PICO EXPRESS TUTORIAL

DIGITAL SYSTEM DESIGN METHODOLOGY LAB CLASS

Codesign and Parallel Processing Lab Sungjin Yoon

Contents

- PICO Express
 - Introduction
 - Design Flow
 - Memories and Arrays
 - Performance Specification
 - Coding Restrictions
 - Coding Issues
 - Exercise

Contents

PICO Express

Introduction

- Design Flow
- Memories and Arrays
- Performance Specification
- Coding Restrictions
- Coding Issues
- Exercise

Introduction

C based design

Time-to-market pressure

- Development (x5)
 - Initial RTL design is very hard and time consuming job.
- Design Space Exploration (x20)
 - Modifying the system is very much easier in C than in RTL.
- System Level Design
 - Abstract level is becoming higher and higher
 - transistor level \rightarrow gate level \rightarrow register transfer level \rightarrow ?

High Level Code Structure

Real Code Example

Example - /home/sjyoon/example1/ Driver Code PPA Code

Real Code Example

Driver Code | PPA Code

Pipeline of Processing Arrays

Real Code Example

Architecture Template for PICO Express Hardware

Pipeline of Processing Arrays

A Processing Element

- Architecture exploits parallelism at all levels at minimal cost
- Each PA is highly optimized can be as small as 200 gates
- PAs communicate using streams, shared RAMs and shared scalars
- Each PA is in own stall domain
 - Allows for FIFO flow control
 - Allows for highly parallel design

PICO Express Designs Data Path as well as Control Logic

- Host interface and memory mapping
- Task frame memory to hold multiple windows of configuration parameters for overlapped task execution
- Controlling the execution order of Pas
- Multi-buffered memories from single arrays in source
- Memory arbitration
- □ Flow control using streams
- You can gain maximum benefits by understanding PICO's ability to design control logic

RTL and Its Location

RTL consists of

- Compiler generated structural RTL for the design
- Manually created behavioral RTL for "macrocells"
 - Macrocells are building blocks like adder, register, mux, etc.
- Like the architectural template, RTL is hierarchically organized
- RTL is in the rtl_package directory
 - Implementation Directory window: <implementation-name>/rtl_package
- rtl_package directory contains
 - Synthesizable RTL
 - rtl/ contains the compiler generated RTL for the design
 - macrocells/ contains RTL for macrocells
 - synth/ contains scripts for RTL synthesis tools
 - Simulation infrastructure and testbenches
 - scripts/ contains scripts for RTL simulation and analysis tools
 - simu_stubs/ contains testbenches and external stubs

PICO Express RTL Overview

A Processing Array (PA)

Mapping of Code to a PPA: the C Code

```
char x[64], z[64];
int sum;
void ppa(void) {
  int i,dc=0;
  char y[64];
  for (i=0; i<64; i++) dc +=
x[i];
  dc = dc >> 6i
  for(i=0; i<64; i++) y[i] =</pre>
x[i]-dc;
  sum = 0;
  for (i=0; i<64; i++) sum +=
y[i]*z[i];
}
```

High Level Mapping of Code to a PPA

High Level Mapping of Data

Mapping of C Operations To a PE

A Processing Array (PA)

Contents

- PICO Express
 - Introduction
 - Design Flow
 - Memories and Arrays
 - Performance Specification
 - Coding Restrictions
 - Coding Issues
 - Exercise

Design and Verification Flow

High Level Synthesis

the traditional RTL design process

the design process utilizing behavioral synthesis

Design and Verification Flow

Synthesis Flow Components

Preprocess

- High level program transformations like function inlining
- Performs static checks for accepted C Syntax
- Code generation for Lint simulation and Bit-accurate SystemC simulation
- Schedule
 - High level program and loop optimization and loop scheduling
 - Code generation for Post-schedule C simulation and Thread-accurate SystemC simulation

Synthesize

- Instruction level optimization and scheduling, resource allocation and RTL creation
- Generation of RTL simulation and RTL co-simulation testbenches

Package

Collect relevant information in an easily accessible place to work with other tools like Synopsys DC

Verification and Performance Modeling Flow (1)

