
What we will coverWhat we will cover

Contour Tracking
Surface Rendering
Direct Volume RenderingDirect Volume Rendering
Isosurface Rendering
O ti i i DVROptimizing DVR
Pre-Integrated DVR
Unstructured Volume Rendering
GPU-based Volume RenderingGPU based Volume Rendering



R C ti IdRay Casting Idea

How we do parallelizeparallelize ray casting
and traversal of all view rays!!



T t M iTexture Mapping 

+

2D image 2D polygon Textured-mapped
polygong



H d t t k?How does a texture work?
Texture

R G B A

For each fragment: Texture Lookup:For each fragment:
interpolate the

texture coordinates

Texture-Lookup:
interpolate the
texture colortexture coordinates

(barycentric)
texture color

(bilinear)



Texture based volume renderingTexture based volume rendering

Proxy Geometry 
(Polygonal Slices)(Polygonal Slices)

1. Render every slice in the volume as a texture-
mapped polygon

2 The proxy polygon will sample the volume data2. The proxy polygon will sample the volume data 
3. The polygons are blended from back to front



2D T t2D Textures
A i li d liAxis-aligned slices
Bilinear Interpolation in Hardware
3 copies of the data set in memory3 copies of the data set in memory 

Reorganize the textures on the fly is too time consuming. 
We want to prepare the texture sets beforehand

xz slices yz slices xy slices



2D T t D b k2D Textures: Drawbacks

Bilinear instead of trilinear interpolation 



2D T t D b k2D Textures: Drawbacks

d  d

Inconsistent sampling rate 

d
d´ ≠ d

Emission/Absorbtion incorrect
Supersampling not possible!Supersampling not possible! 



2D T t D b k2D Textures: Drawbacks

Popping effect: There is a sudden change of slicing 
direction when the view vector transits from one 
major direction to another
The change in the image intensity can be quite visible



3D Texture3D Texture3D Texture3D Texture

Trilinear interpolation in hardware
Slices are parallel to image plane

Volume is one texture block in memory



3D T t Ad t3D Texture: Advantages

Consistent sampling rate
(except for perspective projection)(except for perspective projection)
Supersampling by increasing the number of slices

d dd



Volume RenderingVolume RenderingVolume RenderingVolume Rendering

TextureTexture mappingmappingTextureTexture--mappingmapping

Ray CastingRay Casting How we do parallelize!!parallelize!!Ray CastingRay Casting How we do parallelize!!parallelize!!



G hi H dGraphics Hardware

Graphics hardware is used on most PCs now
Dedicated hardware 2D and 3D graphics g p
processing unit (GPU)

nVIDIA: GeForce series (latest: GeForce 8800/G80)
ATI:Radeon series (latest: Radeon HD2900/R600)

Derived by game & graphics applications
Input: Triangle list, textures, etc. 
Output: Pixels in the frame buffer
Programmable pixel, vertex, video engines



G hi H dGraphics Hardware
CPUs are optimized for high performance on 
sequential code

B h di ti t f d tiBranch prediction, out-of-order execution

GPUs are optimized for highly data-parallel nature of 
graphics computationgraphics computation 

multiply & add vectors in 1 clock

Highly Parallel processingHighly Parallel processing
64~320 processing units for vertex and/or pixel processing

High level languageg g g
Direct3D 10
OpenGL 1.5 / 2.0



GPU i d PCGPU i d PCGPU in modern PCsGPU in modern PCs



AGP/PCI E BAGP/PCI Express Bus

AGP bus
1x/2x/4x/8x
2.1 GB/s bandwidth with AGP 8x

Asymmetric (2GB/s for Download, 0.1GB/s for Upload)
M th b d h ld t th t d dMotherboard should support the expected speed

