I \AMhAat wae will eover
\ 111 UV \ Wy |

| VVIICAL VYV

= Contour Tracking

= Surface Rendering

= Direct Volume Rendering

= |Isosurface Rendering

= Optimizing DVR

= Pre-Integrated DVR

= Unstructured Volume Rendering
s GPU-based Volume Rendering

i Ray Casting ldea

SN SATSA

How we do parallelize ray casting

and traversal of all view rays!!

il Texture Mapping

Textured-mapped

2D image 2D polygon
polygon

. : o
i How does a texture work?

Texture

o
(82, 82) "5 At

(31, t1) RGBA
For each fragment: Texture-Lookup:
Interpolate the Interpolate the
texture coordinates texture color

(barycentric) (bilinear)

b = .., : : . L
i | eXture pased volume renaering

-

-
N
Proxy Geometry
(Polygonal Slices)

1. Render every slice in the volume as a texture-
mapped polygon

The proxy polygon will sample the volume data
3. The polygons are blended from back to front

N

| 2D Textures

= Axis-aligned slices
= Bilinear Interpolation in Hardware

= 3 copies of the data set in memory

= Reorganize the textures on the fly is too time consuming.
We want to prepare the texture sets beforehand

Xz slices yz slices Xy slices

*’ 2D Textures: Drawbacks

= Bilinear instead of trilinear interpolation

*' 2D Textures: Drawbacks

= Inconsistent sampling rate

v g

s Emission/Absorbtion incorrect
= Supersampling not possible!

i' 2D Textures: Drawbacks

= Popping effect: There is a sudden change of slicing
direction when the view vector transits from one

major direction to another
= The change in the image intensity can be quite visible

AAAAAAAL AbAAAAAAL AbAAAAAAL

M } @

Z

</

R

¥
//,//

i

N

I
* 3D Texture

= Trilinear interpolation in hardware
= Slices are parallel to image plane

= Volume is one texture block in memory

*‘ 3D Texture: Advantages

= Consistent sampling rate
(except for perspective projection)
= Supersampling by increasing the number of slices

\/O!| imae Denrlnrin

Q

\' CAlTIN 1\ (I A Ay |

= Texture-mapping

‘-Ih Graphics Hardware

Graphics hardware is used on most PCs now

Dedicated hardware 2D and 3D graphics
processing unit (GPU)

= NVIDIA: GeForce series (latest: GeForce 8800/G80)
= ATIl:Radeon series (latest: Radeon HD2900/R600)

Derived by game & graphics applications
Input: Triangle list, textures, etc.

Output: Pixels in the frame buffer
Programmable pixel, vertex, video engines

i G rapn Ics Hardware

CPUs are optimized for high performance on
sequential code

= Branch prediction, out-of-order execution

= GPUs are optimized for highly data-parallel nature of
graphics computation

= Mmultiply & add vectors in 1 clock
= Highly Parallel processing

= 64~320 processing units for vertex and/or pixel processing
= High level language

= Direct3D 10
= OpenGL 1.5/ 2.0

GPU In modern PCs

Simultaneous upstream
and downstream
transfers

~ %

North
Bridge

System

o

e =

el e
i

1394/USB Bridge
Port

HD Video Camera

:Ih AGP/PCI Express Bus

= AGP bus
n 1X/2Xx/4x/8X

s 2.1 GB/s bandwidth with AGP 8x
=« Asymmetric (2GB/s for Download, 0.1GB/s for Upload)

= Motherboard should support the expected speed
s PCl Express

s 2X/4X/8Xx/16X
s 2 X 4GB/s bandwidth with PCIE 16X

AGP/PCI Express Bus

Bridged Implementation Earlier PCI Express

Graphics % '
Processor <

Complex

PCIExpress
PCl Express Bus

Graphics Card

Native Implem n

Bus Interface

Graphics

Processor Complex

PCI Express
PCl| Express Bus

Graphics Card

Figure 1: Comparison of Bridged and Native PCl Express Implementations

-
" &
"
ol i
= N\

m Jypical PCl Express Usage, Per NVIDIA

I un A s | 7]

inr kAt~ al DA ~
| om I[JUldlI Nnal Fowel

s GPUs are fast...