Golden C simulation

- Runs original c code using gcc
- Compares the results against reference output
- Or produces golden output for comparison during later phases

Lint simulation

- Performs dynamic checks to catch errors early on
 - Un-initialized variable
 - Bitsize overflow and underflow
 - Out-of-bound array accesses
- Post-schedule C simulation
 - Produces test vectors for RTL simulation
- RTL Simulation
 - Verifies that the RTL is correct using test vectors produced by the above phase
 - Allows user-controlled or random perturbation of operating conditions

Verification and Performance Modeling Flow (2)

Bit-accurate SystemC simulation

- Transaction-level simulation for functional verification
- Thread-accurate SystemC simulation
 - Transaction-level simulation for performance estimation
 - Models parallel behavior of hardware
 - Runs significantly faster than RTL
- RTL Co-simulation
 - Transaction-level simulation at the hardware level
 - Verifies RTL and interaction with the host processor

Representative Key Flows

- □ Lint to detect errors early on
 - □ Golden Simulation \rightarrow Preprocess \rightarrow Lint Simulation
- Performance Estimation
 - □ Golden Simulation → Preprocess → Lint Simulation → Schedule
 → Thread accurate SystemC simulation
- RTL simulation
 - □ Golden Simulation → Preprocess → Lint Simulation → Schedule
 → Post-schedule C simulation → Synthesize → Package →
 RTL simulation
- RTL co-simulation
 - □ Golden Simulation → Preprocess → Lint Simulation → Schedule → Synthesize → Package → RTL co-simulation

GUI Overview

RICO Express (/home/sjycon/training2007/module1/quadratic)									
<u>F</u> ile <u>V</u> iew <u>P</u> roject <u>I</u> mplementa	tion <u>G</u> roup <u>R</u> un <u>A</u> nalyze	<u>W</u> indow <u>H</u> elp							
i 🖻 🍃 🎒 📑 🕹	😫 🖬 🖌	🚴 🔏 🔦 🗸	<mark>∕e √k √e</mark> √k	? vv 😽 v	<mark>&</mark> 😣			Active Impler	nentation: a0
Configure New Implementation Run Default Y Golden C Simulation PreProcess Lint Simulation Bit Accurate SystemC Simulation Schedule	Project View quadratic Groups Implementations a0 sources headers data results	Synfora							
 Post-Schedule C Simulation Thread Accurate SystemC Simulation Synthesize Export RTL Package RTL Simulation 	Implementation D a0 → data B-info -Logs -Reports								
Co-Simulation		http://www.synfora.com © 2004-2007 Synfora Inc. All Rights Reserved.							
<pre>pico:[quadratic:-]> set_project_params -projdir /hon Project directory now set to: /ho pico:[quadratic:-]> select_experi <no exp=""> select_experiment a0 pico:[quadratic:a0]> Set Active Implementation complete</no></pre>	ne/sjyoon/training2007/modul me/sjyoon/training2007/modu iment a0	e1/quadratic Ile1/quadratic	a0 Input MITI (Cycles) 0	Input Clock Frequency (MHz) 100	Estimated Cost (Gates) N/A	Delivered MITI (Cycles) A N/A	Delivered Task Latency (Cycles) N/A	Delivered Throughput (Tasks per sec	cond) N/A

Exercise 1-1

Start PICO Express in GUI mode (if not already running)

- Shell> peg
- (alias of pico_express -g -GCC /opt/gcc-3.2.3/bin)
- Open quadratic project
 - File OpenProject... ~/exercise1
- Open the file app.c to understand the source code
- Select implementation a0
- Run Default flow on implementation a0. The Default flow doesn't run any RTL simulation
- Look at the results in the Watch Window. If the Watch Window is not visible, select it from the View menu
- Questions
 - What is the clock frequency for this design?
 - What is the PICO estimated area for this design?

