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6.1 Laplace Transform. Inverse Transform.
Linearity. s-Shifting il %K/)

If £(z) is a function defined for all 7 = 0, its Laplace transform® is the integral of f(z)
times e~ from ¢ = 0 to . It is a function of s, say, F(s), and is denoted by £(f); thus

,. ‘ ]
$€G ) W F(s) = () = | 750y . Tmpnepen TnAgyr e
0

Here we must assume that f(¢) is such that the integral exists (that is, has some finite
value). This assumption is usually satisfied in applications—we shall discuss this near the
end of the section.

Not only is the result F(s) called the Laplace transform, but the operation just described,

which yields F(s) from a given f(z), is also called the Laplace transform. It is an “integral
transform”

= fo KEDF @) dr

with “kernel” k(s, 1) = ™.
Furthermore, the given function f(¢) in (1) is called the inverse transform of F(s) and
is denoted by LY(F); that is, we shall write

%) @ = L7YF).
Note that (1) and (1*) together imply £~ (£(f)) = f and L(L™YF)) = F

Notation

Original functions depend on ¢ and their transforms on s—keep this in mind! Original
functions are denoted by lowercase letters and their transforms by the same letters in

capital, so that F(s) denotes the transform of f(¢), and ¥(s) denotes the transform of y(z),
and so on.

EXAMPLE 1 Laplace Transform
Let f(£) = 1 when ¢ = 0. Find F{(s).
Solution. From (1) we obtain by integration /€ ¢ ) ) (&)

o0 =)

1
L(f) = L) = f % i = -iliennl, (s > 0).
0 S 0 S

IPIERRE SIMON MARQUIS DE LAPLACE (1749-1827), great French mathematician, was a professor in
Paris. He developed the foundation of potential theory and made important contributions to celestial mechanics,
astronomy in general, special functions, and probability theory. Napoléon Bonaparte was his student for a year.
For Laplace’s interesting political involvements, see Ref. [GR2], listed in App. 1.

The powerful practical Laplace transform techniques were developed over a century later by the English
electrical engineer OLIVER HEAVISIDE (1850-1925) and were often called “Heaviside calculus.”

We shall drop variables when this 51mp11ﬁes formulas Wlthout causing confusion. For instance, in (1) we
wrote &£(f) instead of L(f)(s) and in (1*) £~ (F ) instead of £~ (F ).
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Our notation is convenient, but we should say a word about it. The interval of integration in (1) is infinite.
Such an integral is called an improper integral and, by definition, is evaluated according to the rule

co

T
f e~ f(t) dt = lim j e S (@) dr.
0 T—co 0

Hence our convenient notation means < /0 : )
e 075 0

g 1 - 1 1 1
f et dr = lim [- — e_St:| = lim [— — T+ — e"} = = (s > 0).
0 T—00 'y 0 T—co " S S
We shall use this notation throughout this chapter. B

Laplace Transform £(e™) of the Exponential Function e**

Let f(1) = ¢* when ¢ = 0, where a is a constant. Find £(f).
Solution. Again by (1),
. co
if(eat) = f e—steat dt = 1 e—(s—a)t
0 A 0

>

hence, when s — a > 0,

Must we go on in this fashion and obtain the transform of one function after another
directly from the definition? The answer is no. And the reason is that new transforms can
be found from known ones by the use of the many general properties of the Laplace
transform. Above all, the Laplace transform is a “linear operation,” just as differentiation
and integration. By this we mean the following.

Linearity of the Laplace Transform

The Laplace transform is a linear operation; that is, for any functions f(f) and g(t) whose
transforms exist and any constants a and b the transform of af(t) + bg(t) exists, and

Elaf@) + bg(O} = aZ{f(} + bE{g(®)}.

By the definition in (1),

(e}

| et + bewy ar
0

Il

L{af® + bg®}

=a [ ef@ar+ b f et dt = a{f(D)} + bL{g(d)}. M
0 0

Application of Theorem 1: Hyperbolic Functions
Find the transforms of cosh at and sinh at.

Solution. Since coshar = 3(e™ + ¢™) and sinh ar = 1(e® — ¢~%'), we obtain from Example 2 and

Theorem 1
1 i 1 _ N
s—a s+a - SQ__aZ

1 1 1 .
%(sinh at) = -;—(EE(eat) — L™y = E( - ) =2 . z - |

s—a s+a

%(cosh ar) = -;—(Sf(eat) + L) =

N |-
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EXAMPLE 4

(fes22)

Cosine and Sine

Derive the formulas

L(cos wt) = : &(sin wt) = 5

sz+w2 2+

Solution by Calculus. We write L, = $(cos w?) and Ly = £(sin w?). Integrating by parts and noting that the
integral-free parts give no contribution from the upper limit %, we obtain

oo

e
L, = f et cos wr dr =
0

—st
COos wt
s

co o
3} sigg 1 ®
e e Usinwtdt= — — —L,
o s Jy s s

oo

e
o= f et sin wrdr =
0

L

[oe) (o]
@ —st
s e “'coswtdt = e
0 s Jo

—st
sin wt
s

w|e

By substituting Ly into the formula for L, on the right and then by substituting L, into the formula for L on
the right, we obtain

e 0 B P L=
C—S . s <) c 52 _s’ C_sz+w2’
o (1 9] o? 1) ()
baimes e g Bl o= 2l e

Solution by Transforms Using Derivatives. See next section.

Solution by Complex Methods. In Example 2, if we set a = iw with i = V/—1, we obtain

— ~ ] M j [ /%L»t
pog S 1 / s+ iw s+ iw K 3} (’Q
é»‘ 2" = ~—8 3 S T 2 2 T 2 3 tig 2 - ) -
R . = (s — iw)(s + iw) 57+ w 57+ w s°+ JGC:
Jut et e
Z<€ -+ e §w by Theorem 1 and €*“* = cos wr + i sin w? [see (11) in Sec. 2.2 with wt instead of 7] we have
Pty = (cos wt + i sin wt) = L(cos wt) + i L(sin wi).
If we equate the real and imaginary parts of this and the previous equation, the result follows. (This formal
calculation can be justified in the theory of complex integration.) a2

Y s
/ [
:z)- f—D‘a

_ &
oFe”

Basic transforms are listed in Table 6.1. We shall see that from these almost all the others
can be obtained by the use of the general properties of the Laplace transform. Formulas
1-3 are special cases of formula 4, which is proved by induction. Indeed, it is true for
n = 0 because of Example 1 and 0! = 1. We make the induction hypothesis that it holds

for any integer n = 0 and then get it for n + 1 directly from (1). Indeed, integration by
parts first gives

(oo]

1
acg(tn+1) _— f e~ Stym+1 dt = — —e=Stm+1
0 N

oo oo

n+1 st
+ fest"dt.
0 N 0

Now the integral-free part is zero and the last part is (n + 1)/s times £(¢™). From this
and the induction hypothesis,

! !
L™t = n‘-;;l 0™ = n_:I : SZJ;l = o :4»21) : Q& s> o)

S

This proves formula 4.
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Table 6.1 Some Functions f(t) and Their Laplace Transforms £(f)

f@ <) £ 2(f)
i 1 1 7 , -
s cos =
2 t 1/s2 8 sin wt =
2+ &
3 2 21/s3 9 cosh az -
2 — a2
m n! . a
4 G0 L T 10 sinh at 22
o IT(a+ 1) . =g
: (a positive) et . =R (s —a® + o
6 e . 12 % sin wt .. S—
s—a . 5 — af + o

I'(a + 1) in formula 5 is the so-called gamma function [(15) in Sec. 5.5 or (24) in
App. A3.1]. We get formula 5 from (1), setting st = x:

L) = JO " st gy = | e (3)a ey § e g

0 N N ) 0

where s > 0. The last integral is precisely that defining I'(e + 1), so we have
T'(a + 1)/s**Y, as claimed. (CAUTION! I'(a + 1) has x° in the integral, not x**1.)
Note the formula 4 also follows from 5 because I'(n + 1) = n! for integer n = 0.
Formulas 6-10 were proved in Examples 2—4. Formulas 11 and 12 will follow from 7
and 8 by “shifting,” to which we turn next.

s-Shifting: Replacing s by s — a in the Transform

The Laplace transform has the very useful property that if we know the transform of f(z),
we can immediately get that of e%f(¢), as follows.

