
PICO EXPRESS TUTORIAL
DIGITAL SYSTEM DESIGN METHODOLOGY LAB CLASS

Codesign and Parallel Processing Lab Sungjin Yoon



Contents

PICO Express
Introduction
Design Flow
Memories and Arrays
Performance Specification
Coding Restrictions
Coding Issues
Exercise



Contents

PICO Express
Introduction
Design Flow
Memories and Arrays
Performance Specification
Coding Restrictions
Coding Issues
Exercise



Introduction

C based design 
Time-to-market pressure

Development (x5) 
– Initial RTL design is very hard and time consuming job.
Design Space Exploration (x20)
- Modifying the system is very much easier in C than in RTL.

System Level Design
Abstract level is becoming higher and higher
transistor level gate level register transfer level ?



High Level Code Structure

Header files

Data files 

Source files
Driver files 

arbitrary C/C++
PPA file 

synthesizable C

Result files



Real Code Example

Example - /home/sjyoon/example1/
Driver Code PPA Code



Real Code Example

Driver Code| PPA Code

Host 



Real Code Example

PPA CodePPA PA PE
PE
…

PA PE
PE
…

… …



Architecture Template for PICO 
Express Hardware

Architecture exploits parallelism at all 
levels at minimal cost

Each PA is highly optimized – can be as 
small as 200 gates

PAs communicate using streams, shared 
RAMs and shared scalars

Each PA is in own stall domain
Allows for FIFO flow control
Allows for highly parallel design



PICO Express Designs Data Path as 
well as Control Logic 

Host interface and memory mapping
Task frame memory to hold multiple windows of configuration 
parameters for overlapped task execution 
Controlling the execution order of Pas
Multi-buffered memories from single arrays in source
Memory arbitration
Flow control using streams
You can gain maximum benefits by understanding PICO’s
ability to design control logic



RTL and Its Location

RTL consists of 
Compiler generated structural RTL for the design
Manually created behavioral RTL for “macrocells”

Macrocells are building blocks like adder, register, mux,  etc.

Like the architectural template, RTL is hierarchically organized

RTL is in the rtl_package directory
Implementation Directory window: <implementation-name>/rtl_package

rtl_package directory contains
Synthesizable RTL 

rtl/ - contains the compiler generated RTL for the design
macrocells/ - contains RTL for macrocells
synth/ - contains scripts for RTL synthesis tools

Simulation infrastructure and testbenches
scripts/ - contains scripts for RTL simulation and analysis tools
simu_stubs/ - contains testbenches and external stubs



PICO Express RTL Overview

Like the architectural template, RTL is 
hierarchically organized

<file_name>_ppa.v: Top level RTL for a PPA
<file_name>_paw_<n>.v: Wrapper for PA 
number n
<file_name>_pa_<n>.v, and
<file_name>_pe_<n>.v :        RTL for PA 
number n
Macrocells (addw.v, etc.)

(PPA)



Mapping of Code to a PPA: the C 
Code

char x[64], z[64];
int sum;

void ppa(void) {
int i,dc=0;
char y[64];
for (i=0; i<64; i++) dc += 

x[i];
dc = dc >> 6;

for(i=0; i<64; i++) y[i] = 
x[i]-dc;

sum = 0;
for (i=0; i<64; i++) sum += 

y[i]*z[i];
}



char x[64], z[64];
int sum;

void ppa(void) {
int i,dc=0;
char y[64];
for (i=0; i<64; i++) dc += 

x[i];
dc = dc >> 6;

for(i=0; i<64; i++) y[i] = 
x[i]-dc;

sum = 0;
for (i=0; i<64; i++) sum += 

y[i]*z[i];
}

High Level Mapping of Code to a PPA



High Level Mapping of Data
char x[64], z[64];
int sum;

void ppa(void) {
int i,dc=0;
char y[64];
for (i=0; i<64; i++) dc += 

x[i];
dc = dc >> 6;