Implementation Directory View in GUI

- It allows access to relevant information about an implementation
 - data: Data input files for the application
 - info: Intermediate files giving more information about program transformations
 - Logs: Logfile for each command
 - Reports: Reports providing feedback about the design
 - rtl_package: Collects the whole design including RTL, testbenches and scripts in one directory
 - src: Source and header C files for this implementation
 - simulation: Data used or produced during various simulation step
 - Work: Temporary workspace

Analysis Tools in GUI

PPA Graph

- Shows the computation blocks (loop nests) and the data structures used for communication
- PPA graph is the anchor point for looking at design characteristics
- Resource Browser
 - Shows the hardware resources used in the RTL
 - Function units, registers, memories, streams
 - Shows C source mapping and aggregate cost reports

- Navigate through the implementation view
 - Show all accessible files
- Show the PPA graph
- □ Show resource browser and aggregate cost report
- Show summary results report

Contents

- PICO Express
 - Introduction
 - Design Flow
 - Memories and Arrays
 - Performance Specification
 - Coding Restrictions
 - Coding Issues
 - Exercise

Memories and Arrays

Arrays may map to:

- External memories (compiled by a memory compiler outside of the PICOgenerated RTL)
 - We call these user_supplied
- Synthesized memories (flip-flops for RAM, logic for ROM)
 - We call these internal_fast
- Registers/Wires In certain cases, the compiler can eliminate arrays entirely and map to appropriate registers or wires
 - This transformation is called **Scalarization**
- To control external (user_supplied) vs. synthesized (internal_fast) memory:
 - Use #pragma user_supplied <array>
 - Use #pragma internal_fast <array>
 - Defaults are based on array size
 - For RAM, if an array has <= 16 entries OR <= 256 bits it will default to internal_fast

Contents

- PICO Express
 - Introduction
 - Design Flow
 - Memories and Arrays
 - Performance Specification
 - Coding Restrictions
 - Coding Issues
 - Exercise

Performance Specification -- Basics

Performance constraints drive the parallelism and the number of hardware resources in an implementation

- To explain performance constraints, we need to explain the following two concepts
 - What is a "task"
 - The compiler-directed parallel/overlapped execution of C programs used in PICO Express

What is a Task?

void ppa();//PPA procedure

```
int main (int argc, char
**argv) {
    int ppaid,i;
```

Task corresponds to a single execution of the top level PPA procedure that gets converted to hardware

П

```
ppaid =
PICO_initialize_NPA(ppa);
for(i=0;i<N;i++)
    ppa();
}</pre>
```

```
PICO_finalize_NPA(ppaid);
}
```

One task is one runtime call of t he procedure ppa

```
In the code to the left, there will
be N tasks, one for each call to
procedure ppa
```

C Sequential Model vs. RTL Parallel Model

- What happens on a loop iteration
- Hardware designer's view: Time stationary view
 - What happens on a clock cycle

How to Measure Performance at the Task Level?

- Like any pipelined execution, there are two measures associated with the overlapped task execution
 - How fast tasks can be started? That is, what is the time between the start of a task and the start of the next task?
 - This determines the throughput of the system
 - How long does it take to complete a task? That is what is the time between the start and end of a task?
 - This determines the latency of a task

Blue and Red represent two different tasks

PICO Terminology: MITI and Task Latency

Minimum Inter-task Interval (MITI)

- Minimum time between the start of two tasks
- That is, how fast tasks can be started
- Task Latency
 - Time to complete a task
- For execution with task overlap
 - MITI < Task Latency</p>
- For execution with no task overlap
 - MITI ≥ Task Latency

Blue and Red represent two different tasks
Performance Specification in PICO Express

Performance is specified using two parameters
 Clock Frequency in MHz
 MITI in cycles

 □ They are specified by opening the panel:
 □ Implementation → Configure [New... | Current...] → General

Specified Performance vs. Delivered Performance

- PICO Express uses MITI at compile time to design hardware meeting the performance
- Delivered performance may be different
- PICO Express provides simulation based performance charts to analyze delivered performance

Simulation Based Performance Chart

♦ Offline	🔹 🔶 Online	e \diamond Thread	Start Tasl	€ 0 ⊻	End Task	4	Show Range
LOOPS L0 L1	0 Time [Cyc	500 cles]	->	00	1500	2000	2500
	(Otart	Otor.			[A
Items		Start	Stop	Sta			
E-Task0		30	840	0			
E-Task1		446	1254	0			
task2		1000	1678	0			
Task3		1286	2094	0			
Task4		1/10	2518	0		•	∇
	1						
oifference is	MITI	Differe	ence is T	ask Late	ency		

