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Chapter 0. Introduction:

Fundamentals of Fluid Flows

1. Concept of Fluid

» What is Fluid ?

A fluid may be defined as a substance that deforms when subjected to a shear stress, no

matter how small that stress may be.

» Two Types of Fluid: Liquid and Gas

- Concerning the effect of cohesive forces

(1) Liquid
- Close-packed molecules with strong cohesive force
- Tends to retain its volume
(2) Gas
- Molecules are widely spaced with negligible cohesive forces.
- Free to expand until it is retained by wall

- Liquids form free surface.

P Fluids are considered as continuum material in classical engineering.



2. Physical Parameters and Units

- SI Unit: International System of Units
- BG Unit: British Gravitational Units

Parameter Dimension SI Unit BG Unit Conversion
Slug 1 slug = 14.5939 kg
Mass M Kilogram (kg)
Pound 1 pound = 0.454 kg
Foot (ft)
Length L Meter (m) 1 ft=0.3048 m
(=12 in)
Time T Second (s) Second (s) Is=1s
Temperature (] Kelvin (K) Rankine (°R) 1 K=18°R
Density ML Kg/m’® Slug / ft* 1 Slug/ft*=515.4 kg/m’
Area M? m’ ft’ 1 m*=10.764 ft*
Volume M’ m’ ft 1 m*=35.315 ft’
Velocity MT! m/s ft/s 1 ft/s = 0.3048 m/s
Angular Velocity T! 1/s 1/s 1/s=1/s
Acceleration MT? m/s> t/s? 1 ft/s* = 0.3048 m/s’
- , Ibf/ft’ 1 Ibf/f® =47.88 Pa
Pressure / Stress ML™ T N/m” (Pa) 5
Ibf/in” (psi) 1 psi = 6895 Pa
Force (Weight) MLT kg-m/s* (N) Ibf=slug-ft/s 1 Ibf=4.4482 N
Energy / Heat / Work ML’L? J=N-m ft-1bf 1 ft-Ibf =1.3558 ]
Power ML’L" W=1/s Ft-1bf/s 1 ft-1bf/s = 1.3558 W
— 1 slug/(ft-s)=
Viscosity ML"T kg/(m-s) slug/(ft-s)
47.88 kg/(m-s)
Misc.

1 knots = 0.515 m/s
1 mile = 1.609344 km

1 pound = 12 ounces

1 gallon (US) = 0.00379 m’
1 nautical mile = 1.852 km

°C = (5/9)*(°F -32) (C: Celsius, F:Fehrenheit)



3. Methods of Describing Fluid Motion
Two ways to describe the fluid motion

(i) Lagrangian description: follows all fluid particles and describes the variation around
each fluid particles along its trajectory
(i1) Eulerian description: the variations are described at all fixed stations as a function

of time

3.1 Lagrangian description

Let’s specify a fluid particle, say k-th particle. A certain physical property q(X,t)

(e.g. position, velocity, density,...) can be written as
a(Xk 1),

where X, is the (X,y,2) coordinate of the particle. X, should be traced all through the

fluid motion, i.e.
X =Xk Xok-1)
where the subscript 0 indicates the quantity at t=0.

For instance, if q(Xy,t) is the coordinate of the particle, the velocity at time t

becomes

g = 9%
“ Tt

3.2 Eulerian description

Let’s specify a fluid volume. A certain physical property in the fluid volume is
written as
q(%,0),



i.e. defined in the fixed coordinate system, (X,y,z), and time. We can define a variation

with respect to space or time, s.t.
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3.3 Conversion of Variations between Lagrangian and Eulerian

Let’s defined a certain function (or quantity) F(X,t) in Eulerian frame. After a
short time At, F(X,t) becomes F(X+VAt,t+ At). Then

AF = F(X + VALt + At) — F(X,1)

=F(%,t) +(\7-VF +%}At — F(X,t) + O(At?)

Therefore,
im 2F —F G vE
At—wo At
Lagrangian Eulerian

Total Derivative: Conversion between two frames
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Steady Flow: no difference in time => DRt( )=

3.4 Velocity Field

Velocity: v = (u(x, Y,Z,t), V(X, Y, Z,t), W(X, Y, z,t))
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Acceleration: 2
Dt

Convection

3.5 Continuous Flow Field

For a fluid flow to be continuous, we require that the velocity V is a finite and

. . - . .0 _ .
continuous function of space X and time t. That is, 5v and V-V are finite but

. 0 . _ o .
not necessary continuous. If gv and V-V are not finite, it is non-physical as long as

any singularity does not exist.
(1) Material volume remains material. No segment of fluid can be joined or broken apart.

(i) Material surface remains material. The interface between two material volumes

always exists.

(ii1) Material line remains material. The interface of two material surfaces always exists.

3.6 Flow Lines

e Streamline: A line everywhere tangent to the fluid velocity vV at a given time. In an

Eulerian description, it would be a “snapshot' of the flow.

e Pathline: The trajectory of a given particle P in time. The photograph analogy would
be a long time exposure of a given particle.

e Streakline: Instantaneous locus of all particles that pass a given point. In an Eulerian
description, it would be a “snapshot's of certain particles.

e Timeline: a set of adjacent fluid particles that were marked at the same (earlier)

instant in time



Chapter 1. Basic Equations of Fluid Flows

» Einstein’s Notation: Repeated indices are summed by implication over all values of

the index i.

= u121 + upT2 + u3zT3
3

= uT;
i

= u;T;

In this example, the summation is over i =1, 2, 3.

1. Kinematics of Fluid Motion in the Euler Frame

o _1(aqi+6qj}1[aqi_@qjj
Xj 2\0xj O ) 2{0Xj 0%

= B = 4
Rate-of-Strain Tensor Vorticity Tensor

=> Sql =8XjEij +6XjQij

1.1 Rate-of-Strain Tensor

In matrix form,



p ke I TIOCA ACL  ICLE
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1|09, &g 0y 94y  Ous3
Eij =|€21 €2 €xn|=7|_ =+ 2 '
o e o] 2 0xy  OX3 0%
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ECC s

Diagonal terms
These indicate the rate of stretch per unit length in the direction of (x,y,z)

In particular, when ( is the velocity of fluid flow,

€jj =€11 + €y +€33
6_u N Q N @ . rate of volume dilatation
ox oy oz

Proof: Consider a small volume V (t) = AxAyAz . At t+ 6t, the expansion volume

becomes

V(t + 8t) = AX 1+a—u8t Ay 1+@6t Az 1+@8tJ
OX oy oz

= AX Ay AZ| 1+ A v oW S5t +O(5t?)
ox oy oz

=V(t){1 + (a—“ LNV @jést +0(3t? )}
ox oy oz

Then, the rate of volume change becomes

1 dv ou ov ow _
— = — 4+ —+—=V-0
V(t) dt ox oy oz
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(a) Diagonal component (b) Oft-diagonal component

Off-diagonal terms
These indicate the rate of angular deformation. As above figure shows,

=M=£&=ﬂ8t and —892=M=AL&=%]& (note the direction of

50
! AX AX  OX Ay Ay

angle).
Then,

3 80, v au
ot ot  ox oy

This is called the rate of shear strain.