First Shifting Theorem, s-Shifting

If f(t) has the transform F(s) (Where s > k for some k), then e® f(t) has the transform
F(s — a) (where s — a > k). In formulas,

L{e*f(®)} = F(s — a)
or, if we take the inverse on both sides,

e fy =% {F(@s - a)}.
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We obtain F(s — a) by replacing s with s — a in the integral in (1), so that

(e}

Fis—a)= [ et ar = f e~ (1)) di = L{etf(5)).
0 4]

If F(s) exists (i.e., is finite) for s greater than some k, then our first integral exists for
s — a > k. Now take the inverse on both sides of this formula to obtain the second formula
in the theorem. (CAUTION! —a in F(s — a) but +a in e*f(¢).) e
s-Shifting: Damped Vibrations. Completing the Square

From Example 4 and the first shifting theorem we immediately obtain formulas 11 and 12 in Table 6.1,

s —a w

L{e® cos wt} = (—s_—am , P{e® sin wt} = _(S _ -a_)z gt

For instance, use these formulas to find the inverse of the transform

3s — 137

L) = 50— .
e2 s2 + 25 + 401

Solution. Applying the inverse transform, using its linearity (Prob. 28), and completing the square, we obtain

_1f 36+ 1) — 140 o s+1 . 20
=y (=3¢ \—————= - 7¢ T TR
(s + D* + 400 (s + D* + 20 (s + 1" +20
We now see that the inverse of the right side is the damped vibration (Fig. 113)

f(®) = e7*(3 cos 207 — 7 sin 209). B

Fig. 113. Vibrations in Example 5

Existence and Uniqueness of Laplace Transforms

This is not a big practical problem because in most cases we can check the solution of
an ODE without too much trouble. Nevertheless we should be aware of some basic facts.

A function f(#) has a Laplace transform if it does not grow too fast, say, if for all
t = 0 and some constants M and k it satisfies the “growth restriction”

@) lf@)] = me™.
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(The growth restriction (2) is sometimes called “growth of exponential order,” which may
be misleading since it hides that the exponent must be kt, not,kt2 or similar.)

f(#) need not be continuous, but it should not be too bad. The technical term (generally
used in mathematics) is piecewise continuity. f(¢) is piecewise continuous on a finite interval
a =t = b where f is defined, if this interval can be divided into finitely many subintervals
in each of which f is continuous and has finite limits as ¢ approaches either endpoint of such
a subinterval from the interior. This then gives finite jumps as in Fig. 114 as the only possible
discontinuities, but this suffices in most applications, and so does the following theorem.

Fig. 114. Example of a piecewise continuous function f(t).
(The dots mark the function values at the jumps.)

Existence Theorem for Laplace Transforms

If f(2) is defined and piecewise continuous on every finite interval on the semi-axis
t = 0 and satisfies (2) for all t = 0 and some constants M and k, then the Laplace
transform E(f) exists for all s > k.

Since f(f) is piecewise continuous, e S*f(f) is integrable over any finite interval on the
t-axis. From (2), assuming that s > k (to be needed for the existence of the last of the
following integrals), we obtain the proof of the existence of £(f) from

|£AHl =

[ erar| = [ Isoletdr = [ Mt ar =
o 0 0

s— k-’

Note that (2) can be readily checked. For instance, cosh t < et, 1™ < nle® (because t"/n!
is a single term of the Maclaurin series), and so on. A function that does not satisfy (2)
for any M and k is e* (take logarithms to see it). We mention that the conditions in

- Theorem 3 are sufficient rather than necessary (see Prob. 22).

LY =LY
y

f( 17[2—
(4, <)

e PROBLEEM SET 6.

LAPLACE TRANSFORMS

Uniqueness. If the Laplace transform of a given function exists, it is uniquely
determined. Conversely, it can be shown that if two functions (both defined on the positive
real axis) have the same transform, these functions cannot differ over an interval of positive
length, although they may differ at isolated points (see Ref. [A14] in App. 1). Hence we
may say that the inverse of a given transform is essentially unique. In particular, if two
continuous functions have the same transform, they are completely identical.

3. cos 2t 4. sin 4¢
Find the Laplace transforms of the following functions. 5. %' cosh t 6. ¢~ " sinh 5¢
Show the details of your work. (a, b, k, w, 6 are constants.) 7. cos (wt + 6) 8. sin (3¢ — %
11825 2 (2= 3)° g ighamabs 10. —8 sin 0.2¢

//LOZ, {\ )~/
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Laplace Transform of Derivatives

The transforms of the first and second derivatives of f(t) satisfy

) L") = s£(f) - F©O)
@ L) = 2L =.s£(0) = f{O).

Formula (1) holds if f(t) is continuous for all t = 0 and satisfies the growth restriction
(2) in Sec. 6.1 and f'(¢) is piecewise continuous on every finite interval on the semi-
axis t Z 0. Similarly, (2) holds if f and f' are continuous for all t Z 0 and satisfy
the growth restriction and f" is piecewise continuous on every finite interval on the
semi-axis t = 0.

We prove (1) first under the additional assumption that f " is continuous. Then by the
definition and integration by parts,

(ee]

() = fo e () dt = [~ (0)]

o (oe]

+ sf e SUf(t) dt.
()

0

Since f satisfies (2) in Sec. 6.1, the integrated part on the right is zero at the upper limit
when s > k, and at the lower limit it contributes — f(0). The last integral is £L(f). It exists
for s > k because of Theorem 3 in Sec. 6.1. Hence £(f’) exists when s > k and (1) holds.
If f' is merely piecewise continuous, the proof is similar. In this case the interval of
integration of f’ must be broken up into parts such that f’ is continuous in each such part.
The proof of (2) now follows by applying (1) to f” and then substituting (1), that is

L") = sL(f") — £(0) = ssZLF) — FO)] = s2L(f) — sf(0) — F'(0). L

Continuing by substitution as in the proof of (2) and using induction, we obtain the
following extension of Theorem 1.

Laplace Transform of the Derivative f ") of Any Order

Let f, f', - - -, f"~V be continuous for all t Z 0 and satisfy the growth restriction
(2) in Sec. 6.1. Furthermore, let ™ be piecewise continuous on every finite interval
on the semi-axis t = 0. Then the transform of f satisfies

©) LE™) = s"L() — S“THO) — TEO) — - - = FOTH0).

Transform of a Resonance Term (Sec. 2.8)

Let f(¢) = ¢ sin wt. Then f(0) = 0, f'(t) = sin wt + wt cos wt, f’(O) =0, f" = 2w cos wt — w’t sin wt. Hence
by (2),

s 2ws

e 2L(f) = s2L(f), thus L) = Lt sin w1) = FraE

L") = 2w B
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Formulas 7 and 8 in Table 6.1, Sec. 6.1

This is a third derivation of £(cos wf) and £(sin wr); cf. Example 4 in Sec. 6.1. Let f(f) = cos wt. Then
f©O) =1, f'(0) = 0, f'(1) = —w? cos wt. From this and (2) we obtain

N

L") = 2L — 5 = —PL(F). By algebra, Pcos wf) = —5— .
R )

Similarly, let g = sin wt. Then g(0) = 0, g' = w cos wt. From this and (1) we obtain

£(g') = sL(g) = w¥(cos wr).  Hence  L(sinwn) = — L(cos wf) = ———s .
s 57+ W

Laplace Transform of the Integral of a Function

Differentiation and integration are inverse operations, and so are multiplication and division.
Since differentiation of a function f(z) (roughly) corresponds to multiplication of its
transform £(f) by s, we expect integration of £(¢) to correspond to division of £(f) by s:

Laplace Transform of Integral

Let F(s) denote the transform of a function f(f) which is piecewise continuous for
t = 0 and satisfies a growth restriction (2), Sec. 6.1. Then, fors > 0,s >k, and
t>0,

T t
@) 52{ f £(7) dr} = e f Floyds — 52-1{117@)} .
0 S 0 S

Denote the integral in (4) by g(#). Since f(¢) is piecewise continuous, g(® is continuous,
and (2), Sec. 6.1, gives

lg®)| = fo f(n) dr ekt (k > 0).

t t
M
kT — kt __
§f0[f(7)|d7'§MJ;)€ dT-—k(e )=

==

This shows that g(#) also satisfies a growth restriction. Also, g'® = 1@, except at points
at which f(7) is discontinuous. Hence g’ (¢) is piecewise continuous on each finite interval
and, by Theorem 1, since g(0) = O (the integral from 0 to 0 is zero)

L{f0} = £{g' 0} = sL{g®)} — g(0) = sL{g)}.

Division by s and interchange of the left and right sides gives the first formula in ),
from which the second follows by taking the inverse transform on both sides. |

Application of Theorem 3: Formulas 19 and 20 in the Table of Sec. 6.9

Using Theorem 3, find the inverse of

and .
s(s2 + a)z) sz(sz + wz)

Solution. From Table 6.1 in Sec. 6.1 and the integration in (4) (second formula with the sides interchanged)
we obtain

t
1 sin wt 1 sin w7 1
£ 2}= . £ }=f dr= —5(1 — cos wt).
s°+ w w s(s° + %) 0 @ w
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This is formula 19 in Sec. 6.9. Integrating this result again and using (4) as before, we obtain formula 20 in
Sec. 6.9:

@1 1 1 Jt i i T sin o7 7 t sin wt
—_— = — cos = == —| = — - .
sz(s2 + wz) o 0( Seeamice w? o® o o? 3

It is typical that results such as these can be found in several ways. In this example, try partial fraction
reduction. ) : B

Differential Equations, Initial Value Problems
We shall now discuss how the Laplace transform method solves ODEs and initial value
problems. We consider an initial value problem

® FERRESEE = 0. ¥(0) = Ko, y'(0) = K,

where a and b are constant. Here r(z) is the given input (driving force) applied to the
mechanical or electrical system and y(7) is the output (response to the input) to be obtained.
In Laplace’s method we do three steps:

Step 1. Setting up the subsidiary equation. This is an algebraic equation for the transform
Y = £(y) obtained by transforming (5) by means of (1) and (2), namely,

[s?Y — sy(0) — y'(0)] + alsY — y(0)] + bY = R(s)
where R(s) = &£(r). Collecting the Y-terms, we have the subsidiary equation
(52 + as + b)Y = (s + a)y(0) + y'(0) + R(s).