Contents

- PICO Express
 - Introduction
 - Design Flow
 - Memories and Arrays
 - Performance Specification
 - Coding Restrictions
 - Coding Issues
 - Exercise

Coding Restrictions

- Use arrays instead of pointers
- □ Structured code no goto
- □ No floating point
- □ No structs, unions, switch/case
- □ No static, volatile declarations
- No outer-loop around sequence of loops

Contents

- PICO Express
 - Introduction
 - Design Flow
 - Memories and Arrays
 - Performance Specification
 - Coding Restrictions
 - Coding Issues
 - Exercise

Coding Issues

- Loop Transformation
- Array Partitioning
- Affine Array Indexing
- Logical vs Bitwise Operations
- Reducing Multiplier
- Reducing Porting

PICO's coding restriction No outer-loop around sequence of loops Possible Impossible f1(){ f2(){ for(int i = 0; i < 100; ++i){ for(int i = 0; i < 100; ++i){ for(int j = 0; j < 100; ++j){ for(int j = 0; j < 100; ++j){ for(int k = 0; k < 100; ++k){ for(int k = 0; k < 100; ++k){ ···code··· ···code··· for(int ii = 0; ii < 100; ++i){ for(int ii = 0; ii < 100; ++i){ for(int jj = 0; jj < 100; ++j){ for(int jj = 0; jj < 100; ++j){ ···code··· ···code···

- We need transformation!
- Outer Loop Case 1 : Sequential Loop Jamming

 \rightarrow

```
f1(){
  for(int i = 0; i < M; ++i){
    for(int j = 0; j < N0; ++j){
       L0;
    for(int j = 0; j < N1; ++j){
       L1;
```

```
f1(){
 for(int i = 0; i < M; ++i){
    for(int j j= 0 ; jj < N0+N1; ++jj){
      if(jj < NO)
        }else{
```

We need transformation!
 Outer Loop Case 2 : Unrolling

```
f1(){
  for(int i = 0; i < M; ++i){
    for(int j = 0; j < N0; ++j){
      L0;
    }
  for(int j = 0; j < N1; ++j){
      L1;
    }
}</pre>
```

```
f1(){
  for(int i = 0; i < M; ++i){
    for(int j = 0; j < N0; ++j){
      L0;
    }
    #pragma unroll j
    for(int j = 0; j < N1; ++j){
      L1;
    }
}</pre>
```

 \rightarrow

We need transformation!
 Outer Loop Case 3 : Task Overlap

 \rightarrow

```
f1(){
  for(int i = 0; i < M; ++i){
    for(int j = 0; j < N0; ++j){
       L0;
    for(int j = 0; j < N1; ++j){
       L1;
```

```
//PPA code
f1(){
  for(int j = 0 ; j < N0; ++j){
    L0;
  }
  for(int j = 0 ; j < N1; ++j){
    L1;
  }</pre>
```

```
//Driver code
Int main(){
   for(i = 0 ; i < M; i++)f1();
}</pre>
```

- We need transformation!
- Outer Loop Case 4 : Fully Parallel

Not possible when there's a feedback from L1 to L0

```
f1(){
for(int i = 0; i < M; ++i){
for(int j = 0; j < N0; ++j){
L0;
}
for(int j = 0; j < N1; ++j){
L1;
}
for(int j = 0; j < N1; ++j){
}
for(int i = 0; i < M; ++i){
for(int j = 0; j < N1; ++j){
L1;
}
}</pre>
```

- We need transformation!
- Outer Loop Case 5 : Parallel Loop Merging

```
f1(){
  for(int i = 0; i < M; ++i){
    for(int j = 0; j < N0; ++j){
      L0;
    }
    for(int j = 0; j < N1; ++j){
      L1;
    }
}</pre>
```

```
f1(){
  for(int i = 0 ; i < M; ++i){
    for(int j = 0 ; j < N0; ++j){
       L0;
       L1;
    }
  }
}</pre>
```

Array Partitioning

Assume calculation on line 5 should take only 1 cycle by constraint

- Need 4-port memory for original design
- Need single port memory after partitioning