Note that the rate-of-strain tensor is symmetry, i.e.

eij :eji

1.2 Vorticity Tensor

In matrix form,



I 0 00, dup ogy  oq; |
oX OX OX OX
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T a9y  0g gy 003
Qjj =| @21 2 ©3|=7 o 0 Xy %y
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Note that the vorticity tensor is anti-symmetry, i.e.
Wijj =~ jj

There are only component, and sometimes these are written as

i j k
vxgold 0 0
ox oy oz
d 02 03

when ( is the velocity, this tensor indicates the rate of rotation of velocity.

(Line integral of this tensor becomes circulation component.)

2. Surface Forces and Stresses

Let’s consider a fluid volume (as shown in figure). Then we can define a stress tensor of

surface force and stress,
611 S12 O13
{Gij }= O21 ©O22 023

031 ©O32 033

where the fist subscript indicates the index of surface and the second means the

direction of acting force/stress. The diagonal terms are the normal stress components,



while the off-diagonal terms are the shear stress components. Based on the conservation

of angular momentum, we can find that

Gij :Gji

3. Stress Tensor and Rate-of-Strain Tensor

When we assume a small volume of fluid (not in macroscopic scale), the stress that the

volume experiences is written as

Gij =—p6ji +‘Eij

where p is the normal pressure and tj; is the viscous stress which depends on

gradients of velocity.

3.1 Newtonian Fluid

Newtonian fluid is the fluid which satisfies with

8U|
m_

il OXm

aU|

= Gijim
OXm



where ojjn 1s a coefficient tensor. In principle, there are 3=81 ajjm coefficients.

For a isotropic fluid (no change in direction), this A’
MNewtonian Fluid
reduces to
Fluid
ou; Ouj ou
‘Cij=ual+aj+7n m8ij
X Xi OXm
du,

where > ox

p : dynamic viscosity

L : bulk elasticity, ‘second’ coefficient of viscosity

In particular case of impressible Newtonian fluid,
3Ui auj
Tij =W~ +t——
an 8Xi

3.2 Non-Newtonian Fluid

Non-Newtonian fluids are the fluids that viscous stress shows nonlinear behavior w.r.t.
8U|
Ny

Many fluids, e.g. toothphase, honey, heavy oil, flows like a fluid if the shear stress is
above a critical value. In this case, we can use a popular non-Newtonian fluid modeling,

the Bingham plastic model. This model is written as

<
au 0 T< T,

el E(T_TC) T>1,

where 1. isyield stress and p is the Bingham viscosity.



4. Kinematic Transport Theorem
Theorem 1

Let G(X,t) be the a certain fluid property per unit volume, then

ST, 60V = I, =G av + [[[GU,ds

where U, isthe normal component of the velocity of a point on surface S.

Theorem 2

If V(t) is a material volume containing

the same moving fluid particles, then

DRt”LGdV=”L§GdV +[[,Gu-nds

5. Mass Conservation: Continuity Equation

Let G(X,t) be the fluid density, p. Then, as long as we stay in a material volume in

which there is no mass source or sink, we know that

ol pav =0

by mass conservation. Using the Theorem 2, we can get
_U_[/ %dv + ”s pli-ndS = ”L %dv + ”L V.-(pi)dV =0  (by divergence theorem)

or



p _
E +V- (pu) =0 — Differential form of mass conservation

Alternative form:
op - _ Dp
—+U-Vp+pV:-i=—+U-Vp=0
ot p+p Dt Y

In the case of an incompressible fluid, we can get the continuity equation:

6. Momentum Conservation: Euler & Navier-Stokes Equations

By Newton’s second law, the force acting on a certain fluid volume should be in an

equilibrium condition. This can be expressed as

%(momentum of fluid) = I IS (surface force)dS +_UL (body force on fluid)dV

(1) % (momentum of fluid)

%(momenturn of fluid in i - th direction)
— ([ pui &V = JIf, = puiaV + [J, (pui)a-nds
:”"[/ |:g(pui)+v -(pUiU)i|dV

—HL{ %w.—+uiV-(pu)+pu-v-<ui)}dv

From mass conservation, the second and third term inside above integral becomes

ZEero. Hence,



M, {P%H)U.v.(ui)}dv =m/ p%dv

(2) ”S (surface force)dS

I .[S (surface forcein i - th direction )dS = ”S cijn;ds
dcj; v (by divergence theorem)

3) H IV (body force on fluid)dV

I} L (body force on fluid in i - th direction)dV = [ L p f,dv

where f; is defined as a body force component.

From (1), (2), (3), we can get

Dui % o =123
th _aXJ p | ey

For incompressible Newtonian fluid, we can have the Navier-Stokes equation such that

Du;  0uy ou; 10p 0%u; 1
=1 ; == —f; Tensor form
Dt ot t uj@xj pOox; + Vaa:jﬁxj + pfl
v _ @ +4-Vi=—--Vp—+ AT + - Vector form
Dt ot D D

where

v="E : kinematic viscosity [L%/T]
p



When there is no viscosity, we will get the Euler Equation,

D'um; E)u@ (’9uz 1 3‘ 1 .

Dt = 5 + “jaxj = _;8% + ’;fz- Tensor form
Du ou . , _ 1 15 o
E—E—ru Vu:—;Vp—I-;j Vector form

- Unknowns: u, v, w, p =>4 unknowns
- Equations: Continuity + Navier-Stokes equation 3 (X,y,z) =>4 equations

- Knowns: material parameter, body force

7. Boundary Conditions

7.1 Kinematic Boundary Condition

The kinematic boundary condition specifies the position, velocity, or their behaviors on

fluid boundary.

- On rigid body

No-flux condition

0-i=V-i

where V is the velocity of moving boundary

No-slip condition (viscous flow)

U-t=v-t

where t is the tangential vector on fluid boundary



- On free surface

The water particles on free surface stay on free surface.

D_)?_ DX s,
Dt Dt

where X; g indicates the position of free surface.

7.2 Dynamic Boundary Condition

The dynamic boundary condition specifies the pressure, stress, or their behaviors on

fluid boundary.
P interfaces Tij interface
_ . '
P = P+ Pinterface , T
p
Tii = Tjj + Tij T
1 1 Jinterface P

For instance, on a free surface boundary in the absence of surface tension, the dynamic

boundary conditions become p=P,;, and tj; =0 where Py is the pressure above

free surface.

