — 100A = —299.

We solve this system for the unknowns A, B, c¢;. Equation (a) minus Equation (c) gives 1014 = 303, A = 3.
Then ¢; = 1 from (a) and B = 1 from (b). The solution is (Fig. 72)

y = e® + 3 cos 10x + sin 10x.

This gives the solution curve, which oscillates about ¢” (dashed in Fig. 72 on p. 114). B
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4 -

BN

0 1 2 3 x
Fig. 72. Solution in Example 2

Multiple Real Roots

If a real double root occurs, say, A; = Ay, then y; = y, in (3), and we take y; and xy; as
corresponding linearly independent solutions. This is as in Sec. 2.2.

More generally, if A is a real root of order m, then m corresponding linearly independent
solutions are

(7) : e/\x, xe)n:c’ xze/\x’ i xm—-le/\x‘

0

We derive these solutions after the next example and indicate how to prove their linear
independence.

Real Double and Triple Roots
Solve the ODE y¥ — 3y + 3y" — 3" = 0.

Solution. The characteristic equation A% — 3x* + 343 — A2 = 0 has the roots A; = Ay = 0 and
A3 = Ay = Ag = 1, and the answer is

®) y=c1 + cox + (c3 + cax + c5x2)e”. |

Derivation of (7). We write the left side of (1) as

Toche f )

Lly) = ¥ + anyy™ ™0 + - - + agy.
Let y = ¢**. Then by performing the differentiations we have
L[e*®] = (A" + an_l)\”_l + -+ ag)e”

Now let A; be a root of mth order of the polynomial on the right, where m = n. For

m<mnletAy,.5, ", A, be the other roots, all different from A;. Writing the polynomial
in product form, we then have

L[] = (A — A)™h(M)er®

with A(A) = 1if m = n, and A(L) = (A — Apeq) - - - (A — A) if m < n. Now comes the
key idea: We differentiate on both sides with respect to A,

P d
© oo Ll = m = AR + (= AT [0,
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13-18
Solve by a CAS, giving a general solution and the particular

CHAP. 3 Higher-Order Linear ODEs

INITIAL VALUE PROBLEMS

solution and its graph.

13.

15.

16.

17.

18.

19.

YV + 0.45y" — 0.165y” + 0.0045y" — 0.00175y = 0,
y(0) = 17.4, y'(0) = —2.82, y"(0) = 2.0485,
y"(0) = —1.458675

4yll! + 8y/l + 41yl + 37)7 = 0’ y(o) e 9’
y'(0) = —6.5, y"(0) = —39.75

y" + 3.2y" + 4.81y' =0, y(0) = 3.4,
y'(0) = —4.6, y"(0) = 9.91

yV +4y = 0,y0) = 3,5'(0) = -3, y"(0) =
y"(0) = -3

y'¥ — 9y" — 400y = 0, y(0) = 0, y'(0) = 0,
y"(0) = 41, y"(0) = 0

y" + 7.5y" + 14.25y" — 9.125y = 0,

y(0) = 10.05, y'(0) = —54.975,

y"(0) = 257.5125

(]3]

]

CAS PROJECT. Wronskians. Euler-Cauchy
Equations of Higher Order. Although Euler—Cauchy
equations have variable coefficients (powers of x), we
include them here because they fit quite well into the
present methods.

(a) Write a program for calculating Wronskians.

(b) Apply the program to some bases of third-order
and fourth-order constant-coefficient ODEs. Compare

the results with those obtained by the program most
likely available for Wronskians in your CAS.

(¢) Extend the solution method in Sec. 2.5 to any order
n. Solve x3y" + 2x%y" — 4xy’ + 4y = 0 and another
ODE of your choice. In each case calculate the
‘Wronskian.

20.)PROJECT. Reduction of Order. This is of practical

21.

interest since a single solution of an ODE can often be
guessed. For second order, see Example 7 in Sec. 2.1.

(a) How could you reduce the order of a linear
constant-coefficient ODE if a solution is known?

(b) Extend the method to a variable-coefficient ODE

Y+ po)y” + pax)y’ + po@)y = 0.