= uad-core 3 GHz Intel Core 2 Extreme QX6850 theoretical -
38.6 GFlops, 8.5 GB/sec peak memory bandwidth

= GeForce 8800GTX observed : 518 GFlopss, 86.4 GB/s peak
memory bandwidth

400

= GPUs are getting faster | xvona

== ATI

= CPUs: annual growth ; 1.5x ™| =™ /
> decade growth : 60X 2 o | o

= GPUs: annual growth > 2.0x ¢ |
—> decade growth > 1000 100 1

0 n ? . :
2001 2002 2003 2004 2005 2006 2007
Year

Looking Ahead: Now + 10 years @2

CPU Frequency (GHz)

Bus Bandwidth (GB/sec)
=== Pixel Fill Rate (MPixels/sec)
100000 Vertex Rate (MVerts/sec)
=== Graphics flops (GFlops/sec)
10000 Graphics Bandwidth (GB/sec)

1000000

1000

100

10

Performance 1994-2014

CPU Frequency (GHz)

Memory Frequency (GHz)

Bus Bandwidth (GB/sec)

Hard Disk Size (GB)

Pixel Fill Rate
(MPixels/sec)

Vertex Rate (MVerts/sec)

Graphics Flops
(GFlops/sec)

Graphics Bandwidth
(GB/sec)

Frame Buffer Size (MB)

N N 1]

*’ GPU

1. GPU Is a stream processor
= Multiple programmable processing units
= Connected by data flows

Vertex Fragment

| Processor Processor

i GPU

2. Greater variation in basic capabilities

= Recent GPU support branching, but not perfect
= Performance problem caused by pipeline stall
= Limited capability

= Vertex processors don’t support filtered texture mapping
= Still slow

= Some processors support additional texture types

= In ATI, 3Dc which is an exciting new compression
technology designed to bring out fine details in games while
minimizing memory usage

i GPU

3. Optimized for 4-vector arithmetic
= Useful for graphics - colors, vectors, texcoords

= Easy way to get high performance/cost

Shading languages have vector data types
and operations
e.g. Cg has float2, float3, float4

Obvious way to get high performance

Other matrix data types
e.g. Cg has float3x3, float3x4, float4x4

:Ih Why GPU for Volume Rendering

= A massively parallel architecture

= A separation into two distinct units (vertex and
fragment shader) that can double performance if the
workload can be split

= Incredibly fast memory and memory interface
= Dedicated instructions for graphical tasks

= Vector operations on 4 floats that are as fast as
scalar operations (intrinsic parallel processing)

= Trilinear interpolation is automatically (and extremely
fast) implemented in the 3D-texture

y Casting wit

GP

Automatic calculation of ray positions by letting
the hardware interpolate color values

Built-In fast tri-linear interpolation of 3D
Textures

Full floating point compositing at almost no cost

Changing from orthogonal to perspective
projection without additional effort

Automatic calculation of intersections in the
depth buffer

:h Limitations and difficulties

Restriction of video memory size (upto 1GB)
No full support of integer operations
The lack of double precision

Programmability still restricted in a number of ways, like limited
loop count and limited conditional statements

Readability of a GPU shader is still inferior to standard high-level
languages

Different vendors support different features and extensions,
making it difficult to write an algorithm for every platform

Choice of APl may be more crucial than on the CPU (OpenGL or
DirectX? Assembler fragment programs or high-level shading
language? And if so, which shading language?)

Unstable drivers, half-implemented features etc...
Difficult to apply non-graphics tasks

!'_ Rendering Pipeline

*' Rendering Pipeline (fixed)

Triangles

THD o e
e |

Display

Rendering Pipeline
*' (programmable)

Triangles

R
| e | |

Display

Data Flow In Streaming
‘-Ih Architecture

1. Vertex Shader

= Input: vertex attributes
= position, color, normal vector, texture coordinates, etc.

= Output: vertex attributes

« transformed position, lit color, processed texture
coordinates

2. Rasterization
= Fragments are generated
= Attributes are interpolated linearly

Data Flow In Streaming
‘-Ih Architecture (cont.)

3. Pixel Shader

= Input: fragment attributes

= lit colors (diffuse&specular), texture coordinates
(multiple sets)

= Output: fragment attributes
= final color (including alpha channel)

= Any values can be written to texture memory with
multiple target setting

2. Fragments tests and frame-buffer alpha
blending

scene Description | Programmable Pipeline

Vertices Primitives Fragments

| Vertex R Pixel
ShadlEs asterization Shadel

Graphics Hardware

Raster Image

-

Pixels

Programmable Vertex Processor

Begin
Vertex

Vertex
Program
Instructions

Input-
Registers

Temporary
Registers

Output-
Registers

copy vertex
attributes to
input registers

Fetch next
instruction

Read input-
or temporary
registers

Mapping:
Negation

Swizzling

Execute
command

Write to
output or
temp. registers

Emit Vertex

Fragment Processor

Begin copy fragment

Fragment peligloVEEnTe
Input register

Fetch next
instruction

Fragment
Program
Instructions

: Read input
........... of temporary
""""" registers

I_npUt_ f;-‘naunnuuu:............E ; Mapplﬂg

Registers & | Negation

Temporary . Swizzling
Registers feee

alculate texture YESTFexture

PY address and e no
Il sample texture
Texture- : Nno
Memory interpolate execute
texel color instruction
: : yes
Output- ,, : Write to output _
Registers or temporary Emit Fragment