When surface tension is not ignorable, we have to consider the stress across boundary.

Define X is a tension force on surface. Then, for the 2-D case as shown in figure, the

force equilibrium says

df df
am—~ApJMH:229m—xQZ%
2 2

o N~
~1 a0
~2

L&p=%




In the case of 3-D case,
Ry Ry

If the boundary profile is z=n(x,y),

o'n o'
2 2
Lt X o

"))




Chapter 2. Similarity

2.1 Why Similarity is important?

*To carry out model test
*To understand the physical parameters involved

*To check the sensitivity to each parameters

2.2 Three similarities

(1) Geometric similarity
-Shape
(i1) Kinematic similarity
-Velocity, flow pattern
(iii)  Dynamic similarity
— Force, Pressure
l
In experiment, we assume that if

(1) & (ii) are satisfied, (iii) is satisfied

=This is the fundamental assumption for model test.

2.3 Non-dimensional parameters

_ £
(i) Y% _Fr : Froude number ~ —eria
1\ gL gravity
. uL F
(il) — =Re :Reynolds number ~ "M%
v I:viscous
P Fpressure
(111) = Eu : Euler number ~ ———
1, F
ipu inertia
2
L Eulerian inertia
(iv) —=S : Strouhal number ~ - — — —
aT convection inertia (Ve V)V

l



4 key parameters

Variation
P-PR, oL
"7 = o :cavitation number (where Pv : vapor pressure)
2
> pu
uT
. C = Kc : Keulegan-Carpenter Number
*When surface tension is involved,
3 - -
u’L inertia  force
=We : Weber number ~ -
X/ p Surface tension force

2.4 Buckingham’s w theorem

* Total number of parameters involved in the physical problem : m
* Total number of independent parameters : n
= Total number of non-dimensional parameters

=m-n
2.5 For continuity eq. & Navier-Stokes eq.

*Parameters involved
*Length : L
*Time : T
*Velocity : M/L
*Pressure : M/LT?
«Density : M/L’
*Viscosity : M/LT
*Body force = gravity : L/T*

* Independent Parameters : L, T, M : n =3

Number of non-dimensional parameters = 4



Chapter 3. Ideal Fluid flow

3.1 Ideal fluid

@ inviscid (v =0)
(2) incompressible (%—'[; =0)

This is a good approximation when viscous effect << inertia effect
3.2 Governing equations

+ Continuity equation
Veli=0

* momentum equation : Euler equation

‘Z_l:Jr GeVi= _le —f! (where = body force)
2,

* Boundary Condition
(1) Kinematic boundary condition
Gefi=Vef :No-flux condition
Where V : goven on boundary
(i) Dynamic boundary condition
p = specified
% shear stress 7=0 since v =0

3.3 Irrotational flow

* Vorticity : VxU=a

Q|
I

* [rrotational flow
Vxui=0

(frictionless flow)

c §<)|Q) -
< Q| —
= ,Q,)|Q) =

3.4 Velocity Potential

! First order P.D.E. (and N-S eq. is 2" order P.D.E.)



If (i) ideal fluid, in v = o,%—f = const.

(i1) irrotational flow,

We can define the velocity potential @

o
I

<
S

* @ is a scalar quantity

* The velocity vector V always points towards higher value of the velocity potential

$ )

v
>

U=0

+ Continuity equation
Veli=Ve(VD)=V’®=0 = Laplace Equation

3.5 Laplace equation

V® =0

Indicates the conversion of
(1) mass,
(2) momentum,

(3) energy

Unknown : @



Condition : V’® =0
= We can solve the problem

Pressure, p, is not involved in Laplace equation
3.6 Bernoulli’s equation

* Euler equation

a—uﬂToVU:—in—gR
ot P

Substituting U =V®, we can get

%;?+%|VCD|2 +£+ gz = f(t) =const. = Bernoulli’s equation
2,

* Steady flow
1
p= —/J(Ev2 +977)
1
= —p(5|V<D|2 +97)

* Hydrostatics (U = 0,% =0)

3.7 stream function

<l
Il
<
X
s

3.8 Simple Potential Flows

(1) uniform stream
® =U e X +const
(2) source
m
A 2D: O~Inr=d=—TInr
2
m

B. 3D: q>~i:>CD:——
r 4ar



(3) Vortex

2
(4) Dipole(doublet)
A 2D: o= Cosd
2 r
B. 3D: @ :ﬂcoiﬁ
4z r
3.9 Superposition

D=, if V'O, =0

3.10 Added Mass
*Artificial mass

*Total Momentum due to the body in motion

L,=mU , + [[[ pu, dw

Lo=(m+my)U,

m,, :added mass

m+m,, : virtual (or total) mass



ma=ﬂ pLuJ—XXd\vL where Uy = ——

10
- I[P %, s

- [ pSon.ds

Where @ is velocity potential due to “UNIT” velocity

*In a general form

m,; = ”Sp%njds

Where @, : velocity potential due to “UNIT” velocity in i-direction.

n; :normal vector component of j-direction

m,; :added mass for j-direction due to the body motion to i-th direction

*Some examples

2D cylinder,
radius : a
Volume : WV

@ma:p‘qL

3D sphere
Radius : r
Volume : WV

d

1
>m, =—pV
2,0

a

3.11 Other important concepts in Fluid Dynamics

(viscous Flow)



eLaminar Flow

*Turbulent Flow (and From Laminar flow/Turbulent flow, Boundary Layer)

*Boundary Layer
*Separation

*Instability, Transition

3.12 Summary

Viscous Fluid

Ideal Fluid

Potential Flow

Navier-Stokes Equation Euler’s Equation Vd=0
Unknown : u,v,m, p Unknown : u,v,m, p o

Number of equations : 4 Number of equations : 4 Number of equations : 1
Boundary Condition No-flux No-flux

No-slip / No-flux




Chapter 4. Linear Waves: Introduction

4.1 Primary Mechanisms involved

*Source of wave generation
-Wind : primary source
-Earthquake : especially for tsunami
-Moving bodies : ship waves

-Meteorite

*Source of restoring to create oscillatory motion : Gravity

=(Ocean) Waves are gravity waves (mostly)
Exception : capillary wave
4.2 Two characteristics of waves

(1) Time characteristics

n

T

2
W= T :wave frequency

=Change to frequency-domain quantity

(2) Space characteristics

n




ok = 277[ :wave number

swave slope : kA

=}
=

depth effect :

SIS
= >

(1)< (2) : Dispersion relation

4.3 Free Surface Boundary Condition

/ P=Patm 7
1 y
/ T (x.y,z) X

(1) Kinematic FSBC

If a geometric surface is written to
F(x,y,zt) =0, (e.g. X’ +y’+z°—-a*>=0)
On the moving surface

d—F =0 all the time
dt

oF

= H +UeVF =0 (where U is moving speed)