for(i=0; i<64; i++) y[i] = 
x[i]-dc;

sum = 0;
for (i=0; i<64; i++) sum += 

y[i]*z[i];
}



char x[64], z[64];
int sum;

void ppa(void) {
int i,dc=0;
char y[64];
for (i=0; i<64; i++) dc += 

x[i];
dc = dc >> 6;

for(i=0; i<64; i++) y[i] = 
x[i]-dc;

sum = 0;
for (i=0; i<64; i++) sum += 

y[i]*z[i];
}

Mapping of C Operations To a PE



Contents

PICO Express
Introduction
Design Flow
Memories and Arrays
Performance Specification
Coding Restrictions
Coding Issues
Exercise



Design and Verification Flow

High Level Synthesis
the traditional RTL design process

the design process utilizing behavioral synthesis

Develop
/Verify

Algorithm

Evaluate/
Select

Architecture

Write RTL
code

Simulated
RTL

Code

RTL
Synthesis

Verify/
Analyze

Gate-level
Design

Develop
/Verify

Algorithm

Evaluate/
Select

Architecture

Generate
RTL

code

Simulated
RTL

Code

RTL
Synthesis

Verify/
Analyze

Gate-level
Design



Design and Verification Flow

Synthesis Flow



Synthesis Flow Components 

Preprocess
High level program transformations like function inlining
Performs static checks for accepted C Syntax
Code generation for Lint simulation and Bit-accurate SystemC simulation

Schedule
High level program and loop optimization and loop scheduling
Code generation for Post-schedule C simulation and Thread-accurate 
SystemC simulation

Synthesize
Instruction level optimization and scheduling, resource allocation and RTL 
creation
Generation of RTL simulation and RTL co-simulation testbenches

Package
Collect relevant information in an easily accessible place to work with 
other tools like Synopsys DC



Verification and Performance 
Modeling Flow (1)

Golden C simulation
Runs original c code using gcc
Compares the results against reference output 
Or produces golden output for comparison during later phases

Lint simulation
Performs dynamic checks to catch errors early on

Un-initialized variable
Bitsize overflow and underflow
Out-of-bound array accesses

Post-schedule C simulation
Produces test vectors for RTL simulation

RTL Simulation
Verifies that the RTL is correct using test vectors produced by the above 
phase
Allows user-controlled or random perturbation of operating conditions



Verification and Performance 
Modeling Flow (2)

Bit-accurate SystemC simulation
Transaction-level simulation for functional verification

Thread-accurate SystemC simulation
Transaction-level simulation for performance estimation

Models parallel behavior of hardware 
Runs significantly faster than RTL

RTL Co-simulation
Transaction-level simulation at the hardware level
Verifies RTL and interaction with the host processor



Representative Key Flows

Lint to detect errors early on
Golden Simulation Preprocess Lint Simulation

Performance Estimation
Golden Simulation Preprocess Lint Simulation Schedule 

Thread accurate SystemC simulation

RTL simulation
Golden Simulation Preprocess Lint Simulation Schedule 

Post-schedule C simulation Synthesize Package 
RTL simulation

RTL co-simulation
Golden Simulation Preprocess Lint Simulation Schedule 

Synthesize Package RTL co-simulation



GUI Overview



Exercise 1-1

Start PICO Express in GUI mode (if not already running)
Shell> peg
(alias of pico_express –g –GCC /opt/gcc-3.2.3/bin)

Open quadratic project 
File　OpenProject... ~/exercise1

Open the file app.c to understand the source code
Select implementation a0
Run Default flow on implementation a0. The Default flow 
doesn’t run any RTL simulation
Look at the results in the Watch Window. If the Watch 
Window is not visible, select it from the View menu
Questions

What is the clock frequency for this design?
What is the PICO estimated area for this design?