registers

Phong Shading

® Per-Pixel Lighting: Local illumination in a fragement shader

void main(position : TEXCOORDO, : per each fragment
normal - TEXCOORD1,

oColor - COLOR,

ambientCol,
lightCol,
lightPos,
eyePos,

Ka,

Kd,

Ks,

shiny)

position.xyz;
normal ;
normalize(eyePosition - P);

< 27T
i

:'h Programmable Shader

= Flexibility in rendering pipeline
= All advanced rendering techniques can be
programmed

= Shader program cannot have global memory
= Global constants can be fed thru constant registers
= Interpolants can be fed thru texture addresses
= Global vector data can be fed thru textures

. 32-bit IEEE floating-point
i throughout pipeline

= Framebuffer

= [extures

= Fragment processor
= Vertex processor

= Interpolants

il Vertex Shader

= Vertex shader or vertex program
= Replaces fixed transformation and lighting engine to
flexible one

= Vertex can be animated
= Current version: Shader Model 4 with Direct3D 10

= Registers

v*: vertex stream data
r*: temporary register
c*: constant register

oDO0, oD1, oFog, oPos, oPts,
oT1-0T7: output registers

Temporary Registers

Vertex Data Registers

vl

oDn

V1S

Address Register
al

:} Constant Registers
cl

cl

oTn

cs

Qutput Registers

y

v A~ ; ~
i vertex snader 2Z.u

= 256 Instructions with loop

= Registers

« Constant registers: 16 boolean / 256 floating-point / 16
integer

= 12 temporary floating point registers

« 16 vertex data registers

= 2 color output registers

= 8 texture coordinate registers

V = VY o

I v, . ~ . , RN
:h Vertex Shader 2.0 (cont.)

= Instructions
= add, dp3, dp4, dst, expp, lit, logp, mad, max, min, mov, mul, rcp,
rsq, sge, slt, sub
= Macros
= exp, frc, log, m3x2, m3x3, m3x4, m4x3, m4x4

= Modifiers
= Destination mask: r.{x}{yH{z}H{w}
s Source swizzle: r.[xyzw] [xyzw] [xyzw] [xyzw]
= Source negation: -r

:'h Vertex Shader 2.0 capabilities

= 4-vector FP32bit operations, as in GeForce3/4

= True data-dependent control flow
= Conditional branch instruction
= Subroutine calls, up to 4 deep
= Jump table (for switch statements)

= Conditional clause
= No performance gain

= New arithmetic instructions (e.g. COS)
= User clip-plane support

:'h Vertex Shader 3.0

Branching and looping
= Up to 24 dynamic flow controls
= Causes drastic decline of performance

Texture sampling w/o filtering

512 instructions per program
(effectively much higher w/branching)

32 temporary 4-vector registers
256 “uniform” parameter registers
4 texture samplers

6 clip-distance outputs

16 per-vertex attributes (only)

:'h Vertex Shader 4

= More flexible branching / loop

= Supports filtered texture sampling

= Supports native integer type and boolean ops
= 4096 temporary 4-vector registers

= 16x4096 constant registers

= 128 texture samplers

| - ' Al ;
i FIXel shader

= Pixel shader or fragment program
= Replaces Texture engine
= Complex per-pixel lighting
= Flexible Operations with multiple textures
= Flexible Texture coordinate manipulation
= Current version: Shader Model 4 with Direct3D 10

|
i Block Diagram of Pixel Shader 1.4

= Pixel-based processing
= Lighting, texturing, etc. Constant

Color Registers

Registers
. v0 1
= Registers e
. . e
= C*: constant register Texure
- . ps 1.0-1.3 - sder
= I temporary register = T oo P Shader)(a[c3 |
= U*: texture register I B T
*. : Addressing ﬁ@
= V*: color register TR
OutputTemporary

Registers

:Ih Pixel Shader 2.0

= 32 texture instructions (no /imit in 3.0)
= 64 arithmetic instructions

= Instructions for vector processing and texture
fetches
= Similar to vertex shader, but limited set of instructions