On free surface
F=z2-1n=0

BE_dp)
N Dt dt

— L@ +UeV(E-1) =0



Z 020 gy =tk y. 2 =1
ot ox oy 0z 0z

Thus, 27,2601 0001 08 _,
ot oxox oyoy oz

(2) Dynamic FSBC

Bernoulli’s Equation

%+1V¢0V¢+%+ g =C(t)
ot 2 0

o¢ 1 P
L h - VheVh+gn=C(t)——2am
a2 peVg+gn=C() »

When ¢=0=7r=0,then

City—Fam _ g
yo,

%+%V¢OV¢+ gn==0

4.4 Small Amplitude Waves

*Assumption : kA <<'1 : small slope
Y
Ta

é <<1
A
= Small disturbance

*Linearization

Taylor Series Expansion



H@==H&)+@«M§TUQ4-Q%éL§gH%)+ ,,,,,,

(1) Kinematic F.S.B.C.

on  0p0on 0¢on_0o¢
ot oxox oyoy o),

0 an+a¢an+a¢an_a¢
oz o

o —
%\ ot Tk ax oy oy e

2 2
Lm0 [a_m%a_mﬁa_ﬂ_%J _
z=0

2 At ot ox ox oy oy oz

O(g):%—%

=0 onz=0

Physical interpretation

1] |
/ e

The velocity of wave elevation is equal to the vertical velocity at z=0

—_

_ \'
wo? v 3 !
0z W o0 1

/

Small slope

(2) Dynamic F.S.B.C.



op 1 0(og 1
—+—=VogeVgp+ +n—|—+=VgeV
(6’[ SVoeVe @ml0 ”az(atJrz ge ¢+97710
+nt =0
O(g):%+g77:0 at z=0
*Boundary Value Problem
ZZOT y
/l/ >X
Vg=0
o¢p 1 0¢
— 4 :0 - _ 7
ot an or i g ot

on_0¢_o o 91_099
ot oz ot oz



Chapter 5. Linear Waves

5.1 2-D standing Wave

*Boundary Value Problem

NI Ay

F.5.B.C

:

*Periodicity
-Time : n(X,t) =n(Xt+T),d(X,t) =d(X,t+T)
-Space : n(X,t) =n(x+ 4,1),4(x,t) = p(x+ 4,1)

*Separation of Variables

¢ =X(X)Z()T (1)

*Periodicity in Time

T(t)= sinwt where o= 2_|_—7[

(1) Laplace Eq.

oX* az?
2 2 B P
K7+ % xr=0 o X & _
OX 0z X z
oz’ oX?
2
VA X X +k*X =0



Three possible cases for k is
- real
-0

0 imaginary
(Reference : Dean & Darlymple. pp.55)
#for ODE, F,+C’F =0

If ¢ : real, F is oscillatory

imaginary : F is exponentially decrease or increase

*Periodicity in space = k is real THEN,

Z,-k’Z=0 . X = Acos kx + B sin kx

X, +k*X =0 Z =Ce“ +De™

We will consider X = Acoskx (we will return the other case)
¢ = Acoskx(Ce* + De™)sin wt

(2) Bottom Boundary Condition

9 _0 onz=h (1=
(574

kiCe —De™}=0 thus, Ce¥ -De™ =0

Or C=De*"

¢ = AcoskxD(e*"* +e™)sin et
= AcoskxDe"" (eX**" 4+ e ¥ gin ot

=2 AD cos kxe*" cosh k(z + h)sin wt

(3) Dynamic F.S.B.C.
o¢

=——— when z=0
Ty a

g



_é% = —g {2ADc0skxekh coshk(z + h)}Z:0 cosak

n= —§{2ADekh coshk(z+ h)}cos kX cos wt

_@ {2 ADe"" coshk(z + h)} =17, wave amplitude
g

o 9
cosh kh @

—2ADe"" =

_ g, coshk(z+h)
@ cosh kh

cos kx sin wt

¢ =

Velocity potential of 2-D standing waves.

(4) Kinematic F.S.B.C.

an = o on z=0
ot oz
on o¢p g7, , sinhkh

——=—wn,coskxsinaot =—=— k cos kxsin wt
ot 0z @  coshkh

2
w = gk tanh kh : Dispersion Relation

Summary

_ g7, coshk(z+h)
w cosh kh

cos kxsin at

¢ =

n = Acoskxcos ot



" = gk tanh kh

og _ gAk coshk(z+h)

=u sin kxsin ot
OX w coshkh
4 =W=— QAK sinhk(z +h) coskxsin awt
OX 10} coshkh
P (04 1
=X 1L VeV
P ( ot " 2 / ¢J

Linear pressure P _ 09 _ gA coshk(z+h)
P ot @  coshkh

cos kx cos mt

5.2 2D Progressive Waves

5.2.1 Velocity Potential

*Now consider another standing waves s.t.
_ gn, coshk(z+h)

¢= @  coshkh
n = Asin kxsin ot

sin kx cos wt

*Add two standing waves

¢ = g—Aw(sin kx cos wt — cos kxsin a)t)
®  coshkh
_ Q_AMsin(kx —at)
@  coshkh

n= A{cos kx cos wt — sin kxsin a)t}
= Acos(kx — at)



Becomes a progressive wave

_ 9Acoshk(z+h)
®  coshkh
1 = Acos(kx — wt)

sin(kx — awt)

Put K(z) = coshk(z+h)
cosh kh

k > k—>0
coshkh ‘h 1

%
sinh kh A kh
tanh kh 1 kh

Deep water shallow water

A
coshkh
sinh kh
1.0
tanh kh




K(2)

K — oo kh =0

Exponentially decay constant

Same trend in ¢ since

¢ = 9A K (2)sin(kx — at)
@

5.2.2 velocity component

%: gAk coshk(z+h)
OX w coshkh

cos(kx —wt)

WZ% _ gAk sinhk(z +h)
oz w coshkh

sin(kx — wt)

using dispersion relation o = gk tanh kh

coshk(z +h)
coshkh

sinhk(z +h)
coshkh

u= Aw cos(kx —wt)

w=Aw sin(kx —wt)



* On z=0

u= U, = Awcothkhcos(kx — at)

w= W, = Awsin(kx — at) (: 5_77)
ot

u _ coshk(y+h)

I_ coshkh

w _ sinhk(y+h)

W_O_ coshkh

k>0 2] 79, exponentially decay

ekz e"z

k—>0 ¢ 7%, constant

1 1Y
h

5.2.3 Pressure : Bernoulli’s equation

o¢
P=—pZZ_ gz
PPl

- p% : dynamic pressure P,



coshk(z+h)

cos(kx —wt)
coshkh

P, = pgA
In Deep water...k — oo
P, = pgAe* cos(kx —wt) = pge“n

Ptotal ~ ,Og [ﬂekz - Z]