Implementation Directory View in GUI

It allows access to relevant information about an 
implementation

data: Data input files for the application
info: Intermediate files giving more information about 
program transformations
Logs: Logfile for each command
Reports: Reports providing feedback about the design
rtl_package: Collects the whole design including RTL, 
testbenches and scripts in one directory
src: Source and header C files for this implementation
simulation: Data used or produced during various simulation 
step
Work: Temporary workspace



Analysis Tools in GUI

PPA Graph
Shows the computation blocks (loop nests) and the data 
structures used for communication
PPA graph is the anchor point for looking at design 
characteristics

Resource Browser
Shows the hardware resources used in the RTL

Function units, registers, memories, streams
Shows C source mapping and aggregate cost reports 



Exercise 1-2

Navigate through the implementation view
Show all accessible files 

Show the PPA graph
Show resource browser and aggregate cost report
Show summary results report



Contents

PICO Express
Introduction
Design Flow
Memories and Arrays
Performance Specification
Coding Restrictions
Coding Issues
Exercise



Memories and Arrays

Arrays may map to:
External memories – (compiled by a memory compiler outside of the PICO-
generated RTL)

We call these user_supplied
Synthesized memories – (flip-flops for RAM, logic for ROM)

We call these internal_fast
Registers/Wires – In certain cases, the compiler can eliminate arrays entirely 
and map to appropriate registers or wires

This transformation is called Scalarization

To control external (user_supplied) vs. synthesized (internal_fast) 
memory:

Use #pragma user_supplied <array>
Use #pragma internal_fast <array>
Defaults are based on array size

For RAM, if an array has <= 16 entries OR <= 256 bits it will default to 
internal_fast



Contents

PICO Express
Introduction
Design Flow
Memories and Arrays
Performance Specification
Coding Restrictions
Coding Issues
Exercise



Performance Specification -- Basics

Performance constraints drive the parallelism and the 
number of hardware resources in an implementation

To explain performance constraints, we need to 
explain the following two concepts

What is a “task”
The compiler-directed parallel/overlapped execution of C 
programs used in PICO Express



What is a Task?

Task corresponds to a single 
execution of the top level PPA 
procedure that gets converted 
to hardware

One task is one runtime call of t
he procedure ppa

In the code to the left, there will 
be N tasks, one for each call to 
procedure ppa

void ppa();//PPA procedure

int main (int argc, char 
**argv) {

int ppaid,i;

ppaid = 
PICO_initialize_NPA(ppa);

for(i=0;i<N;i++) 
ppa();

}

PICO_finalize_NPA(ppaid);
}



C Sequential Model vs. RTL Parallel Model

Programmer’s view: Data stationary view
What happens on a loop iteration

Hardware designer’s view: Time stationary view
What happens on a clock cycle 



How to Measure Performance at the 
Task Level?
Like any pipelined execution, there are two measures associated 
with the overlapped task execution

How fast tasks can be started? That is, what is the time between the start of 
a task and the start of the next task?

This determines the throughput of the system

How long does it take to complete a task? That is what is the time between 
the start and end of a task?

This determines the latency of a task



PICO Terminology: MITI and Task Latency

Minimum Inter-task Interval (MITI)
Minimum time between the start of 
two tasks
That is, how fast tasks can be started

Task Latency
Time to complete a task 

For execution with task overlap 
MITI < Task Latency

For execution with no task 
overlap

MITI ≥ Task Latency



Performance Specification in PICO 
Express

Performance is specified using two parameters
Clock Frequency in MHz
MITI in cycles

They are specified by opening the panel:
Implementation Configure [New… | Current...] 
General



Specified Performance vs. Delivered 
Performance

PICO Express uses MITI at compile time to design hardware 
meeting the performance

Delivered performance may be different

PICO Express provides simulation based performance charts to 
analyze delivered performance



Simulation Based Performance Chart

Difference is MITI Difference is Task Latency



Contents

PICO Express
Introduction
Design Flow
Memories and Arrays
Performance Specification
Coding Restrictions
Coding Issues
Exercise