= Floating point registers: 32 constant and 12 temp
= Per-pixel shading

= Texture coordinate manipulation

= Operations with multiple textures

:'h Pixel Shader 2.0

s Instructions
= Arithmetic instructions
= [exture instructions

s Modifier

= Source selector: access each channel

=« Data modifier: bias, negate, invert, scalex2, signed
scaling

= Instruction modifier: x2, x4, x8, d2, d4, d8, sat
= +: co-Issued instructions

i' Pixel Shader 3.0

= Branching and looping
= Up to 24 dynamic flow controls
= Causes drastic decline of performance

= More than 512 instruction slots
= 32 temporary registers

= 224 constant registers

= 10 interpolated registers

= No indexed reads from registers
= Use texture reads instead

= No CPU memory writes

i' Pixel Shader 4

More than 64k instruction slots

4096 temporary registers

Supports indexed data loading
Supports native integer type

32 interpolated registers

16x4096 constant registers

8 FP32 x 4 perspective-correct inputs

Technology Shifts in Graphics @2

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
| |

16-bit Integer Triangle Setup 32-bit Integer
Flat Shaded Texture Mapping Multitexturing

64b SDR 128b SDR —
Lossless Pixel Flow Control
_ Compression “Infinite™ Length
. Programs
Bump Mapping DDR3

Integer Configurable
Blending

128b DDR Programmable Pixel
Shading
Pixel Instruction Set
128-bit Floating Point
Multisample Antialising

T Caswoorz

Stream Processing

'Programmable Texturing Addressing
Programmable Texture Combining
Multisample Antialising

Complete Native Shader Model 3.0 Support @ =

DirectX 9.0 Shader Model 3.0

Vertex Shader Model | 2.0 | 3.0

Vertex Shader

16
Instructions 256 2%(69,939)

Displacement Mapping | v
Vertex Texture Fetch

v
Geometry Instancing | v
e

Dynamic Flow Control
Pixel Shader Model 3.0

Required Shader
Precision

Pixel Shader Instructions . 219(65,535)
Subroutines |

fp32

Loops & Branches
Dynamic Flow Control

High Level Shading Languages

Assembly language is too difficult to program
High level languages similar to C language

Similar to general shading language like RenderMan
= But this is for real time rendering

Compiled for various back-ends
= According to the hardware or rendering library

Being developed now
= Cg, HLSL, RenderMonkey, OpenGL 2.0, etc.

Design Goals of High Level

Shading Languages

= High level enough to hide hardware specific
details

= Simple enough for efficient code generation
= Familiar enough to reduce learning curve

= With enough optimizing back-ends for
portability

_
= C language for graphics

= By nVIDIA

= Similar syntax to C with many restrictions
and exceptions

= Integrated with Cg SDK

= Supports various targets

= GeForce series or DirectX versions
= OpenGL

iml
= High level shading language

= By Microsoft

= Included in DirectX 9 spec and Visual
Studio .NET

= Similar syntax to C with many restrictions
and exceptions

= Not support OpenGL

= Compatible with Cg now
= But in the future(?)

General Purpose Languages

= Microsoft Accelerator
= Precompile general codes to shader codes

= Nvidia CUDA
= ATI CTM

HLSL Example

48.00 fps (640x480), XERBGBES (D24X8)
HAL {pure hw vp): ALL-IN-WONDER 9700 SERIES

Controls (F1 to hide):
Rotate model: Leflt mouse button
Rotate camera: Right mouse button
Zoom camera: Mouse wheel scroll
Hide help: F1

// This shader computes standard transform and
lighting

// Transform the normal from object space i
vNormalWorldSpace = normalize(mul(vNorm

VS_OUTPUT RenderSceneVS(float4 vPos
POSITION,
float3 vNormal : NORMAL,
float2 vTexCoordO :

TEXCOORDDO,
uniform int nNumLights,
uniform bool bTexture,
uniform bool bAnimate)
{

VS_OUTPUT Qutput;
float3 vNormalWorldSpace;
float4 vVAnimatedPos = vPos;

// Animation the vertex based on time and the
vertex's object space position
if(bAnimate)

vAnimatedPos += float4(vNormal, 0) * (si
(g_fTime+5.5)+0.5)*5;

// Transform the position from object space to
homogeneous projection space
Output.Position = mul(vAnimatedPos,
g_mWorldViewProjection);

}

// Compute simple directional lighting equat

float3 vTotalLightDiffuse = float3(0,0,0);

for(int i=0; i<nNumLights; i++)
vTotalLightDiffuse += g_LightDiffusel[i] *

Output.Diffuse.rgb = g_MaterialDiffuseColor
a_MaterialAmbientColor * g_l|
Output.Diffuse.a = 1.0f;

// Just copy the texture coordinate through
if(bTexture)

Output. TextureUV = vTexCoord0;
else

Output. TextureUV = 0;

return Output;