Shallow water... k >0

P, = pgAcos(kx—wt) = pgn
Ptotal ~ pg[ﬂ - Z]

-
O

o S

Ps =—pgz

&

Wmﬁiﬁ

5.2.4 Particle Orbit (Lagrangian)

X—X,)* 0°u
%axz (X0,t)+ ..

dx ou
g U=—=Uu(X,,t)+(X=X,)—I(X,, 1)+
c.g at (X, 1) +( o)ax(o)



P(X.Y)

In linear theory, u~u(X,,t)

- t
X :jou(xo,t)dt

.X, = _pSOShK@ D) Gty
sinh kh

P sinh kh

Xy,Z, 1s mean position of particle

(X, =%)* (z,-2,)°

) a’ " b>

Where

coshk(z, +h) b_Asinhk(ZOJrh)
sinhkh > sinh kh

1

a=A

*In deep water...

coshk(z, +h) ~ ekt
sinhk(z, +h)

as kh— o

This means.....

axb

Therefore, the orbit becomes circle, decaying exponentially



decaying '

In shallow water...

coshk(z,+h) —>1
sinhk(z, +h)—>0

%%
=— =B

Almost flat...

Q Elliptic orbit

5.2.5. Dispersion relation

* @’ = gk tanh kh



o’ =gk in deep water
o’ = gk’h in shallow water

. oT=k?T
TT=417
=Longer waves are faster...

*When k is known, straight forward to compute @

*When o is known, maybe complicated to get k

In general...

Tanh kh

o’ / gk

»

We need to get this kh

*Approximation of k

(1) kh>3 = A<2h :Deep water
2 o’
o =gh=k=—

(i1) kh<<1 = typically, 4 >20h
@

RED

®*h

w* = gk*h = k

(iii) Otherwise, Put C =

A. Ifc>2, khn=C(1+2e2° —12 ¢ +..)

" kh



B. Ifc<2, kh~+/C(1+0.169C +0.031C> +......)

5.2.5. Wave speed : phase velocity

@
k

Using dispersion relation @” = gk tanhkh

A
.VP :?:

Ve = @ _ 19 tanhkh
k k

eV, = \/% in deep water

\/gh in shallow water <- not a function of k.  ie. @

*When @ is constant....

e.g
7 ®” = gk, = gk tanhkh
o,k —=2 = tanh kh
K
Notice that
l k—“’ <1
00 k

Ve ok Kk,
— e
Ve, o/k, Kk

*Wave speed in deep water is faster than that in finite depth

*Wavelength in deep water > wave length in finite depth

5.3 3-D Plane waves

A
Ay

or

j = tanh kh



5.3.1. 3-D Plane Progressive Waves (PPW)

A
y
o

KCos@b----------——-=Xc-- .

. e
k sin @ > X

_0A ) '

¢= ; K (2)sin(kx'—at) K. —Kcoso
k, =ksin@

_9A K(z)sin(kxcos @ + kysin 8 — at)
®

5.3.2 3-D Standing waves (Oblique Standing Waves)

n, = Acos(kxcos @+ kysin & — at) Ay
n, = Acos(kxcos(z — 8) + ky sin(z — ) — wt) P
A 0
/
»X
n, +1, = 2Acos(kxcos @) x cos(ky sin @ — wt) _><< N %
Standing x Progressive -
A y

v



5.3.3 General Form of Superposition...

2D: n = _EO A(w)cos( kx — ot)dw

3D: = Lz” f A(w)cos(kxcos @+ kysin 0 — wt)dw
In discrete forms...

n= z A cos(k;x —ayt)

n :ZZAU cos(k;xcosd, +k;ysin, —w;t)
i

5.4 Wave energy & Group Velocity

5.4.1 Sectional Wave Energy /
*Kinetic energy /
e
. 7 1 2
Kinetic Energy = J._hE|V¢| dz

:J'_Oh%|v¢|2dz+fé|v¢|zdz /

O(e?) O(e”)
1
=~ — pgA’
4/79
*Potential Energy
o1
PE. :(pgn)(zj
2
Loy
2 center: L

2



5.4.2 Mean Energy Density

E

% [ (KE.+PE)dtdx= % pgA> > for both deep & finite depth

Thus, Wave energy oc A’
5.4.3 Energy flux across a vertical plane

Rate of work done by wave flow passing a vertical plane

= Energy flux across the plane
P=Fev
For our case...

P = Jj?hP o U, dz

Where P : pressure

u, : Normal velocity (=)

w22
(2

_l A2. l+—kh 2
2 P9 1 2 Sinh 2kn K

for linear problem

1

5.4.4 Group velocity

1 kh ) )
Where V. =| —4+ —— |V . Vp is phase velocit
(2 sinh 2kh j P PSP Y



kh — o kh— 0

1
VeV VY,

A
V, /vy,
1.0
1 Vy
2
Vo,
| ~ w?h
3 g
| h/A

*The other way go derive V,

do_ofl,  kh
dk k{2 tanhkh




Chapter 6. Wave-Maker problem

<>
<> A
—
>

¢(t) = goeiwt

6.1 Boundary Value Problem
At far,
o> Re{(pei“’t} : Free wave

2D or 3D plane waves

At near,

o= Re{goei’”t }+ Re{l//ei"’t }
@  Laplace equation
Vg0 =Vip=0,Vy =0
@ F.S.B.C. (Free Surface Boundary Condition)

¢tt+g¢z on z=0

2

;//Z—w—t//zo on z=0
g

@  Bottom Boundary Condition
w,=0 on z=-h

@  Body Boundary Condition



a—l//vn on x=0
OX

(®  Radiation condition
As X—> o, i=0
Why? ¢ already satisfies

6.2 Velocity potentials of local waves

X Z .
D= TXX - _% =—k* (similar to 2-D plane waves)
X wt k2x =0

B=X=Ae"+Be™
= X =Be™
Z =Ce'” + De '

[ -ioh _ myaioh | _
©) - _|a{Ce De } 0
= C = De?"
=y =2BDe'" cos{o(z +h)je ™™
2

@ e *(~o)sin{o(z + h)}—a)Ee_OX cosio(z+h)}=0  onz=0

2
o tanhoh = e
g

*Dispersion of Local waves

sthere is infinite number of modes



N | W
N

27

Ml-ﬁ

®?h

gow

*Velocity Potential : general form

W= Zzyn “*cos{o, (z+h Ei
n=l

n=l1

Note that

I_OhWn(Z)"//m(Z)dZ =0 m=#n

#0 m=n
6.3. Amplitude of ¢
Bottom Boundary Condition

8¢ Reﬁwﬁo'm}

- !
g}

0 {_ Ik([) + i(_ O )V/n }@dz
A
= [ iwé,pdz

oh



From orthogonality

_ kfhgpzdz - a)j°h £ iz

Then, substituting ¢, we can get

0 A
A== [ 96 (2)dz
where

.~ \/Ecoshk(z+h)
\/h+ 9 sinh?(kh)

2
w

When &, (Z) is known, we can get A using above...

e.g.