1 char in[4][1024], out[1024];	1 char in0[1024], in1[1024], in2[1024],
2 void app(){	in3[1024], out[1024];
3 int i;	2 void app(){
4 for(i = 0 ; i < 1024; ++i){	3 int i;
5 out[i] =	4 for(i = 0 ; i < 1024; ++i){
(in[0][i]+in[1][i]+in[2][i]+in[3][i])/4;	5 out[i] =
6 }	(in0[i]+in1[i]+in2[i]+in3[i])/4;
7 }	6 }
	7 }

Logical vs Bitwise Operation

- Logical operators often lead to more hardware comparators than the bitwise operators.
- Replace "&&" and "||" with "&" and "|" with caution

Reducing Multiplier

- Make PICO recognize common sub-expressions and reduce number of multiplier
- Assoc. and dist. transformation are not always bit equivalent in 2's complement arithmetic due to overflow and underflow

//original	//transformation 1	//transformation 2
$x = -d^{*}b + c^{*}(d + e);$	$x = -(a \cdot b) + c \cdot (a + e);$	$Tmp1 = d^*b;$
y = a*b+c*d+c*e;	y = (a*b)+c*(d+e);	$tmp2 = c^{*}(d+e);$
		x = -m1 + m2;
		y = m1 + m2;

Reducing Porting

Reduce memory porting by restructuring the code

if(mode == 0)
 m = X[a][b];
else if (mode == 1)
 m = X[c][d+e];
else
 m = X[d][e];

```
if(mode == 0){
 tmp1 = a;
 tmp2 = b;
else if(mode == 1){
 tmp1 = c;
 tmp2 = d+e;
else if(mode == 2){
 tmp1 = d;
 tmp2 = e;
m = X[tmp1][tmp2];
```

Contents

- PICO Express
 - Introduction
 - Design Flow
 - Memories and Arrays
 - Performance Specification
 - Coding Restrictions
 - Coding Issues
 - Exercise

- Lint error debugging
 - Debug the program "exercise2"
 - It is a modified version of "three_filters" for testing inlining
 - It has no compile error but has a lint error
 - Run "Lint" procedure to detect error and with this information, compare "excercise2" and "three_filters"
 - You should edit the source file in implementation directory to make it take effect

Execute the PICO Express

<u>viper</u>:~> cd exercise2 <u>viper</u>:~/exercise2> peg& [1] 13726 <u>viper</u>:~/exercise2> PICO EXPRESS 07.02-2 Copyright (c) 2004-2007 Synfora, Inc. All rights reserved. Build Time 07/16/07 06:56:56

Select the architecture a0 on Project View by double clicking

PICO Express (/nome/s)yoon/exercise2)					
<u>File View Project Implementation Group Run Analyze Window H</u> elp					
💽 🛎 🖴 🕾 🕹 🔚 🗷 🛋 🖻 🖬 🗾 🔎 🖓 🇞 ৯ 🗇 🛷 🖟 🛷 🛷 🛷 🐼 🐼					
Active Implementation: <not select<="" td=""><td>ted></td></not>	ted>				
Configure New Implementation					
Run exercise2 <implementation< td=""><td></td></implementation<>					
Default T-Implementat	- 1				
Golden C Simulation					
PreProcess E-headers	- 1				
Lint Simulation					
✓ pico:[exercise2:-]> set_project_params -projdir /home/sjyoon/exercise2 ✓ Input Input Clock Estimated	Deliv				
Project directory now set to: /home/sjyoon/exercise2 MITI Frequency Cost	MITI				
pico.[exercise2]> (Gates)	Cyc				
	_				
Open Project completed successfully					