Step 2. Solution of the subsidiary equation by algebra. We divide by s + as + b and
use the so-called transfer function

1 1

6) Q(S)zsz+as+b=(s+%a)2+b-—‘lla2~

(Q is often denoted by H, but we need H much more frequently for other purposes.) This
gives the solution

) Y(s) = [(s + ay(0) + ¥"(0]Q() + R()QS).

If y(0) = y'(0) = 0, this is simply ¥ = RQ; hence

Y  &(output)

R~ E(opun . Ioz/q#~0u/?}vu,5f Trmsfenfensef

and this explains the name of Q. Note that Q depends neither on r(t) nor on the initial
conditions (but only on a and b).

Step 3. Inversion of Y to obtain y = £~1(Y). We reduce (7) (usually by partial fractions
as in calculus) to a sum of terms whose inverses can be found from the tables (e.g., in
Sec. 6.1 or Sec. 6.9) or by a CAS, so that we obtain the solution y(f) = £~ 1Y) of (5).

0=

-~ .
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Initial Value Problem: The Basic Laplace Steps

Solve
n

g oy ¥0) =1, y'© = 1.

Solution. Step 1. From (2) and Table 6.1 we get the subsidiary equation [with ¥ = £(y)]
s%Y = sy(0) — y'(0) — ¥ = 1/s2, thus 2 =DY=s+1+ 1/s2

Step 2. The transfer function is Q = 1/(52 — 1), and (7) becomes

g% 1 1

+ :
s2-1  $2%-1)

1
Y=(S+1)Q+—2Q=
A

Simplification and partial fraction expansion gives

N 1 - 1 1
Tos—1 s2 -1 2]

Step 3. From this expression for ¥ and Table 6.1 we obtain the solution

1 1
¥ =27 = i_l{ 1 } + 52_1{ 2 } - 51‘3—1{—5} =¢' + sinht — 1.
§~1 s“—1 s

The diagram in Fig. 115 summarizes our approach.

t-space s-space
Given problem ' Subsidiary equation
Yisy=t T (2-1)Y=s+1+1/s2
y(0) =1 .
y'(0) =1
Solution of given problem Solution of subsidiary equation
y@) =et+sinht—t e L e
Ts-1"s2-1 2

Fig. 115. Laplace transform method

Comparison with the Usual Method
Solve the initial value problem
y'+y +9y=0, ¥(0) = 0.16, y'(0) = 0.

Solution. From (1) and (2) we see that the subsidiary equation is

s%Y — 0.165 + s¥ — 0.16 + 9Y = 0, thus (% +s5+ 9Y = 0.16(s + 1).

The solution is
0.16(s + 1) 0.16(s + ) + 0.08
2 4s+9 +LH2+28

Hence by the first shifting theorem and the formulas for cos and sin in Table 6.1 we obtain

35 0.08 35
=S Yy) = "2 — 4+ — 5 -
YO =L =¢ (0.16 cos ./ 7! Vs sin \/ t)

= ¢7%5%0.16 cos 2.961 + 0.027 sin 2.967).

This agrees with Example 2, Case (III) in Sec. 2.4. The work was less.

231
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where 5(7) = y(¢). Using (2) and Table 6.1 and denoting the transform of y by Y, we see that the subsidiary
equation of the “shifted” initial value problem is

.’w
PN

%d) yé}“f Fr) = Jf) -

CHAP. 6 Laplace Transforms

1.

Advantages of the Laplace Method
Solving a nonhomogeneous ODE does not require first solving the
homogeneous ODE. See Example 4.

2. Initial values are automatically taken care of. See Examples 4 and 5.

3. Complicated inputs r(t) (right sides of linear ODEs) can be handled very
efficiently, as we show in the next sections.

XAMPLE é Shifted Data Problems

This means initial value problems with initial conditions given at some ¢ = #y5 > 0 instead of ¢+ = 0. For such
a problem set t = 7 + tg, so that ¢ = 1y gives 7 = 0 and the Laplace transform can be applied. For instance,

solve

y' +y =21

y&m) = im, y@Em=2-V2

Solution. We have ¢ty = 17 and we set t = 7 + 2. Then the problem is
0~ 1 4 P

r'éﬁ

+5 =27+ im),

3(0) = im, 70 =2-V2

2% 5_ 2 bl 2 5 _ 2 37 !
SV —s3m—Q-V)+ ¥ =5 +2=, tus P+ DF =5+ -+ Fm+2-V2
N
Solving this algebraically for ¥, we obtain
’ 2 ir irms 2-V2
= +
2+ (Z+Ds 241 2+ 1

The inverse of the first two terms can be seen from Example 3 (with @ = 1), and the last two terms give cos

and sin,

y=<£=

2(F — sin?) + 37(1 — cos¥) + ymcos7+ 2 — V2)sin?

=2+ 17— V2sin7

» - 1 s
Now:t =t — :}77, sinf = —\—/—E(sin t — cos 1), so that the answer (the solution) is

OBTAINING TRANSFORMS BY

DIFFERENTIATION

Using (1) or (2), find £(f) if f(r) equals:

1.

3
5
7.
9

. sin? wt

. sinh? at

kt

te 2. t cos 5t

4. cos? 7t
6. cosh? 3¢
(Use Prob. 3.)

tsin St 8. sin® ¢

. (Derivation by different methods) It is typical that

various transforms can be obtained by several methods.
Show this for Prob. 1. Show it for £(cos® 3f) (a) by

i

f/f«tu( 5. 2-9
f;%é £ 2 —24
pub 22 d)

i i = il e e

yo& %

expressing cos®
Prob. 3.

1t in terms of cost (b) by using

10-24| [INITIAL VALUE PROBLEMS

Solve the following initial value problems by the Laplace
transform. (If necessary, use partial fraction expansion as

in Example 4.

Show all details.)

10. y' + 4y = 0, ¥(0) =
11. y' + iy = 17 sin 21, y(0) = —
12. y" =y — 6y =0, y(0) =
y'(0) =
A
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Unit Step Function (Heaviside Function) u(t — a)

The unit step function or Heaviside function u(r — a) is 0 for ¢ < a, has a jump of size
1 at ¢ = a (where we can leave it undefined), and is 1 for ¢t > q, in a formula:

0 ift<a
1) u(t — a) ={ (a=0).
1 ift>a

Figure 117 shows the special case u(¢), which has its jump at zero, and Fig. 118 the general
case u(t — a) for an arbitrary positive a. (For Heaviside see Sec. 6.1.)
The transform of u(r — a) follows directly from the defining integral in Sec. 6.1,

o

Flu@t — a)} = f e Su(t — a) dt = J_ e~ St ldt = —
0 a

—st [ee]

’

S t=a
here the integration begins at t = a (Z 0) because u(t — a) is 0 for # < a. Hence

—as

@) Bl = = eT (s > 0).

The unit step function is a typical “engineering function” made to measure for
engineering applications, which often involve functions (mechanical or electrical
driving forces) that are either “off” or “on.” Multiplying functions f(¢) with u(t — a),
we can produce all sorts of effects. The simple basic idea is illustrated in Figs. 119
and 120. In Fig. 119 the given function is shown in (A). In (B) it is switched off
between t = 0 and ¢t = 2 (because u(t — 2) = 0 when ¢ < 2) and is switched on
beginning at ¢ = 2. In (C) it is shifted to the right by 2 units, say, for instance, by 2 secs,
so that it begins 2 secs later in the same fashion as before. More generally we have the
following.

Let f(t) = 0 for all negative t. Then f(t — a)u(t — a) with a > 0 is f(t) shifted
(translated) to the right by the amount a.

Figure 120 shows the effect of many unit step functions, three of them in (A) and
infinitely many in (B) when continued periodically to the right; this is the effect of a
rectifier that clips off the negative half-waves of a sinuosidal voltage. CAUTION! Make
sure that you fully understand these figures, in particular the difference between parts (B)
and (C) of Figure 119. Figure 119(C) will be applied next.

u(t) u(t —a)

= 1 ————

i
I
SUTR | S S ]
0 t 0 a t
Fig. 117.  Unit step function u(t) Fig. 118.  Unit step function u(t — a)
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@
5 5 5+

I

/1 ’,

_! T
O U, 2 n422m+2 ¢t

S+ VoLV

(A) f(®)=5sint B) f®ult-2) ©) ft-2ult-2)

Fig. 119. Effects of the unit step function: (A) Given function.
(B) Switching off and on. (C) Shift.

I  DAN

0 2 4 6 8 10 t

(A) Rlult—1) - 2u(t - 4) + u(t — 6)] (B) 4 sin Gro)u(t) — ult —2) + u(t —4) - + -]

Fig. 120. Use of many unit step functions.