> > > ~7
N S >

> —
> 7
< \-7 §0(2)=a(1—a)

+ 1
v v




Chapter 7. Ship waves

7.1 Moving frame

A Z y

Y
> X ——»u
X=X -Ut

X=x+Ut=y=Y
=27

ol _o8] o _of _,o

Otlxy, Otl,,, otox otf,, OX

*Linear F.S.B.C.

62¢+g%:0 on z=0 (*)

ot? 0z

Notice that this is valid in XYZ Frame in xyz frame. (?)

d? d oy
b=l =—uU—=
ot> (at 8xj ¢

2 2 2
B SO S JN
ot oxot OX 0z
*Steady flow 2() =0

TV A

Steady F.S.B.C. with moving speed U



2
a¢+g%:0 on z=0

ox? 0z

UZ

*Wave elevation

__19¢ _1(% U %j
g ot " g\ ot OX
If steady,
n= Yo (insert P.7-1)
g OX

7.2 Kelvin Waves

Trensverse /

waves
diverging waves

2
-a?+%%:0 on z=0

ox- U~ oz

2
a‘f+g—|;l%=0 L : characteristic length. i.e. ship length
ox- U- Loz

1 104 =0 Fr: Froude Number

+
P Fr’ L oz
() Fr—0 6, —0
(i) Fr— o b, —>0=¢=0

(iii)

% Fr is a key parameter in wave resistance problem.

*In shallow depth, (i.e. A>>h),



: depth Froude Number, is a key parameter

_ v
Jon

(e.g.)if Fn

Fn

1,1.e.

v
Jon

wave speed @

Jon

——m e e T S=a=-—--=

Ry S

Only diverging waves

* Fn=1.0:critical depth Froude #



Chapter 8. Wave Spectra

8.1 Random wave generation

g

) >>>>>>
= D ) |7

wind >)))))

I S)

\
waves Fully dcveloped

seas= swell
O

=

=

Fetch Leryth

A

Not fully
Primary concern

developed
In many problems

Range of spreading
wind %\\
) &///>

Short—crested sea

. Little spreading
wind ‘

long-crested sea




8.2 Stochastic Process
*Definition

(1) Stationary
A stochastic Process x(t) is stationary if its density function is independent in
time, i.e. f(x,t) = f(x)

(2) Homogeneity
A stochastic process x(t) is homogeneous if its density function is independent
on the spatial location.

(3) Ergodicity
A stochastic process x(t) is ergodic if

YZE[ ]:—llmj x(t)dt

T—ow

And

0" =E[x-xf]= . Selim ][ (-x) e

T—oow

In most practical applications, a stochastic process which is stationary and

homogeneous is ergodic.

Zero—up crossing

height

Zero—up crossing /
\/\/A\ /8 R\

Zero—dow\ crossing

> »
< »

Zero—up crossing period Zero—-down crossing period

* Superposition of multiple waves
—  We will consider the random waves as a summation of multiple wave

components

= I . JO n (a) ,0 ):{ @ d @ for short-crested waves



- n= j:n(a), 6‘)1(0 for long-crested waves

* Consider a random variable x.
-Central Limit theorem

If a random variable x can be expressed as the sum of a large number of independent

random variable X;

X=X +X, + X3+ X, +...+ X, (n: large)

Then the density f(x) of x is the Gaussian function, s.t.

~(x-x}
f(x)= ! e A,z

o2

— 2 o .
Where X,o°are mean and variation

A

Frequengy

Of occuilrence

/ Gaussiau

distribution

X(t
A) Can be complex

\/\/A\/\/\/\/\//\\//\\/\ﬁ' t

Mean : X = E[X] = %hmﬂ x(t)dt
T—o

) _ 1 .. T _
Variance: o’ = E[(X_X)z]:ELIE}-[T (X—X)2 dt

We say this system is “ergodic”



8.3 Stochastic Description of Random Waves

7 =0
n= an (X, y,t) = z A cos(a)kt + Hk) ; 0, 1sphase
k k

IF X=X, +X, +...+ X,

X, X, 5., X, - INdependent

n

v



1
S, (@)A®, =5Ak2

S, (@) : Poser spectrum of A,

= energy specturum
8.4 Wave Spectra

(1) Pierson-Moskowitz spectrum

81X10 g’ o0.74(gNw)’

S,(w) =

(2) Bretschneider Spectrum
A /.
S (w)=—e "

n 5

()

A, B : constant

*ITTC Spectrum

A= 8.1x107°g>



A1 . .
B= % ,» H,;: significant wave height
e

*[SSC spectrum

O 173H,
T
B 1
Tl
: 2z Mo
T, :mean wave period = m
1

°m, = J‘(:oa)"S,7 (w)dw

*H 13 = 4\/mo

*ITTC spectrum = ISSC spectrum

- T, -
0.11,, 2 (T, )" 0% 2]
5,(@) == —H,, Tl(z—ﬂl) e

-

s, (@)

: the other form

Tmodal

8‘7



I
Energy:zgpgﬁz

A

# of waves
(probability
Density

Function)

/

» A (waves amplitude)

1/n

A% :1/n—th highest wave amplitude

Ky : significant wave amplitude
3

(®Summary

. n(t) = z A cos(o,t+6,)

n(t) shows Gauss Distribution : Central Limit Theorem

= Y INCY



s, (@) A Wave spectrum

2
o =

© ey 8

S(w)dw~ ) S(w)Aw

=0’ :«%Aﬁ =S, (0 )Aw

Or A =25 (o)Aw

*Wave spectra

(1) Pierson-Moskowitz Spectrum

(2) Bretschneider spectrum
A g4
S (w)=—e ¥
n 5
@
A&B are functionsof H,; & T,

.Hl/n



PDF

A
PDF,1/n
X
"
An
K% :1/n—th highest wave amplitude
Ky : significant wave amplitude
3
H, =2 K%
S, @
Tm
>

'mk:.[o a)kSn(a))da)
*H,, = 44/m

T, =27r—



T =1.408T, where T, =27 |2
m2

@
s, (o

Wind speed T

s, (@)

»

Decaying seas

Fully developed seas

developed seas

S



A

s, ()]

»

Wind fetch size

v



8.5 Statistics of wave peaks

. n(t) : Gaussian distribution (by central limit theorem)

PDF &
n=0
772
1 Eys)
_ ——e “°
f,(PDF of n)= O_\/ﬂ

We know that

] -
o’ =2577k2 :L S, (w)do

sdefine m, :jowwksn(w)dw

m, =0’ :areaof S (@)