Coding Restrictions

Use arrays instead of pointers
Structured code – no goto
No floating point
No structs, unions, switch/case
No static, volatile declarations
No outer-loop around sequence of loops



Contents

PICO Express
Introduction
Design Flow
Memories and Arrays
Performance Specification
Coding Restrictions
Coding Issues
Exercise



Coding Issues

Loop Transformation
Array Partitioning
Affine Array Indexing
Logical vs Bitwise Operations
Reducing Multiplier
Reducing Porting



Loop Transformation

PICO’s coding restriction
No outer-loop around sequence of loops

Possible Impossible
f1(){

for(int i = 0 ; i < 100; ++i){
for(int j = 0 ; j < 100; ++j){

for(int k = 0 ; k < 100; ++k){
…code…

}
}

}
for(int ii = 0 ; ii < 100; ++i){

for(int jj = 0 ; jj < 100; ++j){
…code…

}
}

}

f2(){
for(int i = 0 ; i < 100; ++i){

for(int j = 0 ; j < 100; ++j){
for(int k = 0 ; k < 100; ++k){
…code…

}
}
for(int ii = 0 ; ii < 100; ++i){

for(int jj = 0 ; jj < 100; ++j){
…code…

}
}

}
}



Loop Transformation

We need transformation!
Outer Loop Case 1 : Sequential Loop Jamming

f1(){
for(int i = 0 ; i < M; ++i){

for(int j = 0 ; j < N0; ++j){
L0;

}
for(int j = 0 ; j < N1; ++j){

L1;
}

}
}

f1(){
for(int i = 0 ; i < M; ++i){

for(int j j= 0 ; jj < N0+N1; ++jj){
if(jj < N0){

j = jj;
L0;

}
}else{

j = jj;
L0;

}
}   

}
}



Loop Transformation

We need transformation!
Outer Loop Case 2 : Unrolling

f1(){
for(int i = 0 ; i < M; ++i){

for(int j = 0 ; j < N0; ++j){
L0;

}
for(int j = 0 ; j < N1; ++j){

L1;
}

}
}

f1(){
for(int i = 0 ; i < M; ++i){

for(int j = 0 ; j < N0; ++j){
L0;

}
#pragma unroll j
for(int j = 0 ; j < N1; ++j){

L1;
}

}
}



Loop Transformation

We need transformation!
Outer Loop Case 3 : Task Overlap

f1(){
for(int i = 0 ; i < M; ++i){

for(int j = 0 ; j < N0; ++j){
L0;

}
for(int j = 0 ; j < N1; ++j){

L1;
}

}
}

//PPA code
f1(){

for(int j = 0 ; j < N0; ++j){
L0;

}
for(int j = 0 ; j < N1; ++j){

L1;
}

}

//Driver code
Int main(){

for(i = 0 ; i < M; i++)f1();
}



Loop Transformation

We need transformation!
Outer Loop Case 4 : Fully Parallel

Not possible when there’s a feedback from L1 to L0
f1(){

for(int i = 0 ; i < M; ++i){
for(int j = 0 ; j < N0; ++j){

L0;
}
for(int j = 0 ; j < N1; ++j){

L1;
}

}
}

f1(){
for(int i = 0 ; i < M; ++i){

for(int j = 0 ; j < N0; ++j){
L0;

}
}
for(int i = 0 ; i < M; ++i){

for(int j = 0 ; j < N1; ++j){
L1;

}
}

}



Loop Transformation

We need transformation!
Outer Loop Case 5 : Parallel Loop Merging

f1(){
for(int i = 0 ; i < M; ++i){

for(int j = 0 ; j < N0; ++j){
L0;

}
for(int j = 0 ; j < N1; ++j){

L1;
}

}
}

f1(){
for(int i = 0 ; i < M; ++i){

for(int j = 0 ; j < N0; ++j){
L0;
L1;