PCI Express
2 /4 /8 /162x/4x/8x/16x
2 x 4GB/s bandwidth with PCIE 16x



AGP/PCI E BAGP/PCI Express Bus

Earlier PCI Express



AGP/PCI E BAGP/PCI Express Bus

Effective PCI Express Bandwidth

l C

high-speed
interconnect

Typical PCI Express Usage, Per NVIDIA



Computational PowerComputational PowerComputational PowerComputational Power

GPUs are fast…
quad-core 3 GHz Intel Core 2 Extreme QX6850 theoretical : 
38 6 GFlops 8 5 GB/sec peak memory bandwidth38.6 GFlops, 8.5 GB/sec peak memory bandwidth
GeForce 8800GTX observed : 518 GFlopss, 86.4 GB/s peak 
memory bandwidth

GPUs are getting faster
CPUs: annual growth ; 1.5×

decade growth : 60×

GPUs: annual growth > 2.0×g
decade growth > 1000







GPUGPU

1. GPU is a stream processor
Multiple programmable processing unitsp p g p g
Connected by data flows

instructions

Vertex F t

Ass
Ras

FraOp

Fram

Application Vertex
Processor

Fragment
Processor

sembly &
sterization

mebuffer
perations

mebuffer

data

n r

Textures



GPUGPU

2. Greater variation in basic capabilities
Recent GPU support branching, but not perfect

P f bl d b i li llPerformance problem caused by pipeline stall
Limited capability

Vertex processors don’t support filtered texture mapping
Still slow

Some processors support additional texture types
In ATI, 3Dc which is an exciting new compressionIn ATI, 3Dc which is an exciting new compression 
technology designed to bring out fine details in games while 
minimizing memory usage 



GPUGPU

3. Optimized for 4-vector arithmetic
Useful for graphics – colors, vectors, texcoords
Easy way to get high performance/cost

•• Shading languages have vector data types Shading languages have vector data types 
and operationsand operations

h fl fl flh fl fl fl

•• Shading languages have vector data types Shading languages have vector data types 
and operationsand operations

h fl fl flh fl fl fle.g. Cg has float2, float3, float4e.g. Cg has float2, float3, float4
•• Obvious way to get high performanceObvious way to get high performance
•• Other matrix data typesOther matrix data types

e.g. Cg has float2, float3, float4e.g. Cg has float2, float3, float4
•• Obvious way to get high performanceObvious way to get high performance
•• Other matrix data typesOther matrix data types•• Other matrix data typesOther matrix data types

e.g. Cg has float3x3, float3x4, float4x4e.g. Cg has float3x3, float3x4, float4x4
•• Other matrix data typesOther matrix data types

e.g. Cg has float3x3, float3x4, float4x4e.g. Cg has float3x3, float3x4, float4x4



Why GPU for Volume RenderingWhy GPU for Volume RenderingWhy GPU for Volume RenderingWhy GPU for Volume Rendering

A massively parallel architecture
A separation into two distinct units (vertex and p (
fragment shader) that can double performance if the 
workload can be split
Incredibly fast memory and memory interface
Dedicated instructions for graphical tasks
Vector operations on 4 floats that are as fast as 
scalar operations (intrinsic parallel processing)
Trilinear interpolation is automatically (and extremely 
fast) implemented in the 3D-texture



Ray Casting with GPURay Casting with GPURay Casting with GPURay Casting with GPU

Automatic calculation of ray positions by letting 
the hardware interpolate color values
Built In fast tri linear interpolation of 3DBuilt-In fast tri-linear interpolation of 3D 
Textures
Full floating point compositing at almost no cost
Changing from orthogonal to perspective 
projection without additional effort
Automatic calculation of intersections in theAutomatic calculation of intersections in the 
depth buffer



d d ff l
Rest iction of ideo memo si e ( pto 1GB)

Limitations and difficulties
Restriction of video memory size (upto 1GB)

No full support of integer operations

The lack of double precisionThe lack of double precision  

Programmability still restricted in a number of ways, like limited 
loop count and limited conditional statementsp

Readability of a GPU shader is still inferior to standard high-level 
languages

Different vendors support different features and extensions, 
making it difficult to write an algorithm for every platform

Choice of API may be more crucial than on the CPU (OpenGL orChoice of API may be more crucial than on the CPU (OpenGL or 
DirectX? Assembler fragment programs or high-level shading 
language? And if so, which shading language?)

Unstable drivers, half-implemented features etc...