*Probability of Peaks

A

n —

| ng

VAV, \/



PDF of Peaks of 7(t) : Gaussian, Narrow-banded Distribution.
=Rayleigh Distribution

A2
PDF of A = f,(A) = Ae ™ where h : wave height
m

0

*Cummulative probability function(CPF)

PD:A CDF “1_0 ------------------- )
/ 9
A A A A=
A
w2
Ny “Tam, o
PA)=["X e mdx=—g TTO| =1-e ™

1 -P(A): Peak > A

A2

2mg

=€



v

*1/n-th highest & averaged 1/n-th highest wave

A

\4
>

[ ]

H , = significan t wave height
b

[
(\]
>

RN

v



\l/Most probable height

PDF

\L significant H1/3 = h1/3

1

H hl/3 H1/3 hl/lO

. . m
T, = defined in Bretschneider Spectrum = 27—
ml

m . .
T, =27 |—> :average period between “zero upcrossing”
2



T o =1.408T, : Most probable -> corresponding period = T

peal peak

8.6 Prediction of wave amplitude
*CPF of Rayleigh Distribution

X2 A?

P(A)= J-OAmie_zm"dx =1-g ™
0

P(A

*1-P(A) : Probability of exceedance
e.g. 1% ->P(A)=99%

*1-P(A) = Q(A)

AZ

QA)= e ™™
A2
InQ(A)=—- om,

A=.-2m,InQ(A)

e.g. Q(A)=0.01 > 1% = A=./92103m,

v



Q(A)=0.0001 ->0.1% = A=,/13.8155m,

*Probability of 1/N occurance

A:W/—ZmolnL
N

= J—-2m,InN

*Application to wave amplitude prediction

“Return Period” = The time between successive occurrence
e.g. 10 year return period

smeans ; expect the occurrence of the same event after 10 year later.

=For ocean engineers (and naval architects)

“100 year return period” of ocean wave is a primary concern
*M year return period

time of year
T

mean

N(Number of wave occurrence) =

IfT : second

mean

M Year % 365 Days/ year % 24Hours/Day % 36OOSecond/Hour

N
Tmean
e.g. M=100
N = 3.1536x10’
T

mean

*Procedure of wave amplitude prediction

= For a specific M and S, (@)

(1) Compute m, :J-:a)ksﬂ(a))da)

m,,m,,m, is needed.



m
=1.408T, or T,=27_|—> where T,=T
m2

eg. T

peak mean

3.1536x10’
T

mean

3) A=2m,InN

m, =2.25,M=100years & T, =T,
N= 3.1536x10*

) N =

nean — 10 second

A=42x2.25x1n(3.1536x10° ) = 9.3841m

=There 1is a possibility that the largest wave in 100 years has the amplitude of
9.384m

8.7 Short-term Prediction & Long-term Prediction

(1) Short-term Prediction
For “a” specific spectrum, we can apply the above concept
= Short-term prediction

(2) Long-term prediction

*Consider a set(table) of S, ().

(3) For instance, for the Bretschneider spectrum, we can define a set of S, (@) s.t.

() (2) (3) e "
Tl Tl Tl Tl

)
H1/3

(2)
H1/3

(3)
H1/3

)
H1/3




LONG-TERM PREDICTION

Tmean
PDF $
We need to consider all
the range of H,, and
dT / /
Tmean °
<> > Hs
dH
*Define
Expected Time of (H, , -£< H<H, , +d—H)m ( Trean -d—T<T<Tmean+d—T)
2 2 2 2
Total time
= p(H1/3 BTmean)deT
*Expected ‘number’ of waves for p(H,;,T,.,)dHdT
_ Total time o(H, ., T )dHdT
Tmean
*Expected ‘number’ of waves for p(H,,;,T,..,) and H>H,

= wp(Hl/meean)deT x p(H >Hy,Ten)

mean

*Forall H,,; and Tmean, the probability of H > H, is

Q=

Expected total number of waves for H > H,

Expected total number of waves
Or



p(H1/3 mean)p(H > HO mean)deT

00 00
J‘J’ total
00

mean

o0 00
total

IJ 1/3 mean

00

mean

)dHdT

*For Rayleigh Distribution

A Hi
e 2™ —e ™ (2A =H,)

2H?
(or =e i (o Hy5 =4ym,))

*If the occurrences of H,,; and Tmean are independent

p(H > HOTmean) =

p(H = H1/3,T :Tmean) = p(Hl/3)p(Tmean)

_Hi

o) T o
I = p(Tmean)dTI p(Hl/3)e A OdT

Q:() mean
[ dT [ p(H,,,)dT
[Tt p(T, . )T [ p(H, )
0 " mean 0
=1.0
HO
= Q jp(Hm)e " gH
_2( HO )2

=j p(H, e " dH
0

*In a discrete case (e.g.table)
HO 2

2(——
Q~> p(H,,e s dH

Or

Where p; = p(H,,5;)dH



*Numerical Implementation

meanl Tmeanz Tmean3
Hl/3,l
Hl/3,2
Z NT,l NT 2 NT 3
N, .
H.i
Pi =
N

Total

Tean i total time = > T P =T mean

mean ean,j, T.j

Where P ; =P(T ., ;0T

N
N
*Design wave height of M-year return period.

T,

Total

)

_F -2( Ho
mean Hy s
° Ze

T 3.1536x107

*For a given M, we need an iteration to get a corresponding

*We can plot H, asafunctionof Q or 1-Q=P
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Fig. 3.33. Long-term probability distributions for several offshore areas. (After Riggs.#%)

P, =Probability of T, & H y

ij 13
1 J
*Probability of exceedance = 1— ZZ P(AP; (7))
i

8.8 Other Probability Functions

(1) Weibull (Gumbel III tupe)
PDF =abx" e’
CPF=1-e* x>0

=0 X=<0

(2) Fretchet
(3) Gumbel type I
(4) Gamma Function ...



Chapter 9. Hydrodynamic Force on Offshore

Structures and Marine Vehicles

9.1. Force on a structure under wave & current action

(1) Froude-Kryloff Force ; Pure incident-wave component. Force integrated on
body surface without any interaction between the body & wave.

Fex = L  Pincident wave ds

e.g. for linear waves

Fex :J. —P% ds
sB. ot

Why?

Bernolli eg. 22+ v4.vg+g+P-cq
ot 2 )

Ct)=0z +&
o

o¢ 1 p—p
oV Vp=—t =
Ve Ve p

Linearization & put
p,, = 0(. no disturbance in calm. There is only hydro static)

o

= Peinear = —p—

(% Linear F.S.B.C is different form this. Why?