Select Lint Process

NCO Express (/home/sjycon/exercise2)						
<u>F</u> ile <u>V</u> iew <u>P</u> roject <u>I</u> mplementation <u>G</u> roup <u>R</u> un <u>A</u> nalyze <u>W</u> indow <u>H</u> elp						
📄 🛎 🖴 [🗫 💠 🚍 🚅 🗮 📊 🛛 🗶 ৯ 🗞 🗇 🦑 🖑 🦑 🖑 🦑 🦑 🐼						
Active Implementation	i: a0					
Configure New Implementation Run Lint Configure Build Default Lint Lint Lint Configure Build Default Lint Lint Lint Configure Build Default E-results Configure Config	- ma 4					
pico:[exercise2:-]> set_project_params -projdir /home/sjyoon/exercise2 Project directory now set to: /home/sjyoon/exercise2 pico:[exercise2:-]> select_experiment a0 <no exp=""> select_experiment a0 pico:[exercise2:a0]></no>	Deliv VITI Cyc					
Set Active Implementation completed successfully						

🗆 Run

	🔀 PICO Express (/home/sjyoon/exercise2)						
	<u>File View Project Implementation Group Run Analyze Window Help</u>						
	💽 🛎 🖴 🔝 🛬 🔩 🧮 🖬 🗵 🌾 🗞 🌾 🗇 🎺 👫 👫 👫 🦑 🐼						
	Active Implementati						
	X	X					
	Configure New Implementation	ementation D	- 1				
\triangleleft	Run -Groups -data	ata	- 1				
	Lint I D-info	fo	- 1				
	Golden C Simulation		- 1				
		eports PICO EXPIESS	- 1				
		re	- 1				
	Lint Simulation	/ork	11 Pr 46.4				
			_				
	Pico:[exercise2:-]> set_project_params -projdir /home/sjyoon/exercise/ Project_directory_page act_to: /home/civeop/avamiac2	se2 Input Input Clock Estimated	Deliv				
	pico:[exercise2:-]> select experiment a0	(Cycles) (MHz) (Gates)	(Cvc				
	<no exp=""> select_experiment a0</no>	a0 0 100 N/A					
	pico:[exercise2:a0]>		_				
	Set Active Implementation completed successfully						

Compile failed because of syntax error

Edit fir.c file on Implementation View

🔀 PICO Express (/home/sjyoo	n/exercise2)				×	
<u>F</u> ile <u>V</u> iew <u>P</u> roject <u>I</u> mplementation <u>G</u> roup <u>R</u> un <u>A</u> nalyze <u>W</u> indow <u>H</u> elp						
💽 🖙 🖴 📪 🐥 🚍 📢 🖼 📓 🙀 🍂 🔊 🐼 🐟 🗇 🎺 👫 🛷 🛷 🦧 🥀 🐼						
Active Implementation: a0						
	X⊥	X	T T		1	
Configure New Implementation	Project View	Implementation D	Electron			
Run	exercise2	Reports	eg syntora		I	
	-Groups	in the simulation			I	
Lint I	ng-Implementat	ire-src		20	I	
Golden C Simulation	⊫-sources	lir.c	PICO Ex	nress	I	
PreProcess	₽-headers	fir.h	1100 E	(press	I	
Lint Simulation	-data	_fixed_poi	alla Awara ya Sori wa	(177-2003 (p. 1775) - 2013 (d. 1785) - 46.4		
	e-results	└─fixed_poi 🕅			I	
<pre>pico:[exercise2:-]> select_experim</pre>	ient a0		Input Input Clock	Estimated Deli	ivŢ	
pico:[exercise2:a0]> csim -golden			MITI Frequency	Cost MIT		
a0: csim -golden			0 100	N/A		
ERROR: compile failed.					1	
fir.c:30: syntax error before "' toke						
pico:[exercise2:a0]>					2	
C Golden Simulation failed						

🗆 Edit

```
🕻 fir.c (~/exercise2/a0/src) - GVIM
                                                                    File Edit Tools Syntax Buffers Window Help
                               ĥ
                                                       😭 🕸
                                                                ♦ 🔲
                                                                       ¢)
                        X h
                                    । 🔍 🖨 🖨 🖗
                                                    D
                   \widehat{\mathcal{O}}
    <?
     25 short y3[L][M2-N];
     26
     27 char task num;
     28
     29 short macc shift(short a, short b, short partial sum, int shift am
         short result = partial_sum + ((a*b) >> shift amount);
     30
         return result;
     31
     32 }
     33
     34 void fir() {
        int i,j;
     35
     36
     37
         // Create a fixed, 31-point rectangular window with cutoff frequ
         const short w3[N] = {0x0032, 0x000f, 0xffe3, 0xffb6, 0xff92, 0xf
     38
                               Oxfff2, 0x0051, 0x00c2, 0x013a, 0x01ab, 0x0
     39
                               0x0243, 0x0207, 0x01ab, 0x013a, 0x00c2, 0x0
     40
                               Oxff87, Oxff7f, Oxff92, Oxffb6, Oxffe3, OxO
     41
     42
                                                        25,1
                                                                      45%
```