Difficult to apply non-graphics tasks



Rendering PipelineRendering Pipeline



R d i Pi li (fi d)Rendering Pipeline (fixed)

Triangles

Transform 
and 

Lighting
Clipping Rasterizer

g g

FBlendingTexture Frame 
Buffer

Display



Rendering Pipeline 
( bl )(programmable)

Triangles

Vertex 
Shader Clipping Rasterizer

Pi l FBlendingPixel 
Shader

Frame 
Buffer

Display



Data Flow in Streaming 
A hit tArchitecture

1. Vertex Shader
Input: vertex attributesp

position, color, normal vector, texture coordinates, etc.

Output: vertex attributes
transformed position, lit color, processed texture 
coordinates

R t i ti2. Rasterization
Fragments are generated
Attributes are interpolated linearly



Data Flow in Streaming 
A hit t ( t )Architecture (cont.)

3. Pixel Shader
Input: fragment attributesInput: fragment attributes

lit colors (diffuse&specular), texture coordinates 
(multiple sets)

O f ibOutput: fragment attributes
final color (including alpha channel)
Any values can be written to texture memory withAny values can be written to texture memory with 
multiple target setting

4. Fragments tests and frame-buffer alpha 
blending



Graphics HardwareGraphics Hardware

Geometry Fragment

Scene Description Raster Image

Vertex Pi l

Programmable Pipeline

Geometry
Processing

Fragment
OperationsRasterization

Vertex
Shader

Pixel
Shader

PixelsPrimitives FragmentsVertices



Programmable Vertex Processor

copy vertex
attributes to

input registers

Begin
Vertex Fetch next

instructioninput registers instruction

Read input-
or temporary

Vertex
Program registers

Mapping:
Negation

Program
Instructions

Input- g
Swizzling

Execute
d

Input-
Registers

Temporary nocommand

Write to
output or

Temporary
Registers

Output
Finished?

no

output or
temp. registers

Output-
Registers yes

Emit Vertex



F t PFragment Processor

copy fragment
attributes to

Input register

Begin
Fragment Fetch next

instruction

Read input
of temporary 

registers

Fragment
Program

Instructions

Mapping:
Negation
Swizzling

Input-
Registers

Temporary

Texture
Instruction? no

Calculate texture
address and 

sample texture
Texture

yes

no

p y
Registers

execute
instruction

yes

Finished?interpolate
texel color

Texture-
Memory

no

Write to output
or temporary 

registers

Output-
Registers

yes
Emit Fragment



void main(float4 position  : TEXCOORD0, : per each fragment
float3 normal    : TEXCOORD1,

out float4 oColor     : COLOR,

uniform float3 ambientCol,             
uniform float3 lightCol,
uniform float3 lightPos,
uniform float3 eyePos,
uniform float3 Kauniform float3 Ka,
uniform float3 Kd,
uniform float3 Ks,
uniform float shiny)

{

float3 P = position.xyz;
float3 N = normal; 
float3 V = normalize(eyePosition - P);



P bl Sh dP bl Sh dProgrammable ShaderProgrammable Shader

Flexibility in rendering pipeline
All advanced rendering techniques can beAll advanced rendering techniques can be 
programmed
Shader program cannot have global memory

Gl b l t t b f d th t t i tGlobal constants can be fed thru constant registers
Interpolants can be fed thru texture addresses
Global vector data can be fed thru textures



32-bit IEEE floating-point
throughout pipeline

FramebufferFramebuffer
Textures
Fragment processorFragment processor
Vertex processor
InterpolantsInterpolants



Vertex ShaderVertex ShaderVertex ShaderVertex Shader

Vertex shader or vertex program
Replaces fixed transformation and lighting engine to p g g g
flexible one
Vertex can be animated
Current version: Shader Model 4 with Direct3D 10



Block Diagram of Vertex Shader 1 0Block Diagram of Vertex Shader 1 0Block Diagram of Vertex Shader 1.0Block Diagram of Vertex Shader 1.0

Registersg
v*: vertex stream data
r*: temporary register
c*: constant register
oD0, oD1, oFog, oPos, oPts, 
oT1-oT7: output registersoT1 oT7: output registers



V t Sh d 2 0V t Sh d 2 0Vertex Shader 2.0Vertex Shader 2.0

256 instructions with loop
Registers

Constant registers: 16 boolean / 256 floating-point / 16 
integer
12 temporary floating point registers12 temporary floating point registers
16 vertex data registers
2 color output registersp g
8 texture coordinate registers



V t Sh d 2 0 ( t )V t Sh d 2 0 ( t )Vertex Shader 2.0 (cont.)Vertex Shader 2.0 (cont.)