That’s the condition on z =0 which should be imposed on z =7 in exact case)

(2) Diffraction Forces ; Force due to the existence of body. The body is assumed
to be at rest .(i.e. no motion.) when there is no body motion,

Force due to wave = F.K.force + Diffraction force.

(3) Radiation Forces ; Force due to moving body in calm water. In potential theory,

this is mostly due to wave generation



(4) Drag Forces ; Force due to viscosity. Frictional drag, form drags are in this

category. Drag force oc velocity’

(5) Lift Forces ; Force due to non-symetrical separation or vortices on the body.

Then lift force acts transversely to the velocity.

(6) Other Forces ; misc. force. e.g. nonlinear force mixed of above, higher-order

forces.

*We usually group “Froude-Kryloff force + radiation force” referred them as the fluid
inertia forces.
Why? Thos are related to acceleration of fluid.

*”’In the absence of current”, we define the Keulegan-Carpenter number s.t.
TV,
d

K.C=

Where
d ; body length (diameter in many cases)

T ; wave period

V,,; maximum fluid velocity
% 1in linear wave theory

V oA, T=2%
w

_2mpg A 27A

K.C
wd d

*Physical meaning of K.C
4 Possible Maximum
Advancing Distance of Fluid Motion in a period

K.CLU[ -
body size
esmall < K.C —_big
for fixed body.
Inertia 1S Viscous drag

important 1s dominant



2A/d 4

00t A ] ——

QD?Drag domin ant

o+ ST 90%drag

@ Morison
. N l —————————————— ~ 10%drag
0.1 @ i '
@ : Inertia Do min nant
0.01 ; : : i o
- 1 ; o 100 1,000 A/d

" diffraction impor tan €
Figure4 ; Load Regimes

*Typically

M A/d <5(or A=<5d);Ignorable drag inertia and diffraction forces are important.
@A/d =5 and 2A/d <1 (or A>=5d & 2A<d);
(2A: wave height) insignificant drag and diffraction Inertia forces are important.
@1=<2A/d <10 ; Both the drag and inertia forces are important.
(Morrison equation is useful.)

@2A/d =10 (or 2A>=10d ) ; The Drag forces are important.



*Example ; 4 =400m, A=15m for design wave.

=

o / \

AT FZZ 727
Gravity Platform (/ZW/W

(i)Caisson; 2A/d =03, A/d=4 = case

(ii)Legs; 2A/d=3, A/d=40 = (3 case

(iii) Jacket ; 2A/d =30, A/d =400 = @ case

9.2. Drag Force

*Viscous Drag

(D Pressure Drag (“from drag” in ship resistance)

(@) Frictional Drag

- separation

/A\ point

pressure no separation with separation



*Viscous Drag= function of R,

R,= Raynolds number = vL
v
*Typically we called

(D subcritical : R <10’
2 overcritical : R, >=2x10°

@ critical : 10° < R, <2x10°

9.3. Morrison Equation

*Total Energy due to a moving body
= Energy of Irrotational Fluid Motion
+ Energy of (Wake) Viscous (Effort) Motion
+ Energy of Body

* (Force on the Body) ¢ Velocity
= Rate of Energy Change

Q E

«—— U,D

control volume



dE
ot DU (D: Drag on the body)

*Kinematic Energy Due to irrotational flow
1
K.E= Ema| u |2 (ma: added mass)

4 kEy=ma ey
dt dt

(% potential energy is not a primary concern as long as buoyancy does not change.)

*Viscous flow

distance of wave movement

|u |etime

E, :%{p|u|-t-l}u2CD

*C, : coefficient

de, 1
i =7 lu[IC,

*Body Motion:



*Force :

11 du
D=—{—pu’ullC, +(m+mau—
U{2p || e ) dt}

1 du
—pAuulC, +(Mm+ma)—
2,0 || o +( )dt

*Morrison EQ
1 du
D =—pCulujul+ pC\, vV —
210 D || Plwm dt
C, : drag coefficient

C,, : (virtual) mass coefficient

+C,.C,, = function of
(DI (Cp)
(2)K.C.
(3) Shape
(4) Separation point (C)
(5) Roughness (C))
c - {(m +ma)/ pV : moring body
M (pV +ma)/ pV : moring fluid

*For a 2-D circular cylinder,

1 T ,,du
D =— pC.dulul+ poC,, —d* —
2PD || pM4 dt

*d :diameter
*Application for force computation

(1) Select an appropriate Wave Theory.
Predict velocity of flow.
(2) Select the set of Appropriate C,,.C,

(3) Apply Morrison E,



*For linear waves (cylinder)
Cp,=1~14, C, =20
For nonlinear waves
C, =08~1.0, C,, =2.0

9.4. Force on Cylinder

— 0
U(zt) C *F(t)= | dFdz
> — FO j
h
- *M(t) = J.ZFdZ : moment w.r.t. sea floor
0
— d h
> zd? du 1
*dF =C,, p———+—=C,pduju
— Ml at 2 0P ||
_>
Y




*Forces on inclined cylinders.

2
dF = CMp%Un +C, %pdun lu, |

dF I%pcfﬂ'd lu,|u,

*C,: frictional coeff.

= h
/
Un\A/ R :J.dF”dZ
v 1]
h
F, = [dRdz
F, 0
% Strip method; We assume that
‘ the interactions between sections
U, =U sin¢ are ignorable.
U, =U cosd
9.5. Forces on Cylinders in Waves
(1) Inertia force
0 2
F = I—pCM AW COSh_ KEEN Gn otz
“h 4 sin
xd® 5 1 .
=— @” A—sin(wt
P  Sin(et)
=—F, , sin(wt)
zd*> o’ A
where F, , =
o =P 4 K

(2) Drag Force



0

1 cosh® k(z +h)
F, = | = pCod (@A)
b _J;2'DCD (@A) sinh? kh
=lpCDd(a)A)2 {Slnh(2‘kh)27L 2kh}
2 4k sinh” (kh)
=k, cos a)t|cos a)t|

cos(awt) |cos(a)t)| dz

cos(at) |cos(a)t)|

_9% _ A, wcos(kx —wt) = QAMCOS(W )
0 X o coshkh coshkh
du = oy a)~—COSh k@z+h) sin(kx —wt) = a)zA—COSh k@z+h) sin(kx — wt)
dt 1) coshkh

cosh kh

% We will consider u & d—uat -Xx=0

*Ratio of maximum forces

Foo _ Co é

{smh(2kh)+kh} . 12
Fo, =C,d 2 sinh” kh

C
= Depend on —2-, —
c, d

= When — issmall, F,, >~ F g

d

*Typically C,, =2, C, =1

F
When —22=1.0 ?

1.0
(i) kh—> o ; EAD 27 or zd—AD 47

(i) kh—>0; 2d—AD (27[)2%



SH =

Dragon dominant
X 2A

inretia dominant

"h/ (o kh)