Lint Error

WARNING:2039:Isim:pico_lint.c:338 In function 'macc_shift' called at fir.c:50 WARNING: fir.c: 30: Shift value 18446744073709551587 out of legal range (0,31) END WARNING WARNING:2000:Isim:pico_lint.c:507 WARNING:fir.c:52: Width overflow for "y[0]" type i13, value -31998 (0xffff8302). END WARNING WARNING:2000:Isim:pico_lint.c:507 WARNING: fir.c: 61: Width overflow for "y2[0][0]" type i13, value -4643 (0xffffeddd). **END WARNING** WARNING:2000:Isim:pico_lint.c:507 WARNING: fir.c: 69: Width overflow for "y3[0][40]" type i13, value 4158 (0x103e) **END WARNING**

Negative shift amount?

```
K fir.c (~/exercise2/a0/src) - GVIM
                                                                                    File Edit Tools Syntax Buffers Window Help
                                                                🌢 🔲 🐑
                         * 予
                               ĥ
                                    🛯 🗣 🗢 🖗
                                                       😭 🕸
                                                                            0
 D
                   \widehat{\mathcal{O}}
                                                    1
    <?
             sum = macc shift(w[j], x[task num][i+j], sum, (EXPY+EXPX+EXPW));
     50
     51
     52
            y[i] = sum;
     53
         }
     54
     55
     56
         for (i=0; i < M2-N; i++) {
     57
          short sum = y2[task num][i];
          for (j=0; j < N; j++) {
     58
             sum = macc_shift(w2[j], y[i+j], sum, (EXPY-EXPX-EXPW));
     59
     60
           y2[task_num][i] = sum;
     61
         }
     62
     63
         for (i=0; i < M2-N; i++) {
     64
     65
           short sum = y3[task num][i];
           for (j=0; j < N; j++) {
     66
             sum = macc_shift(w3[j], y[i+j], sum, (EXPY-EXPX-EXPW));
     67
                                                                        50,70
                                                                                       92%
```

🗆 Fibonacci

- Basic approach
 - Implement simple program by your hand
 - Write driver code and ppa code
 - Driver code is for initializing the input, setting up the PPA and printing the output.
 - PPA code is for synthesizing the hardware. Should be synthesizable C code which meets PICO's coding constraints
 - If you are not familiar with PICO, it is okay to use existing programs for framework
- Sliding window
 - See "Writing C Application" page 32 for reference (<u>http://iris.snu.ac.kr/synfora/Writing C apps.pdf</u>)

- Implement 5-tap FIR FILTER without streaming
 - 5-tap filter needs 5 pixel at once to filter
 - Create intermediate pixel "x" using a 5-tap FIR filter. Filter all pixels horizontally in this manner(top left to bottom right)
 - And then, create final pixel "x" using a 5-tap FIR filter. Filter all pixels vertically in this manner. (top left to bottom right)


```
Horizontal filtering
for(j = 0 + MARGIN; j < HEIGHT + MARGIN; j++)
     for(i = 0 + MARGIN; i < WIDTH + MARGIN; i++)
        short output = (c[4] * yin[i][i-2] +
               c[3] * yin[i][i-1] +
               c[2] * yin[j][i ] +
               c[1] * yin[j][i+1] +
               c[0] * yin[j][i+2] )>>3;
        yinter[i][i] = output;
  }
```

```
Vertical filtering
  for(jj = 0 + MARGIN; jj < HEIGHT + MARGIN; jj + +)
     for(ii = 0 + MARGIN; ii < WIDTH + MARGIN; ii++)
        short output = (c[4] * yinter[j]-2][ii] +
               c[3] * yinter[ij-1][ii] +
               c[2] * yinter[jj][ii ] +
               c[1] * yinter[j]+1][j] +
               c[0] * yinter[j]+2][ii] )>>3;
        yout[jj][ii] = output;
  }
```