}
}

}



Array Partitioning

Assume calculation on line 5 should take only 1 cycle by 
constraint

Need 4-port memory for original design
Need single port memory after partitioning

1 char in[4][1024], out[1024];
2 void app(){
3    int i;
4    for(i = 0 ; i < 1024; ++i){
5       out[i] = 

(in[0][i]+in[1][i]+in[2][i]+in[3][i])/4;
6    }
7 }

1 char in0[1024], in1[1024], in2[1024], 
in3[1024], out[1024];
2 void app(){
3    int i;
4    for(i = 0 ; i < 1024; ++i){
5       out[i] = 

(in0[i]+in1[i]+in2[i]+in3[i])/4;
6    }
7 }



Logical vs Bitwise Operation

Logical operators often lead to more hardware 
comparators than the bitwise operators.
Replace “&&” and “||” with “&” and “|” with 
caution



Reducing Multiplier

Make PICO recognize common sub-expressions and 
reduce number of multiplier
Assoc. and dist. transformation are not always bit 
equivalent in 2’s complement arithmetic due to 
overflow and underflow

//original
x = -a*b+c*(d+e);
y =  a*b+c*d+c*e;

//transformation 1
x = -(a*b)+c*(d+e);
y =  (a*b)+c*(d+e);

//transformation 2
tmp1 = a*b;
tmp2 = c*(d+e);
x = -m1+ m2;
y = m1 + m2;



Reducing Porting

Reduce memory porting by restructuring the code
if(mode == 0)

m = X[a][b];
else if (mode == 1)

m = X[c][d+e];
else

m = X[d][e];

if(mode == 0){
tmp1 = a;
tmp2 = b;

}
else if(mode == 1){

tmp1 = c;
tmp2 = d+e;

}
else if(mode == 2){

tmp1 = d;
tmp2 = e;

}
m = X[tmp1][tmp2];



Contents

PICO Express
Introduction
Design Flow
Memories and Arrays
Performance Specification
Coding Restrictions
Coding Issues
Exercise



Exercise 2

Lint error debugging
Debug the program “exercise2”
It is a modified version of “three_filters” for testing 
inlining
It has no compile error but has a lint error
Run “Lint” procedure to detect error and with this 
information, compare “excercise2” and “three_filters”
You should edit the source file in implementation 
directory to make it take effect



Execute the PICO Express

Exercise 2



Exercise 2

Select the architecture a0 on Project View by 
double clicking



Exercise 2

Select Lint Process



Exercise 2

Run



Exercise 2

Compile failed because of syntax error
Edit fir.c file on Implementation View



Exercise 2

Edit



Exercise 2

Lint Error
WARNING:2039:lsim:pico_lint.c:338
In function 'macc_shift' called at fir.c:50
WARNING:fir.c:30: Shift value 18446744073709551587 out of legal range (0,31)
END WARNING
WARNING:2000:lsim:pico_lint.c:507
WARNING:fir.c:52: Width overflow for "y[0]" type i13, value -31998 (0xffff8302).
END WARNING
WARNING:2000:lsim:pico_lint.c:507
WARNING:fir.c:61: Width overflow for "y2[0][0]" type i13, value -4643 
(0xffffeddd).
END WARNING
WARNING:2000:lsim:pico_lint.c:507
WARNING:fir.c:69: Width overflow for "y3[0][40]" type i13, value 4158 (0x103e).
END WARNING



Exercise 2

Negative shift amount?