Time Shifting (t-Shifting): Replacing t by t — a in f(t)

The first shifting theorem (“s-shifting”) in Sec. 6.1 concerned transforms F(s) = £{f(7)}
and F(s — a) = £{e*f(r)}. The second shifting theorem will concern functions f(®) and

f(t = a). Unit step functions are just tools, and the theorem will be needed to apply them
in connection with any other functions.

THEOREM 1 Second Shifting Theorem; Time Shifting
If f(t) has the transform F(s), then the ‘“‘shifted function”

- 0 it @
3 f(t)zf(f—a)u(t—a)={
f(t — a) ift>a

has the transform e~ *F(s). That is, if £{f()} = F(s), then
@ K20 = o= o) = o)
Or, if we take the inverse on both sides, we can write

(4%) £t — ayult — a) = L~ He F(s)).

Practically speaking, if we know F(s), we can obtain the transform of (3) by multiplying
F(s) by e™*. In Fig. 119, the transform of 5 sin ¢ is F(s) = 5/(s? + 1), hence the shifted
function 5 sin (t — 2) u(¢t — 2) shown in Fig. 119(C) has the transform

e"BF(s) = Se~%/(s® + 1).
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PROOF

EXAMPLE 1

CHAP. 6 Laplace Transforms

We prove Theorem 1. In (4) on the right we use the definition of the Laplace transform,
writing 7 for ¢ (to have ¢ available later). Then, taking ¢~ inside the integral, we have

eSF() = e [ e vf(n) dr = [ e Of(n) dn
0 0

Substituting 7 + a = ¢, thus 7 = ¢ — a, dr = dt, in the integral (CAUTION, the lower limit
changes!), we obtain

(oo}

e~ SF(s) = J e~ f(t — a) dt.

a

To make the right side into a Laplace transform, we must have an integral from O to c°,
not from a to . But this is easy. We multiply the integrand by u(z — a). Then for ¢ from
0 to a the integrand is 0, and we can write, with f as in (3),

(o2] (o]

e SF(s) = [ e — a(t — a) di = [ e=F a
0 0

(Do you now see why u(z — a) appears?) This integral is the left side of (4), the Laplace
transform of f(¢) in (3). This completes the proof. L]

Application of Theorem 1. Use of Unit Step Functions

Write the following function using unit step functions and find its transform.

2 fo<t<l1
fo) = {3

cos t if

ifl<t<im (Fig. 121)

t> %*m
Solution. Step 1. In terms of unit step functions,
uc
f® = 2}/— u(t = 1) + 22w — 1) — u@t — 3m) + (cos Hult — 3m).

Indeed, 2(1 — u(r — 1)) gives f(¢) for 0 <t < 1, and so on.

Step 2. To apply Theorem 1, we must write each term in f(¢) in the form f(t — a@)u(t — a). Thus, 2(1 — u(z — 1))
remains as it is and gives the transform 2(1 — e~ °)/s. Then

T e IR O WS IRUTRIE T ¢ (T S R O
2; u(t )= 2(: 3 {t 3 5 u(t M= 3 13 % e

A

Together,

2 2 1 1 1 | T T 1
i o D D s - —-s _ I o -msf2 _ _ ~  —ms/2
L) : et (——Ss + z + 2S)e (s3 + 2s2'+ )e 2 e

g [f\(%-a) wc/f-»@)j = C'M/("a)
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If the conversion of f(¢) to f(t — a) is inconvenient, replace it by
(4%%) LfOut — a)} = e =L{f(t + a)}.
i [;2%-’“) (’{(}“*)J (4**) follows from (4) by writing f(r — a) = g(#), hence f(r) = g(¢ + a) and then again writing f for g. Thus,
235
— oS 1 f — 1 i 1 1 _f 1 1 1
= £ FU) w) i{ztzu(z‘—l)}=e i’{z(l‘+l)2}=e SE{EZ‘2+I+ —2—}=e (;E + 5_2 + Es_)

as before. Similarly for & {%tzu(t - %W)}. Finally, by (4*%),

1 1 1
Picostult — = =e ™2 Plcos [t + =)t = e ™R2P{—sint} = —e” ™12 > . B
2 2 s+ 1

£(8)
2
1 /\
0 | 1 L | I | ]
* 1 - 2m 4m t
=)

Fig. 121. f(t) in Example 1

EXAMPLE 2 Application of Both Shifting Theorems. Inverse Transform

Find the inverse transform f(¢) of

-s —2s —3s

F(s) = + .
) P2+a2 P2+ 47 (s + 2)%

Solution. Without the exponential functions in the numerator the three terms of F(s) would have the inverses

(sin 7t) /7, (sin )/, and te” 2! because 1/s2 has the inverse t, so that 1/(s + 2)2 has the inverse ze” 2t by the
first shifting theorem in Sec. 6.1. Hence by the second shifting theorem (¢-shifting),

1 1 —2(t-3)
i = e sin (w(t — 1)) u(t — 1) + e sin (7r(t — 2)) u(t — 2) + (t — 3)e u(t — 3).

Now sin (7t — 7r) = —sin 7t and sin (7t — 27) = sin 7, so that the second and third terms cancel each other
when ¢ > 2. Hence we obtain f(f) = 0if 0 <t < 1, —(sin m)/wif 1 <t <2,0if2 << 3, and (¢t — 3)e 2¢~>
if + > 3. See Fig. 122.

0.

0.

3
2
o1 /\
0 1 I
0 1 2 3 4 5 6 t

Fig. 122. f(t) in Example 2

EXAMPLE 3 Response of an RC-Circuit to a Single Rectangular Wave

Find the current i(¢) in the RC-circuit in Fig. 123 if a single rectangular wave with voltage Vj, is applied. The
circuit is assumed to be quiescent before the wave is applied.
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CHAP. 6 Laplace Transforms

|

v(t)

Q

v(t) i(#)

0 ]—“7 = N
/\/1\3/\, a b Tt 0 a bl/ ¢

RC-circuit, electromotive force v(t), and current in Example 3

o

Solution. The input is Vo[u(t — a) — u(t — b)]. Hence the circuit is modeled by the integro-differential
equation (see Sec. 2.9 and Fig. 123)

t
Ri() + g—gl = Ri(t) + %J‘ i(7) dt = v(@t) = Volu(t — a) — u(t — b)].
0

Using Theorem 3 in Sec. 6.2 and formula (1) in this section, we obtain the subsidiary equation

i v,
RI(s) + S(—? = —53 [em9 — ¢~b].

Solving this equation algebraically for I(s), we get

Vo/R v,
Is) = F(s)(e™® — ¢7%) where )= — and eYF) = —R°— RO,

the last expression being obtained from Table 6.1 in Sec. 6.1. Hence Theorem 1 yields the solution (Fig. 123)

Vi
it =LY = P E(s)) — PR} = _Ri [e—(t-a)/(RC)u(t —a) — e EDIRO Y, b)];
that is, i(f) = 0 if t < q, and
K RO ifa<r<b
i(r) =
(Ky — Kg)e " EO ifa>b

where K; = Voe® BO/R and K, = Ve ROUR,

Response of an RLC-Circuit to a Sinusoidal Input Acting Over a Time Interval

Find the response (the current) of the RLC-circuit in Fig. 124, where E(7) is sinusoidal, acting for a short time
interval only, say,

E() = 100 sin400¢ if0 <1< 2w and E@® =0ift>2m
and current and charge are initially zero.

Solution. The electromotive force E(f) can be represented by (100 sin 4008)(1 — u(t — 27)). Hence the
model for the current i(#) in the circuit is the integro-differential equation (see Sec. 2.9) )

t
0.1i + 11i + 100 f i(7) dr = (100 sin 400£)(1 — u(t — 2m)), i0)y =0, i'(0)=0.
o

From Theorems 2 and 3 in Sec. 6.2 we obtain the subsidiary equation for I(s) = £(i)

I 100-400s (1 €278
0.IsI + 117 + 100 = = — -
N s° + 400

N S

Hw

PR
pes———

e, €5 3f
Jrod, 6.3 -3¢
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force; similarly for electromotive forces E(f) acting on circuits. Since the blue rectangle
in Fig. 130 has area 1, the impulse of f, in (1) is

= 1
2) @zﬁfm—mmzf ro el

To find out what will happen if k£ becomes smaller and smaller, we take the limit of f}
as k — 0 (k > 0). This limit is denoted by (¢ — a), that is,

8t — a) = lim fi(t — @).

8(t — a) is called the Dirac delta function® or the unit impulse function.
o(t — a) is not a function in the ordinary sense as used in calculus, but a so-called

generalized function.? To see this, we note that the impulse I, of fy, is 1, so that from (1)
and (2) by taking the limit as k — O we obtain

© ift=a o0
3) 8t — a) = and [ se-aya=1,
0 otherwise Y

but from calculus we know that a function which is everywhere 0 except at a single point
must have the integral equal to 0. Nevertheless, in impulse problems it is convenient to
operate on 8(t — a) as though it were an ordinary function. In particular, for a continuous

function g(¢) one uses the property [often called the sifting property of 6(t — a), not to
be confused with shifting]

o [ ewat - @ ar = 4@ Dpa Mo alfaAzf
’ S A /Aﬂ"’f

which is plausible by (2).
To obtain the Laplace transform of (¢ — a), we write’

1
e e ) Rt SR U

a a+k t

Fig. 130. The function f,(t — a) in (1)

2pAUL DIRAC (1902-1984), English physicist, was awarded the Nobel Prize [jointly with the Austrian
ERWIN SCHRODINGER (1887-1961)] in 1933 for his work in quantum mechanics.