Assuming a solution y, to be known, show that another
solution is y,(x) = u(x)y;(x) with u(x) = [ z(x) dx and
z obtained by solving

yiZ" + Byi + pay)z’ + By + 2pay1 + pivi)z = 0.
(¢) Reduce

F9 =Rl ==,
using y; = x (perhaps obtainable by inspection).
CAS EXPERIMENT. Reduction of Order. Starting
with a basis, find third-order ODEs with variable

coefficients for which the reduction to second order
turns out to be relatively simple.

3.3 Nonhomogeneous Linear ODEs

We now turn from homogeneous to nonhomogeneous linear ODEs of nth order. We write

them in standard form

1)

P+ PucaGY TR 4 - pr(y + po®y = 1)

with y™ = d™yldx™ as the first term, which is practical, and r(x) # 0. As for second-order
ODEs, a general solution of (1) on an open interval I of the x-axis is of the form

2

Here yp(x) = ey + -+ -
homogeneous ODE

3)

WO = Ypfen) = W{GYE

+ ¢, yn.(x) is a general solution of the corresponding

Y + pp GV + o+ pix)y + pelx)y = 0

on I. Also, y, is any solution OLQ)‘;(QH I containing no arbitrary constants. If (1) has

. — G LA — o .
continuous coefficients and a‘continuous r(x) on I, then a general solution of (1) exists
and includes all solutions. Thus (1) has no singular solutions.

/DA‘szoa QDA -
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An initial value problem for (1) consists of (1) and » initial conditions

@) Lyl GRS 0 R SRR R L T
f,;w,im-
with xg in 1. Under those continuity assumptions it has a unique solution. The ideas of

proof are the same as those for n = 2'in Sec. 2.7.

Method of Undetermined Coefficients

Equation (2) shows that for solving (1) we have to determine a particular solution of (1).
For a constant-coefficient equation

5) Y+ YV 4 tayy + gy = r@)

(ag, - * -, a1 cOOStant) and special r(x) as in Sec. 2.7, such a yp(x) can be determined
by the method of undetermined coefficients, as in Sec. 2.7, using the following rules.

(A) Basic Rule as in Sec. 2.7.
(B) Modification Rule. If a term in your choice for y,(x) is a solution of the

homogeneous equation (3), theg multiply y,,(x) by x*, where k is the smallest positive
integer such that no term of x*yp(x) is a solution of (3).

(C) Sum Rule as in Sec. 2.7.

The practical application of the method is the same as that in Sec. 2.7. It suffices to
illustrate the typical steps of solving an initial value problem and, in particular, the new
Modification Rule, Which includes the old Modification Rule as a particular case (with
k=1or2). We shall see that the technicalities are the same as for n = 2, perhaps except
for the more involved determination of the constants.

EXAMPLE 1 Initial Value Problem. Modification Rule
Solve the initial value problem
(6) ylll i 3}’” st 3}’, cto y = 308—1, y(o) - 3, y’(O) = _3’ yu(o) = —47.
Solution. Step 1. The char:.xcterlstic equationis A% + 3A% + 31 + 1 = (A + 1)® = 0. It has the triple root
A= —1. Hence 2 gene:ral solution of the homogeneous ODE is

2 —x

R

= (c1 + cx + epxD)e™™ (K)

Yh = c1e” T + coxe™® + c3x

Step 2. T we try yp = ¢ We et =C + 3C = 3C + C = 30, which has no solution. Try Cxe™ and Cx% ™",
The Modification Rule calls for

Yp = Cra
Then Y 1,7 = C(3x2 - %)%,
Yp = C(6x = 6% + x*)e™7,

m

<¢e&’f’m\/b/() yp = C(6 — 18x + 9x% = x%)e™%.
wx) = & Qpp) b = o

P Y=
P y:@f—/)(b-f‘p_?y’:(D'H)}q =0

#
= 76‘%7 :<C/+ & X+ S;x}ch;‘r*)e"x
= Z/,-,c‘z): c X’ e™ by @)

3

G+) (p3+ 3D+ 3D+ 1) i
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Substitution of these expressions into (6) and omission of the common factor e~% gives
C(6 — 18x + 9% — x®) + 3C(6x — 62 + 2% + 3C(3+% — x3) + =2 = 30,

The linear, quadratic, and cubic terms drop out, and 6C = 30. Hence C = 5. This gives Yp = 5x3¢7%,