Exercise 3

Fibonacci
Basic approach

Implement simple program by your hand
Write driver code and ppa code
Driver code is for initializing the input, setting up the PPA and 
printing the output.
PPA code is for synthesizing the hardware. Should be synthesizable 
C code which meets PICO’s coding constraints

If you are not familiar with PICO, it is okay to use existing 
programs for framework

Sliding window
See “Writing C Application” page 32 for reference 
(http://iris.snu.ac.kr/synfora/Writing_C_apps.pdf)

http://iris.snu.ac.kr/synfora/Writing_C_apps.pdf
http://iris.snu.ac.kr/synfora/Writing_C_apps.pdf


Exercise 4

Implement 5-tap FIR FILTER 
without streaming

5-tap filter needs 5 pixel at 
once to filter
Create intermediate pixel “x”
using a 5-tap FIR filter. Filter 
all pixels horizontally in this 
manner(top left to bottom 
right)
And then, create final pixel 
“x” using a 5-tap FIR filter. 
Filter all pixels vertically in this 
manner. (top left to bottom 
right)



Exercise 4

Horizontal  filtering
for(j = 0 + MARGIN; j < HEIGHT+ MARGIN; j++){

for(i = 0 + MARGIN ; i < WIDTH + MARGIN; i++){
short output = (c[4] * yin[j][i-2] +

c[3] * yin[j][i-1] +
c[2] * yin[j][i  ] +
c[1] * yin[j][i+1] +
c[0] * yin[j][i+2] )>>3;

yinter[j][i] = output;
}

}



Exercise 4

Vertical filtering
for(jj = 0 + MARGIN; jj < HEIGHT + MARGIN; jj++){

for(ii = 0 + MARGIN ; ii < WIDTH + MARGIN; ii++){
short output = (c[4] * yinter[jj-2][ii] +

c[3] * yinter[jj-1][ii] +
c[2] * yinter[jj][ii  ] +
c[1] * yinter[jj+1][ii] +
c[0] * yinter[jj+2][ii] )>>3;

yout[jj][ii] = output;
}

}



Exercise 4

Current design operates…

Input memory (yin)

Loop 0, task 1

Intermediate memory(yinter)

Loop1, task1

Output memory (yout)

host

host Each memory is 
full size of the 
picture frame



Homework

Implement 5-tap FIR FILTER with internal streaming 
and sliding window to improve performance
Problems of previous implementation

Memory for full size of picture frame is needed – large 
memory
Large number of memory access occurs
It prevents parallel execution of Loop0 and Loop1 
because of data dependency between L0 and L1
These problems can be solved by streaming and 
sliding window



Streaming Data (1)

Streaming data enables parallel execution of communicating loop nests
Communicate via 2-way handshake
Time-independent synchronization
“Block-on-read” – no peeking

Specification for external streams:
Use <type> pico_stream_input_<name>(void) (input)
Use void pico_stream_output_<name>(<type>) (output)
The user should write these procedures to define the communication between driver 
and PPA via streams

Specification for internal streams:
Use FIFO(<name>,<type>) to declare inter-loop FIFO
Use pico_stream_input_<name> and pico_stream_output<name>
The stream procedures are automatically generated by the FIFO macro

time



Streaming Data (2)

What happens when we call pico_stream_*?
In software – procedure call

The code for the pico_stream_* procedure is executed
For internal streams this procedure comes from the FIFO macro and is 
predefined by PICO Express
For external streams this procedure is user-defined and can do anything the 
user wishes

In hardware – data handshake
Each data stream has 3 signals - data, ready, request
When pico_stream_* call is encountered, the request is asserted (either for 
read or write)
If the corresponding ready is true, the transaction takes place and the PA 
proceeds
If the ready is false, the PA stalls and continues asserting request until ready 
goes true



Streaming Data (3)

Without streams, the PPA would always execute in a pre-
determined time

Streams introduce variability due to dynamic 
synchronization and flow control

Waiting for input data to be available
Waiting for output buffer to be free
Producer and consumer block independently
The computation is still deterministic

Streams may cause deadlocks due to bounded buffers
#pragma fifo_length x 4

Deadlocks can always be removed by increasing FIFO sizes. 
However, this may indicate unintended sequentialization in the 
code



Streaming Data(4)