Generalized functions are also called distributions. Their theory was created in 1936 by the Russian
mathematician SERGEI L’VOVICH SOBOLEV (1908-1989), and in 1945, under wider aspects, by the French
mathematician LAURENT SCHWARTZ (1915-2002). s
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and take the transform [see (2)]
_ -k
—as 1 s

1
L{ft — a)} = . [emas — g~@+ks] = , o

We now take the limit as k — 0. By 1'Hopital’s rule the quotient on the right has the limit
1 (differentiate the numerator and the denominator separately with respect to k, obtaining
se™* and s, respectively, and use se=*/s — 1 as k —> 0). Hence the right side has the
limit e~*. This suggests defining the transform of &(¢ — a) by this limit, that is,

S) £{8(t — a)} = ™.

The unit step and unit impulse functions can now be used on the right side of ODEs
modeling mechanical or electrical systems, as we illustrate next.

EXAMPLE 1 Mass—Spring System Under a Square Wave

Determine the response of the damped mass—spring system (see Sec. 2.8) under a square wave, modeled by (see
Fig. 131)

YA 2y =r=ut-1) - u - 2), ¥(0) =0, y'(0) = 0.
Solution. From (1) and (2) in Sec. 6.2 and (2) and (4) in this section we obtain the subsidiary equation

1 1
SV + 3Y +2Y = — (¢7F — 7). Solution Ys)= —5———— (75 — ™),
N s(s“ + 3s + 2)
Using the notation F(s) and partial fractions, we obtain

1 B 1 _1n L V7
s +3s+2) s+ Ds+2) s s+1  s+2°

F(s) =

From Table 6.1 in Sec. 6.1, we see that the inverse is
fO =2 F) = -t + L%
Therefore, by Theorem 1 in Sec. 6.3 (+-shifting) we obtain the square-wave response shown in Fig. 131,

y = L7HF(s)e™ — Fs)e~2)
= ft = Dut — 1) — f¢t — 2)u@ - 2)

0 O<r<1
= % — =D %6—2(1:—1) 1<t<?2)
—e~ =D | -2 %e—z(t_l) = %E—Z(t—2) (t>2). 8

(@)

|

0.5

'>

N
w
IN
o~

o

Fig.- 131 Square wave and response in Example 1
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1-12

EFFECT OF DELTA FUNCTION ON
VIBRATING SYSTEMS

Showing the details, find, graph, and discuss the solution.

Ly"+y=280-2m, y(0) = 10,
y'(0) =0

2. 5"+ 2y +2y =€t + 580 — 2),
¥(0) =0, y'(0) =1

3. 9" =y =108(t — &) — 1008(z — 1),
¥(0) = 10, y'(0) =1

4. y" + 3y + 2y = 10(sint + 8(t — 1)),
¥(0) =1, y'(0) = -1

5. 9" +4y" + 5y =[1 — ut — 10)] " = °8(r — 10),
y(0) =0, y'(0) =1

6. y" +2y" — 3y = 1008(r — 2) + 1008(r — 3),
¥0) =1, y'(0) =0

7. 5" +2y" + 10y = 10[1 — u(t — 4)] - 108(¢ — 5),
¥(0) =1, y'(0) =1

8. y" + 5y + 6y = 8(t — im) + u(z — ) COS t,
y(0) = 0, y'(0) =0

9.y" + 2y + 5y =25t — 1008(t — ),
¥(0) = =2, y'(0) =5

10/ y" + 5y = 25¢ — 1008(¢ — ),
y'(0) = 5. (Compare with Prob. 9.)
11 )" + 3y" — 4y = 2¢* — 8¢28(1 — 2),

¥(0) = -2,

¥(0) = 2, y'(0) =0
12. y" +y = —2sint + 108(t — ), y(0) = 0,
y'(0) =1

13. CAS PROJECT. Effect of Damping. Consider a
vibrating system of your choice modeled by

Yty +ky=r@

with r(¢) involving a S-function. (a) Using graphs of
the solution, describe the effect of continuously
decreasing the damping to 0, keeping k constant.

(b) What happens if ¢ is kept constant and k is
continuously increased, starting from 0?

() Extend your results to a system with two
d-functions on the right, acting at different times.

14. CAS PROJECT. Limit of a Rectangular Wave.
Effects of Impulse.

(a) In Example 1, take a rectangular wave of area 1
from 1 to 1 + k. Graph the responses for a sequence
of values of k approaching zero, illustrating that for
smaller and smaller k those curves approach the curve
shown in Fig. 132. Hinz: If your CAS gives no solution

247

for the differential equation. involving k, take specific
k’s from the beginning.
(b) Experiment on the response of the ODE in
Example 1 (or of another ODE of your choice) to an
impulse 8(t — a) for various systematically chosen a
(> 0); choose initial conditions y(0) # 0, y'(0) = 0.
Also consider the solution if no impulse is applied. Is
there a dependence of the response on a? On b if you
choose b6(r — a)? Would —8(t — &) with @ > «
annihilate the effect of 6(+ — @)? Can you think of
other questions that one could consider
experimentally by inspecting graphs?

15. PROJECT. Heaviside Formulas. (a) Show that for a
simple root a and fraction A/(s — ) in F(s)/G(s) we
have the Heaviside formula

(s — a)F(s)

A=1l
im G®)

S—a

(b) Similarly, show that for a root a of order m and
fractions in
Fs) A, A
Gs) (s —a™

m—1
(s —ay™!

+...

A
I 1

+ further fractions
s —a

we have the Heaviside formulas for the first coefficient

(s — &)™F(s)

A, =1
m = lim G6)

s—a
and for the other coefficients

. d™* T (s = a™F(s)
T m = k! sNa ggmF G(s) g

Ag

k=1, m— 1.

EAM PROJECT. Laplace Transform of Periodic
F

unctions

(@) Theorem. The Laplace transform of a piecewise
continuous function f(f) with period p is

1 D
an - 2@ = T foe‘“f(t) e > )

Prove this theorem. Hint: Write fzo= fg + fip s
Sett = (n — 1)p in the nth integral. Take out ¢~™—1P

from under the integral sign. Use the sum formula for
the geometric series.
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(b) Half-wave rectifier. Using (11), show that the
half-wave rectification of sin wr in Fig. 135 has the
Laplace transform

w(l + e”™)
(52 + wZ)(l e e—271's/m)

£(f) =

w
(5,2 o wZ)(l S e—ws/w) -

(A half-wave rectifier clips the negative portions of the
curve. A full-wave rectifier converts them to positive;
see Fig. 136.)

@
1 \‘/\

(c) Full-wave rectifier. Show that the Laplace
transform of the full-wave rectification of sin «f is

s

N th
—— coth — .
o? 2w

2+

(d) Saw-tooth wave. Find the Laplace transform of
the saw-tooth wave in Fig. 137.

@)

k 1
| | |
| i |
1 1 I
| | |
)

0 - p 2p 3p t

Fig. 137. Saw-tooth wave

(e) Staircase function. Find the Laplace transform of

the staircase function in Fig. 138 by noting that it is
the difference of kt/p and the function in (d).

0 Tl 2nlw 3w t

Fig. 135. Half-wave rectification

@) |
£ e
k —_—
1 /‘\/‘\/_\ } | |
0 o 2l 3l ¢ 0 P 2p 3p t

Fig. 136. Full-wave rectification Fig. 138. Staircase function

6.5 Convolution. Integral Equations

Convolution has to do with the multiplication of transforms. The situation is as follows.
Addition of transforms provides no problem; we know that £(f + g) = £(f) + ZL(g).
Now multiplication of transforms occurs frequently in connection with ODEs, integral
equations, and elsewhere. Then we usually know £(f) and £(g) and would like to know
the function whose transform is the product £(f)£(g). We might perhaps guess that it is
fg, but this is false. The transform of a product is generally different from the product of
the transforms of the factors,
L(fg) # L(HL(g) in general.
To see this take f = ¢’ and g = 1. Then fg = €, L(fg) = 1/(s — 1), but L(f) = (s — 1)
and L(1) = 1/s give L(HL(g) = 1/(s® — ).
According to the next theorem, the correct answer is that L(f)&L(g) is the transform of

the convolution of f and g, denoted by the standard notation f * g and defined by the
integral

t
1) h®) = (f * 8)®) = fo f(ngt — ndr.
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yd .
THEOREM 1 Convolution Theorem \f/"(c‘ (asR — cem j An e i‘y o /’L‘ Al M}H\/&f’@

If two functions f and g satisfy the assumption in the existence theorem in Sec. 6.1,
0 that their transforms F and G exist, the product H = FG is the transform of h
given by (1). (Proof after Example 2.)