Instructions
add, dp3, dp4, dst, expp, lit, logp, mad, max, min, mov, mul, rcp, 

lt brsq, sge, slt, sub

Macros
e p f c log m3 2 m3 3 m3 4 m4 3 m4 4exp, frc, log, m3x2, m3x3, m3x4, m4x3, m4x4

Modifiers
Destination mask: r {x}{y}{z}{w}Destination mask: r.{x}{y}{z}{w}
Source swizzle: r.[xyzw] [xyzw] [xyzw] [xyzw]
Source negation: -rg



V tV t Sh dSh d 2 0 biliti2 0 bilitiVertex Vertex ShaderShader 2.0 capabilities2.0 capabilities

4-vector FP32bit operations, as in GeForce3/4
True data-dependent control flow

Conditional branch instruction
Subroutine calls, up to 4 deep
J t bl (f it h t t t )Jump table (for switch statements)

Conditional clause
No performance gainNo performance gain

New arithmetic instructions (e.g. COS)
User clip plane supportUser clip-plane support



V tV t Sh dSh d 3 03 0Vertex Vertex ShaderShader 3.03.0

Branching and looping
Up to 24 dynamic flow controls
Causes drastic decline of performance

Texture sampling w/o filtering
512 instructions per program
(effectively much higher w/branching)
32 t 4 t i t32 temporary 4-vector registers
256 “uniform” parameter registers
4 t t l4 texture samplers
6 clip-distance outputs
16 ib ( l )16 per-vertex attributes (only)



V tV t Sh dSh d 44Vertex Vertex ShaderShader 44

More flexible branching / loop
Supports filtered texture samplingSupports filtered texture sampling
Supports native integer type and boolean ops
4096 t 4 t i t4096 temporary 4-vector registers
16x4096 constant registers
128 texture samplers



Pi l Sh dPi l Sh dPixel ShaderPixel Shader

Pixel shader or fragment program
Replaces Texture enginep g
Complex per-pixel lighting
Flexible Operations with multiple texturese b e Ope at o s t u t p e te tu es
Flexible Texture coordinate manipulation
Current version: Shader Model 4 with Direct3D 10Current version: Shader Model 4 with Direct3D 10



l k f l h dBlock Diagram of Pixel Shader 1.4

Pixel-based processingPixel based processing
Lighting, texturing, etc.

RegistersRegisters
c*: constant register
r*: temporary registerr*: temporary register
t*: texture register
* l i tv*: color register



Pi l Sh d 2 0Pi l Sh d 2 0Pixel Shader 2.0Pixel Shader 2.0

32 texture instructions (no limit in 3.0)
64 arithmetic instructions
Instructions for vector processing and texture 
f hfetches

similar to vertex shader, but limited set of instructions

Fl ti i t i t 32 t t d 12 tFloating point registers: 32 constant and 12 temp
Per-pixel shading
T t di t i l tiTexture coordinate manipulation
Operations with multiple textures



Pi l Sh d 2 0Pi l Sh d 2 0Pixel Shader 2.0Pixel Shader 2.0

Instructions
Arithmetic instructions
Texture instructions

Modifier
Source selector: access each channel
Data modifier: bias, negate, invert, scalex2, signed 

liscaling
Instruction modifier: _x2,_x4,_x8,_d2,_d4,_d8,_sat
+ co iss ed inst ctions+: co-issued instructions



Pi l Sh d 3 0Pixel Shader 3.0

Branching and looping
Up to 24 dynamic flow controls
Causes drastic decline of performance