Example Code
Function pico_stream_output_y() 
is for external streaming. It is  
manually implemented in the 
driver code by user and does 
something, for example, writing 
value of y[j] to output file.
Function pico_stream_output_z() 
and pico_stream_output_y() 
are for internal streaming. It’s 
code is automatically  
generated by PICO. Function  
pico_stream_output_z() writes 
“x[j] + offset” to FIFO and 
pico_stream_input_z() reads 
value from FIFO.

int x[100],y[100],z[100];
FIFO(z,int)
extern int pico_stream_output_y(int);
int offset;

void ppa(void) {
int j;

for(j=0;j<100;j++) {
y[j] = x[j]*x[j];
pico_stream_output_z(x[j]+offset);

}
for(j=0;j<100;j++){
pico_stream_output_y(y[j]);

}
for(j=0;j<100;j++){
z[j] = pico_stream_input_z();

}
}



Sliding Window

A sliding window is variable with the following properties:
It is declared as a one-dimensional array in procedure scope.
All references have compile-time constant indices.
It is an argument to a single pico_shift procedure call.

Within a for-loop, at most shift locations can be written, where shift 
is the shift argument to the pico_shift call. In addition, the locations 
written must have consecutive indices.
The pico_shift() call takes two arguments:

The array to be shifted
Must be a single dimensional array

Must be declared in procedure scope
The shift amount

Must be a compile-time constant
Must be between one and the array size minus one



Homework

FIFO is used to keep the data 
from L0 which filters horizontally
What L1 needs is the data in 
vertical order while FIFO fires 
the data in horizontal order.

In the L1, Someone should keep 
the data from FIFO and 
provides data access in vertical 
order 
Sliding window can be used 
here

Sliding windows should keep 
more than 4 lines to provide 
vertical data access to L1

New data from FIFO

Data in sliding window

One set of data 
forming vertical line



Homework

Revised structure with stream and sliding window

Input memory (yin)

Loop 0, task 1

Loop1, task1

Output memory (yout)

host

host

FIFO(stream)

Sliding Window



Homework

Sample Result of fir filter with shared memory



Homework

Sample result of fir filter with stream


	PICO EXPRESS TUTORIAL�DIGITAL SYSTEM DESIGN METHODOLOGY LAB CLASS
	Contents
	Contents
	Introduction
	High Level Code Structure
	Real Code Example
	Real Code Example
	Real Code Example
	Architecture Template for PICO Express Hardware
	PICO Express Designs Data Path as well as Control Logic 
	RTL and Its Location
	PICO Express RTL Overview
	Mapping of Code to a PPA: the C Code
	High Level Mapping of Code to a PPA
	High Level Mapping of Data
	Mapping of C Operations To a PE
	Contents
	Design and Verification Flow
	Design and Verification Flow
	Synthesis Flow Components 
	Verification and Performance Modeling Flow (1)
	Verification and Performance Modeling Flow (2)
	Representative Key Flows
	GUI Overview
	Exercise 1-1
	Implementation Directory View in GUI
	Analysis Tools in GUI
	Exercise 1-2
	Contents
	Memories and Arrays
	Contents
	Performance Specification -- Basics
	What is a Task?
	C Sequential Model vs. RTL Parallel Model
	How to Measure Performance at the Task Level?
	PICO Terminology: MITI and Task Latency
	Performance Specification in PICO Express
	Specified Performance vs. Delivered Performance
	Simulation Based Performance Chart
	Contents
	Coding Restrictions
	Contents
	Coding Issues
	Loop Transformation
	Loop Transformation
	Loop Transformation
	Loop Transformation
	Loop Transformation
	Loop Transformation
	Array Partitioning
	Logical vs Bitwise Operation
	Reducing Multiplier
	Reducing Porting
	Contents
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 4
	Exercise 4
	Exercise 4
	Homework
	Streaming Data (1)
	Streaming Data (2)
	Streaming Data (3)
	Streaming Data(4)
	Sliding Window
	Homework
	Homework
	Homework
	Homework