EXAMPLE 1 Convolution
Let H(s) = 1/[(s — a)s]. Find A(?).

Solution. 1/(s — a) has the inverse f(t) = €™, and 1/s has the inverse g(t) = 1. With f(1) = ¢* and
g(t — 1) = 1 we thus obtain from (1) the answer
t

h(t>=e‘”*1=f

1 A
e ldr= = (%~ 1)
0 a

To check, calculate

a 1

1 1 1 1
H(s)=§£(h)(s)=; (s—-a - %) =;' iy = i ':=5‘3(eat)§£(1). |

EXAMPLE 2 Convolution
Let H(s) = 1/(s® + 2. Find h(?).

Solution. The inverse of 1/(s® + ©?) is (sin wf)/w. Hence from (1) and the trigonometric formula (11) in
App. 3.1 with x = §(wt + w7 and y = %(wt — wT) we obtain

sin wt  sin wt
E3

t
1
h(t) = = — fsin oT sin w(t — 1) dt
3} w® Jy
1 t
= — —cos wt + cos wT] dT
A :
1 sin wr |?
= T35 | —Tcoswt +
2w @ 7=0
1 sin wt
= T35 | “tcoswt+
2w w
in agreement with formula 21 in the table in Sec. 6.9. H
gl

PROOF We prove the Convolution Theorem 1. CAUTION! Note which ones are the variables
of integration! We can denote them as we want, for instance, by 7 and p, and write

co (o]

F(s) =J(; e 5 f(7) dr ~and G(s) :fo e *Pg(p) dp.

We now set t = p + 7, where 7 is at first constant. Then p =t — 7, and f varies from 7
to . Thus

oo oo

GOH= f eS¢ De(t — P dt = e”f e St — 1) dr.

| P ST do e, = [25T ;
<7 F& ?<f):fﬂe)¥cr/4‘/ VA "*fﬁ F) G I
00

= "¢ Y &7 &y A Ay
o 7
(Yo [T gy dr AT

>

[




250

EXAMPLE 3

CHAP. 6 Laplace Transforms

Tin F and t in G vary independently. Hence we can insert the G-integral into the
F-integral. Cancellation of ¢™°" and ¢° then gives

(ee]

FOGE) = [ e fme [ gt — ndidr= [ f) [ e — v drar.
0 0 T R—

.
P

Here we integrate for fixed 7 over ¢ from 7 to o and then over 7 from 0 to . This is the
blue region in Fig. 139. Under the assumption on f and g the order of integration can be
reversed (see Ref. [A5] for a proof using uniform convergence). We then integrate first
over 7 from O to ¢ and then over ¢ from 0 to o, that is,

(oo} t (o.0]
F(s)G(s) = f o f f(nglt — Ddrdt = j e~Sh(t) dt = L(h) = H(s).
0 0 L 0

L d

This completes the proof. B

t

Fig. 139. Region of integration in the
tr-plane in the proof of Theorem 1

From the definition it follows almost immediately that convolution has the properties

fug=gey (commutative law)
fr(@itg)=Ff*g +f*g (distributive law)
(fxg)*v=f*(g*v) (associative law)

fx0=0=xf=0
similar to those of the multiplication of numbers. Unusual are the following two properties.

Unusual Properties of Convolution

f* 1 # f in general. For instance,
t

t*1=f7'1d7=%t2¢t.
0o

(f * £)(©) = 0 may not hold. For instance, Example 2 with w = 1 gives

sint#*sint = —3tcost + 3sint (Fig. 140). H



SEC. 6.5 Convolution. Integral Equations 251

EXAMPLE 4

-2

4+

Fig. 140. Example 3

We shall now take up the case of a complex double root (left aside in the last section in

connection with partial fractions) and find the solution (the inverse transform) directly by
convolution.

Repeated Complex Factors. Resonance

In an undamped mass—spring system, resonance occurs if the frequency of the driving force equals the natural
frequency of the system. Then the model is (see Sec. 2.8)

y" S w02y = K sin wol

where woz = ki/m, k is the spring constant, and m is the mass of the body attached to the spring. We assume
¥(0) = 0 and y'(0) = 0, for simplicity. Then the subsidiary equation is

Kw, o Kwg
o Its solution is 0 = _( 2 wd?
& Wo

s2Y + w02Y= S 3
§7 + wq

This is a transform as in Example 2 with = g and multiplied by Kwg. Hence from Example 2 we can see
directly that the solution of our problem is /’J\ 2 }47

= 5 (~wptcos wyt + sin wy?).

Kwg
V) = =l i o
20)0

sin wot) K
2(00

@o

We see that the first term grows without bound. Clearly, in the case of resonance such a term must occur. (See
also a similar kind of solution in Fig. 54 in Sec. 2.8.) 8

Application to Nonhomogeneous Linear ODEs

Nonhomogeneous linear ODEs can now be solved by a general method based on
convolution by which the solution is obtained in the form of an integral. To see this, recall
from Sec. 6.2 that the subsidiary equation of the ODE

2) y' +ay' + by = r( (a, b constant)
has the solution [(7) in Sec. 6.2]

¥(s) = [(s + ay(0) + ' (0]Q(s) + R(s)Q(s)
with R(s) = £(r) and Q(s) = 1/(s®> + as + b) the transfer function. Inversion of the first

term [- - -] provides no difficulty; depending on whether 1a® — b is positive, zero, or
negative, its inverse will be a linear combination of two exponential functions, or of the
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form (c; + cyt)e™ 2, or a damped oscillation, respectively. The interesting term is

R(s)O(s) because r(z) can have various forms of practical importance, as we shall see. If
y(0) = 0 and y'(0) = 0, then ¥ = RQ, and the convolution theorem gives the solution

t
&) 50 = | at = Drenyar

EXAMPLE 5 Response of a Damped Vibrating System to a Single Square Wave
Using convolution, determine the response of the damped mass—spring system modeled by
Y+ 3+ 2y =10, r() = 1if 1 <t < 2 and 0 otherwise, ¥(0) = y'(0) = 0.

This system with an input (a driving force) that acts for some time only (Fig. 141) has been solved by partial .
fraction reduction in Sec. 6.4 (Example 1).

Y(f/ = Q(J) IQ(’C ) Solution by Convolution. The transfer function and its inverse are

N 1 1 1 1
\ﬂ/ O(s) = — hence ) e

’* 52+3s—|—2=(s+1)(s+2):5+1 s 427 gty =¢e¢ " —e
y Gf) :f ﬂ'e”‘?) K(r}leﬁ{cﬁhe convolution integral (3) is (except for the limits of integration)
.
~GA~D) 24-T). ¥(o) = fq(, e f[e—(t—-r) — 2] gr = gmGmD _ 1,-2D),

=[[e " ¢ drpdy

Now comes an important point in handling convolution. r(7) = 1 if 1 < 7< 2 only. Hence if t < 1, the integral

o is zero. If 1 < < 2, we have to integrate from 7 = 1 (not 0) to ¢. This gives (with the first two terms from the
upper limit)
A W _ _ o e e o
' o) = e 0_%3 Oes 50 1)~%e 2t 1))=%_e @ 1)+%e 2-1)
. o "1:. 4L 2
l"LT) = 4 If t > 2, we have to integrate from 7 = 1 to 2 (not to £). This gives
o © },{'y:,wlt\_rg__ Wo) = =GP — 1,72E=D _ (,=C=D _ 1,-2¢-Dy

Figure 141 shows the input (the square wave) and the interesting output, which is zero from O to 1, then increases,
reaches a maximum (near 2.6) after the input has become zero (why?), and finally decreases to zero in a monotone
fashion. |

(&)

J

|
! i
0.5 i : /Output (response)
! l
! /\‘r
| ! |
00 1 2 3 4 t

Fig. 141. Square wave and response in Example 5

Integral Equations

Convolution also helps in solving certain integral equations, that is, equations in which
the unknown function y(#) appears in an integral (and perhaps also outside of it). This
concerns equations with an integral of the form of a convolution. Hence these are special
and it suffices to explain the idea in terms of two examples and add a few problems in
the problem set. ‘
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EXAMPLE 6 A Volterra Integral Equation of the Second Kind

Solve the Volterra integral equation of the second kind®
t

¥ - fy(T) sin(¢c— Ddr=¢t
0

Solution. From (1) we see that the given equation can be written as a convolution, y — y*sint = t. Writing
Y = %(y) and applying the convolution theorem, we obtain

. ¥ 1 : 52 1
s) — Y(s = Y(s =—.
o (s) ()52+1 ()s2+1 2
The solution is
2+ 1 1 1 3
Y(s) = 7 =5t 3% and gives the answer ¥ =t+ i
s s s

Check the result by a CAS or by substitution and repeated integration by parts (which will need patience). B
EXAMPLE 7 Another Volterra Integral Equation of the Second Kind
Solve the Volterra integral equation

t
(@ —f(l + 7yt —"1dr=1—sinht
0

Solution. By (1) we can write y — (1 + )*y = 1 — sinht. Writing ¥ = £(y), we obtain by using the
convolution theorem and then taking common denominators