More than 512 instruction slots
32 temporary registers
224 constant registers
10 interpolated registers
No indexed reads from registers

Use texture reads instead

No CPU memory writes



Pi l Sh d 4Pixel Shader 4

More than 64k instruction slots
4096 temporary registers
Supports indexed data loading
Supports native integer type
32 interpolated registers
16x4096 constant registersg
8 FP32 x 4 perspective-correct inputs







High Level Shading LanguagesHigh Level Shading LanguagesHigh Level Shading LanguagesHigh Level Shading Languages



High Le el Shading Lang agesHigh Le el Shading Lang agesHigh Level Shading LanguagesHigh Level Shading Languages

Assembly language is too difficult to program
High level languages similar to C language
Similar to general shading language like RenderMan

But this is for real time rendering

Compiled for various back-ends
A di h h d d i libAccording to the hardware or rendering library

Being developed now
Cg HLSL RenderMonkey OpenGL 2 0 etcCg, HLSL, RenderMonkey, OpenGL 2.0, etc.



Design Goals of High Level Design Goals of High Level 
Shading LanguagesShading Languages

High level enough to hide hardware specific 
details
Simple enough for efficient code generation
Familiar enough to reduce learning curve
With enough optimizing back-ends for 
portability



CGCGCGCG

C language for graphics
By nVIDIAy
Similar syntax to C with many restrictions 
and exceptionsp
Integrated with Cg SDK
Supports various targetsSupports various targets

GeForce series or DirectX versions
OpenGLp



HLSLHLSLHLSLHLSL

High level shading language
By Microsofty
Included in DirectX 9 spec and Visual 
Studio .NET
Similar syntax to C with many restrictions 
and exceptionsp
Not support OpenGL
Compatible with Cg nowCompatible with Cg now

But in the future(?)



G l P LG l P LGeneral Purpose LanguagesGeneral Purpose Languages

Microsoft Accelerator
Precompile general codes to shader codes

Nvidia CUDA
ATI CTM



HLSL E lHLSL E lHLSL ExampleHLSL Example



//------------------------------------

------

// Th is shader com putes standard transform  and 

lighting

   // Transform the normal from object space t

   vNormalWorldSpace = normalize(mul(vNorm

    

//HLSL Example CodeHLSL Example Code
ligh ting

//------------------------------------

------

VS_OUTPUT RenderSceneVS( float4 vPos : 

POSIT ION

   // Compute simple directional lighting equat

    float3 vTotalLightDiffuse = float3(0,0,0);

    for(int i=0; i<nNumLights; i++ )

T t lLi htDiff + Li htDiff [i] *POSIT ION, 

                         float3 vNorm al : NORM AL,

                         float2 vTexCoord0 : 

TEXCOORD0,

if i t N L i h t

       vTotalLightDiffuse += g_LightDiffuse[i] * 

        

   Output.Diffuse.rgb = g_MaterialDiffuseColor 

g MaterialAmbientColor * g L                         un ifo rm  in t nNum Lights,

                         un ifo rm  boo l bTexture,

                         un ifo rm  boo l bAn im ate )

{

                        g_MaterialAmbientColor * g_L

    Output.Diffuse.a = 1.0f; 

    

// Just copy the texture coordinate through
VS_OUTPUT Output;

float3 vNorm alW orldSpace;

floa t4 vAn im atedPos = vPos;

    

   // Just copy the texture coordinate through

    if( bTexture ) 

        Output.TextureUV = vTexCoord0; 

   else
// An im ation the vertex based on tim e and the 

vertex's ob ject space position

if( bAn im ate )

vAn im atedPos += float4(vNorm al 0) * (s in

        Output.TextureUV = 0; 

    

    return Output;    
vAn im atedPos +  float4(vNorm al, 0) * (s in

(g_fT im e+5.5)+0.5)*5;

    

// Transform  the position from  ob ject space to  

hom ogeneous pro jection space

}

hom ogeneous pro jection space

Output.Position =  m ul(vAn im atedPos, 

g_m W orldV iewPro jection);

    