Homework

- Implement 5-tap FIR FILTER with internal streaming and sliding window to improve performance
- Problems of previous implementation
 - Memory for full size of picture frame is needed large memory
 - Large number of memory access occurs
 - It prevents parallel execution of Loop0 and Loop1 because of data dependency between L0 and L1
 - These problems can be solved by streaming and sliding window

Streaming Data (1)

- Streaming data enables parallel execution of communicating loop nests
 - Communicate via 2-way handshake
 - Time-independent synchronization
 - "Block-on-read" no peeking

Specification for external streams:

- Use <type> pico_stream_input_<name>(void) (input)
- Use void pico_stream_output_<name>(<type>) (output)
- The user should write these procedures to define the communication between driver and PPA via streams
- Specification for internal streams:
 - Use FIFO(<name>, <type>) to declare inter-loop FIFO
 - Use pico_stream_input_<name> and pico_stream_output<name>
 - The stream procedures are automatically generated by the FIFO macro

time

Streaming Data (2)

What happens when we call pico_stream_*?

- In software procedure call
 - The code for the pico_stream_* procedure is executed
 - For internal streams this procedure comes from the FIFO macro and is predefined by PICO Express
 - For external streams this procedure is user-defined and can do anything the user wishes
- In hardware data handshake
 - Each data stream has 3 signals data, ready, request
 - When pico_stream_* call is encountered, the request is asserted (either for read or write)
 - If the corresponding ready is true, the transaction takes place and the PA proceeds
 - If the ready is false, the PA stalls and continues asserting request until ready goes true

Streaming Data (3)

- Without streams, the PPA would always execute in a predetermined time
 - Streams introduce variability due to dynamic synchronization and flow control
 - Waiting for input data to be available
 - Waiting for output buffer to be free
 - Producer and consumer block independently
 - The computation is still deterministic

- Streams may cause deadlocks due to bounded buffers #pragma fifo_length x 4
- Deadlocks can always be removed by increasing FIFO sizes. However, this may indicate unintended sequentialization in the code
Streaming Data(4)

Example Code

- Function pico_stream_output_y() is for external streaming. It is manually implemented in the driver code by user and does something, for example, writing value of y[j] to output file.
- Function pico_stream_output_z() and pico_stream_output_y() are for internal streaming. It's code is automatically generated by PICO. Function pico_stream_output_z() writes "x[j] + offset" to FIFO and pico_stream_input_z() reads value from FIFO.

```
int x[100],y[100],z[100];
FIFO(z,int)
extern int pico_stream_output_y(int);
int offset;
```

```
void ppa(void) {
    int j;
```

```
for(j=0;j<100;j++) {
    y[j] = x[j]*x[j];
    pico_stream_output_z(x[j]+offset);
}</pre>
```

```
pico_stream_output_y(y[j]);
```

```
}
for(j=0;j<100;j++){
    z[j] = pico_stream_input_z();</pre>
```

Sliding Window

□ A sliding window is variable with the following properties:

- It is declared as a one-dimensional array in procedure scope.
- All references have compile-time constant indices.
- It is an argument to a single pico_shift procedure call.
- Within a for-loop, at most shift locations can be written, where shift is the shift argument to the pico_shift call. In addition, the locations written must have consecutive indices.
- □ The pico_shift() call takes two arguments:
 - The array to be shifted
 - Must be a single dimensional array
 - Must be declared in procedure scope
 - The shift amount
 - Must be a compile-time constant
 - Must be between one and the array size minus one

- FIFO is used to keep the data from LO which filters horizontally
- What L1 needs is the data in vertical order while FIFO fires the data in horizontal order.
 - In the L1, Someone should keep the data from FIFO and provides data access in vertical order
 - Sliding window can be used here
- Sliding windows should keep more than 4 lines to provide vertical data access to L1

Revised structure with stream and sliding window

Sample Result of fir filter with shared memory

Sample result of fir filter with stream