Y()[l (1+ l) 1 1 N i s2—s5—1 2-1-—35
= B -y =_T= = A ence . = .
. s | $2 s 21 ) 2 sGsZ - 1)

(2 —s— 1)/s cancels on both sides, so that solving for ¥ simply gives

S
Y(s) = P and the solution is y(f) = cosh z. |

CONVOLUTIONS BY INTEGRATION @ 1 s

- 4. =
Find by integration: 22+ 1) (s2 + 16)2
111 2. t#%¢ 1 5
3.t et 4, % % ebt (a +* b) 15. ——_S(SZ — 9) 16. —‘—‘—'(Sz T 1)(52 + 25)
5. 1 * cos wt 6. 1+ (@)

7. &t x g 8. sinz * cos ¢ @(Partial fractions) Solve Probs. 9, 11, and 13 by)using

partial fractions. Comment on the amount of work.
9-16/ INVERSE TRANSFORMS

BY CONVOLUTION SOLVING INITIAL VALUE PROBLEMS
Find f(2) if £(f) equals: Using the convolution theorem, solve:
v 10, — 1 18. y" +y = sint, ¥(0) =10, y'(0)=0
(s =3)s +5) s =D 19. y" + 4y = sin 31, y(0) =0, y'(0)=0
_r Yo, iesar o 20. y" + 5y + 4y = 272, y(0) = 0,
s(s2 + 4) s%s —2) y'(0) =0

31f the upper limit of integration is variable, the equation is named after the Italian mathematician VITO
VOLTERRA (1860-1940), and if that limit is constant, the equation is named after the Swedish mathematician
IVAR FREDHOLM (1866-1927). “Of the second kind (first kind)” indicates that y occurs (does not occur)
outside of the integral. :

Hw
\ ﬁwl b.F_ (3
Prob, 65~ 17 far 2

/p/wué 6. =2/
Prob . fg— @D
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I

Consequently, if £L(f) = F(s), then

@ Z{tf ()} = —F'(s), hence LTHF'(9)} = —1f@)

where the second formula is obtained by applying $£~! on both sides of the first formula.

In this way, differentiation of the transform of a function corresponds to the multiplication
of the function by —t.

EXAMPLE 1 Differentiation of Transforms. Formulas 21-23 in Sec. 6.9

‘We shall derive the following three formulas.

Z(f) f@®
1 1
2 e T (sin Bt — Btcos B7)
3 . [ — oy Bt
e B 2p
4 ot L
4) 1 PP 2 (sin Bt + Bt cos Bf)

Solution. From (1) and formula 8 (with @ = B) in Table 6.1 of Sec. 6.1 we obtain by differentiation
(CAUTION! Chain rule!)

. 2Bs
Lt sin Br) = m i
Dividing by 28 and using the linearity of &£, we obtain (3).
Formulas (2) and (4) are obtained as follows. From (1) and formula 7 (with @ = B) in Table 6.1 we find
(2 + ,32) — 252 $2 — .32
5 L H=— = :
& eSS CE+ P P+ PP

From this and formula 8 (with w = B) in Table 6.1 we have

s2 - g2 . 1
2+ pH2 T 2+

Sf(tcos Bt = —[1; sin ,Bt) =

On the right we now take the common denominator. Then we see that for the plus sign the numerator becomes

52— ,82 + 52+ Bz = 252, 5o that (4) follows by division by 2. Similarly, for the minus sign the numerator
takes the form s — Bz -2 - Bz = —2[32, and we obtain (2). This agrees with Example 2 in Sec. 6.5. =

Integration of Transforms

;(‘,b ?, ﬁ j )//-{ é‘ Similarly, if f(¢) satisfies the conditions of the existence theorem in Sec. 6.1 and the limit
of f(¢)/t, as t approaches 0 from the right, exists, then for s > &,
fo ARG R~ anfiyicoqr

an o Sackss fiks (6) SB{@} = f F() ds hence 55*1{ f F(3) ds} i

Ao Faoth f
Mfmﬂ o
@~ In this way, integration of the transform of a function f(t) corresponds to the division of
: &A
[905)1/;[;@_ byt - .
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We indicate how (6) is obtained. From the definition it follows that

(e}

f:oF(.?)df:Jj[Jo

and it can be shown (see Ref. [GR4] in App. 1) that under the above assumptions we may
reverse the order of integration, that is,

P i0) dt] ds,

(oo}

fs mF(g) Y fo [ f "R ds{] dt = fo “ro [ f " df:l dr.

Integration of e~ with respect to § gives e~*!/(—7). Here the integral over § on the right
equals e~%/t. Therefore,

(oo}

fs F@) ds = fo st i;) dr = se{fi:l} i

Differentiation and Integration of Transforms

. . o® 2+ o
Find the inverse transform of In {1 + — ] =In 0} .
s s

Solution. Denote the given transform by F(s). Its derivative is

d 2s 2s
L 2 p) 2\ _ =
F(S)_ds (1n(s+w)—lns)~52+w2—sz

Taking the inverse transform and using (1), we obtain

2 2 =2 2= '()
COos wt 17 ().
s+ W S

e HF©) = :13‘1{

Hence the inverse f(£) of F(s) is f(£) = 2(1 — cos wr)/t. This agrees with formula 42 in Sec. 6.9.
Alternatively, if we let

2s

2 N
6= 3,2~ 5 then g&) = L7HG) = 2cos wt — 1).

From this and (6) we get, in agreement with the answer just obtained,

S2 + o? «
In B = G(s)ds = —
S

N

80 _ 2
t t

(1 = cos w?),

the minus occurring since s is the lower limit of integration.
In a similar way we obtain formula 43 in Sec. 6.9,

1 a® 2
4 In{l— —5|{= — (1 - coshan).
K t

Special Linear ODEs with Variable Coefficients

Formula (1) can be used to solve certain ODEs with variable coefficients. The idea is this.
Let £(y) = Y. Then £(y') = sY — y(0) (see Sec. 6.2). Hence by (1),

: d dy
@) SB(Iy):“E[ﬂ—y(O)]:—Y—SE-

P ",{iﬁf@)} = = )

feb 2yt
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Similarly, £(y") = s2Y — sy(0) — y'(0) and by (1)
d ay
®) L= o el OO ERETRE 0r 9e).
s

Hence if an ODE has coefficients such as at + b, the subsidiary equation is a first-order ODE
for ¥, which is sometimes simpler than the given second-order ODE. But if the latter has
coefficients ar® + bt + c, then two applications of (1) would give a second-order ODE for
Y, and this shows that the present method works well only for rather special ODEs with variable
coefficients. An important ODE for which the method is advantageous is the following.

EXAMPLE 3 Laguerre’s Equation. Laguerre Polynomials

Laguerre’s ODE is
©) "+ A=y +ny=0
We determine a solution of (9) withn = 0, 1, 2, - -+ . From (7)—(9) we get the subsidiary equation
5 dY ay
—2sY —s°— +y0) | +sY —y0) — |-Y—s5— ) + nY = 0.
ds ds
Simplification gives
5. dY
(e a e (st ) e==0 ().
ds

Separating variables, using partial fractions, integrating (with the constant of integration taken zero), and taking
exponentials, we get

e ) - n+1—sd_ n n+1 - 3 o (s ="
(10% ) Gt s —s2 ke SR s 4 o oot
We write [, = £7%(¥) and prove Rodrigues’s formula
t n
= = ——,—— n =t - —3 ..
(10) Ip=1, (0 = o7~ (@7, n=1,2-.

These are polynomials because the exponential terms cancel if we perform the indicated differentiations. They
are called Laguerre polynomials and are usually denoted by L,, (see Problem Set 5.7, but we continue to reserve
capital letters for transforms). We prove (10). By Table 6.1 and the first shifting theorem (s-shifting),

n —t n! dr . nls™
e . n,— . —
L") = (s—+—l)"—+1 g hence by (3) in Sec. 6.2 55{ 0 (t"e )} = 7PN 1)n+1

because the derivatives up to the order n — 1 are zero at 0. Now make another shift and divide by n! to get [see
(10) and then (10*)]

-
se(ln)=%1)—=x
E .

1-12| TRANSFORMS BY DIFFERENTIATION 5. te %t sint 6. 2 sin 3t
Showing the details of your work, find £(f) if f(z) equals: 7. t2 sinh 4t T 8. tmekt

1. 4¢t¢t 2. —t cosh 2t 9. 2 sin wt 10. ¢ cos wt
3. t sin wt 4. t cos (t + k) 11. ¢ sin (¢ + k) 12. te ™ * sin ¢

Hw

 frod, (4K
frob. 6 8- 14
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13-20| INVERSE TRANSFORMS

Using differentiation, integration, s-shifting, or convolution
(and showing the details), find f(z) if £(f) equals:

6 s
15 (s + 12 i (s2 + 16)2
Tl(s + 2)% + 172 To(s?—-1)?
2 s+ a
17. m 18. In P
19. In —

20. arccot =
s—1 w
21. WRITING PROJECT. Differentiation and

Integration of Functions and Transforms. Make a
short draft of these four operations from memory. Then

(b) Show that

n _l;m
-3 S ()

m=0 .
and calculate o, * * - , [1o from this formula.
(¢) Calculate Iy, - - -, [ recursively from [, = 1,
L =1—1tby

n+ Dipor =Q@un+1-=0l, —nlpy_y.