Step 3. We now write down y =y, + Yp the general solution of the given ODE. From it we find cq by the
first initial condition. We insert the value, differentiate, and determine c5, from the second initial condition, insert
the value, and finally determine c5 from »"(0) and the third initial condition:

Y =yp+Yp=(c1 + cox + c3x2)e_x + 5x3e7%, ¥0)=c; =3
Y =[-3+cp+ (~ea+2ex + (15— e~ 5%e™®, YO =—-3+cp=-3, cp3=0
¥ =3+ 25 + (30 — deglx + (=30 + c)x® + 5:%]e™,  (0) =3 + 2c3 = —47, ¢y = —25.
Hence the answer to our problem is (Fig. 73)
y =3 - 25:9)e™" + 553¢7%,

The curve of y begins at (0, 3) with a negative slope, as expected from the initial values, and approaches zero
as x — o. The dashed curve in Fig. 73 is y,.

y P
5_ // \\

/ \\

/ ™

/ S~

/ S
Ox/| I TN B Sl N |

5 10 «

oy =

Fig. 73. y and y, (dashed) in Example 1

Method of Variation of Parameters

The method of variation of parameters (see Sec. 2.10) also extends to arbitrary order n.
It gives a particular solution ¥p for the nonhomogeneous equation (1) (in standard form

with y as the first term!) by the formula
s W,
7o) = 2 300 [ED ) ax
@) i
W]_()C) Wn(-x)
S S PO ey [ e d

on an open interval 7 on which the coefficients of (1) and r(x) are continuous. In (7) the

functions yy, - - -, y,, form a basis of the homogeneous ODE (3), with Wronskian W, and
W; (j =1, -, n)is obtained from W by replacing the jth column of W by the column
[0 0 -+ 0 1]". Thus, when n = 2, this becomes identical with (2) in Sec. 2.10,
Y1 Yo 0 Y Y1 0
W=l o /| le‘ T T Ve Wy = ; 1:}’1-
Y1 Yo 1 Ya Y1 1

The proof of (7) uses an extension of the idea of the proof of (2) in Sec. 2.10 and can
be found in Ref [A11] listed in App. 1.
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EXAMPLE 2 Variation of Parameters. Nonhomogeneous Euler—Cauchy Equation

Solve the nonhomogeneous Euler—Cauchy equation

xsy”/ = 3x2y" + 6xy’ — 6y = x*lnx (x> 0).

Solution. Step 1. General solution of the homogeneous ODE. Substitution of y = x™ and the derivatives
into the homogeneous ODE and deletion of the factor x™ gives

mm — 1)m —2) —3m(m — 1) + 6m — 6 = 0.
The roots are 1, 2, 3 and give as a basis

i s g
Y1 =X R Jyg=x .

Hence the corresponding general solution of the homogeneous ODE is

b ol 3 C i n czxz b c3x3.

Step 2. Determinants needed in (7). These are

pe xz x3
.
w=1{1 2x 32| =23 /= 0 % X >0
0 2 6x

Wi =10 2x 3x2%| = x*

1 2 6x

Wo= 1|1 0 3x%| =-2:°
0 1 6x
X x2 0

Ws=|1 2x 0| =2

Step 3. Integration. In (7) we also need the right side r(x) of our ODE in standard form, obtained by division
of the given equation by the coefficient x5 of y"; thus, r(x) = (x4 In x)/x3 = x In x. In (7) we have the simple

quotients Wy/W = x/2, Wo/W = —1, W3/W = 1/(2x). Hence (7) becomes
fx In x dx xzfxlnxdx-l—xsjl In x dx
= = xdx — —
»p=x[7 xln 7 rlnx
x (% i % 5 x2 . x2 x° 3
=5 3 nx 9 x 2 nx — 7 + 2 (xInx — x).
Simplification gives y, = 3x* (Inx —4}). Hence the answer is

y=yh+yp=clx+czx2+c3x3+éx4(lnx—%.

Figure 74 shows y,. Can you explain the shape of this curve? Its behavior near x = 0? The occurrence of

a minimum? Its rapid increase? Why would the method of undetermined coefficients not have given the
solution? B

/3@5 Tt
/)/',»A\ 2.2 /2
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