(d) Experiment with the graphs of [y, - + -, [, finding
out empirically how the first maximum, first minimum,
- - - is moving with respect to its location as a function
of n. Write a short report on this.

(e) A generating function (definition in Problem Set

: . 5.3) for the Laguerre polynomials is
compare your notes with the text and write a report of

2-3 pages on these operations and their significance in o
S Lox" = (1 — ) eHED,

applications.

22. CAS PROJECT. Laguerre Polynomials. (a) Write a n=0
CAS program for finding 1,,(#) in explicit form from Obtain [y, - - -, 1o from the corresponding partial sum
(10). Apply it to calculate ly, * * -, I1o. Verify that [, of this power series in x and compare the [,, with those

-+ -, I satisfy Laguerre’s differential equation (9). in (a), (b), or (c).

6.7 Systems of ODEs

The Laplace transform method may also be used for solving systems of ODEs, as we shall
explain in terms of typical applications. We consider a first-order linear system with
constant coefficients (as discussed in Sec. 4.1)

-

?(Cf‘);’l A ‘7(/‘}) & (1?ij y1 = auyi + a;zye + 810

‘33/'—0"?: dob - Y5 = Gg1y1 T Ga2Y2 + 82(D.

ydf )= ‘ | Writing ¥; = £(yy), Yo = L(v3), G = £(g1), Go = L(gz), we obtain from (1) in
) Sec. 6.2 the subsidiary system ‘

2P | 5¥, = 12(0) = ¥y + ¥y + Gy(®)

y(- W7 sYe — y2(0) = a1 Y1 + age¥s + G2(s).

i

JH=

{ By collecting the Y;- and Y,-terms we have

jm @

(a1 — Y, + a2Ys = —¥1(0) — Gy(s)

as1Yq + (agy — $)Y2 = —¥2(0) — Ga(s).

©))

7{/ sy By solving this system algebraically for ¥;(s), Y5(s) and taking the inverse transform we
‘ obtain the solution y; = £71(Y}), yo = L71(Y,) of the given system (1).
LA Y=

rher, sV = J) = 2 yb] + Z[)
7;?(1) )
:A Y(K)f ?Q) , s
A ¢ E — - g 5y
TN vepalzh) JtTRID
Y= Fob g+ I+J b e “”i’i&kﬂ)/]

pite Mot Fw= AT, Fr= T
/fﬂ;c/ cum/wu"\. Q,{ﬁé\wqji) ’ ¢/

Cra‘/ =

s B
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6.8 Laplace Transform: General Formulas

Formula Name, Comments Sec.
F(s) = L{f(®)} = J e~Stf(t) dt Definition of Transform
g 6.1
f© = LHF(s)} Inverse Transform
Plaf() + bg®)} = aL{f®)} + bL{g®)} Linearity 6.1
£ f0) = Fis — a) s-Shifting -
PYUF(s — a)} = e®f(2) (First Shifting Theorem) )
L(f") = sL(f) — fO)
L") = s2L(f) — sf(0) — £(0) Differentiation
of Function
g(f(n) = Snif(f) — S(n—l)f(o) —_ . 6.2
v Ay e f(n—l)(o)
t 1
& {f (1) dT} S 2H Integration of Function
0
t
(7 *9)0) = | fAge = s
t
= f f(t — ng(n) dr Convolution 6.5
0
$(f * g) = L(NHEL(g)
gg—l{e—asF(S)} - f(l - a) Lt(t _ a) (SCCOHd Shlftmg Theorern) ’
L{tf()} = —F'(s) Differentiation of Transform
= 6.6
4 {-f—%{)—} = f F()ds Integration of Transform
1 » . 6.4
E(f) = . J- e~SHf (1) dt f Periodic with Period p Project
1 B 4 P 0 16
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265
6.9 Table of Laplace Transforms
For more extensive tables, see Ref. [A9] in Appendix 1.
F(s) = Z2{f®} 10) Sec.
1| Us 1 ]
2 1/s2 t
3 1/s™ n=1,2,-+) Y — 1)) -
4 | Vs 1NV 7t '
5 1/5%2 2Vitlm
6 | Us® (a>0) 1*~YTI(a) )
1 3\
7 e
S —a P
1
R T L 3t at
8 i) te
1 1 r6.1
9 - - — 1’ 2, e _— m-=1_at
G—ar ) w—Dnt° ¢
1 1
10— >0 folest
c-aF *709 I® ,
11 —1——— (a # b) 1 (%t — e
(s —a)s — b) (a — b)
S
12 _ +* at _ ppbt
G-as-bn 97TP @—n * D
1 3
13 m '(; sin wt
s
14 m COS wt
15 1 i inh at
Sz — az o sinn a $
s 6.1
h
16 o cosh at
1 1 -
17 = a)2 P ; e sin wt
18 clii €% cos wt
w
(s — a)? + o? )
19 : -l— 1 - t 1
s(s2 + @?) «? ( CosE
6.2
1 1 ,
20 22 + oD 7 (wt — sin wt) |
1 .
21 E+ P EPd (sin wt — wt cos wt) 6.6

(continued)
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Table of Laplace Transforms (continued)

F(s) = L))

f@® Sec.
s '3
22 — = s
2 + PP 2o Sin wt
23 52 1 ] i y 6.6
2 + wz)z 5 (sin wt + wt cos wt)
s
24 % + aDGE + bD) 22 (cos at — cos bt)
1 1
5 e - A _ .
2 Y e (sin kz cos kt — cos kt sinh ki)
2 I :
26 m W sin kt sinh kt
1 [ .
27 T e (sinh kt — sin k)
s 1
28 s _ /
T e (cosh kt — cos kf)
29| Vs—a-Vs—b (€% — e
2Vare®
1 a—>b .
S —(a+b)t/2
30 —_— e 10( 5 z) 5.6
1
31 Jolar) ]
2 + a2 <
1
n| —a e*(1 + 2ar)
(s —a) mt
1 Vi (¢ 12
33 2 _ 2k k> ~~ \5 L 3 5.6
% — aF (k> 0) T® ( a ) k—1/2(at)
34 e *ls u(t — a) 6.3
35 e % o(t — a) 6.4
1
36 | — 7 Jo(2Vkt) 5.5
37 - g8 - cos 2Vkt
\/.; \/ Tt
1 1
38 | e inh 2kt
52 € NeT si
k 2
39| e*F k>0 oKt
2Vt
1
40 —Ins —Int—1vy (y=05772) 5.6
s

(continued)
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Table of Laplace Transforms (continued)
F(s) = 2{f(®} f() Sec.
S=—a 1
41 1 — (bt _ at
n P p (e e™)
52 + o? 2
42 In Y s (1 — cos wt) 6.6
52— a2 2
43 | In ——— — (1 — cosh ar)
s t
w 1
44 arctan — — sin wt
s t
| . App.
45 ) arccot s Si(?) A3l

. What do we mean by operational calculus?
. What are the steps needed in solving an ODE by Laplace

transform? What is the subsidiary equation?

. The Laplace transform is a linear operation. What does

this mean? Why is it important?

. For what problems is the Laplace transform preferable

over the usual method? Explain.

. What are the unit step and Dirac’s delta functions? Give

examples.

. What is the difference between the two shifting

theorems? When do they apply?

7. Is £{f(ng(0} = L{f(}<£{g(1)}? Explain.

10.

11-22

. Can a discontinuous function have a Laplace transform?

Does every continuous function have a Laplace
transform? Give reasons.

. State the transforms of a few simple functions from

memory.

If two different continuous functions have transforms,
the latter are different. Why is this practically important?

LAPLACE TRANSFORMS

Find the transform (showing the details of your work and
indicating the method or formula you are using):

11.

te3t

HW

Frod.

/zc Z.

12. ¢t sin 2¢

b, 775
(o250
£:.7 =2

13.
15.
17.
19.
21.

sin? ¢

tu(t — )

e * cos 2t
sin ¢t + sinh ¢

eat _ ebt

(a # b)

—CHAPTER 6 REVIEW QUESTIONS AND PROBLE MS

. cos? 4t

. u(t — 2) sint

. (sin wt) * (cos wt)
. cosht — cost

22,

cosh 2t — cosh ¢

INVERSE LAPLACE TRANSFORMS

Find the inverse transform (showing the details of your work
and indicating the method or formula used):

23.

25.

27.

29.

31.

33.

10s
s2+2

12
s+ 45 + 20

55 + 4

e
s2

—2s

2s + 4
(5% + 4s + 5)2

24,

26.

28.

30.

32.

34.

15

s2—4

3s
s2—2s+2
2s — 10

e
.5‘3

—5s

s2 - 16
(s2 + 16)2

180 + 1852 + 3s*

57

2

252+ 25 + 1
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